IKA03N120H2 Rev2 3G - Infineon Technologies

14
IKA03N120H2 Power Semiconductors 1 Rev. 2.3 17.07.2013 HighSpeed 2-Technology with soft, fast recovery anti-parallel Emitter Controlled HE diode Designed for: - TV – Horizontal Line Deflection 2 nd generation HighSpeed-Technology for 1200V applications offers: - loss reduction in resonant circuits - temperature stable behavior - parallel switching capability - tight parameter distribution - Integrated anti-parallel diode - E off optimized for I C =3A Qualified according to JEDEC 2 for target applications Pb-free lead plating; RoHS compliant G C E PG-TO220-3-31 (FullPAK) PG-TO220-3-34 (FullPAK) Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type V CE I C E off T j Marking Package IKA03N120H2 1200V 3A 0.15mJ 150C K03H1202 PG-TO-220-3-31 IKA03N120H2 1200V 3A 0.15mJ 150C K03H1202 PG-TO-220-3-34 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage V CE 1200 V Triangular collector peak current (V GE = 15V) T C = 100C, f = 32kHz I C 8.2 A Pulsed collector current, t p limited by T jmax I Cpuls 9 Turn off safe operating area V CE 1200V, T j 150C - 9 Diode forward current T C = 25C T C = 100C I F 9.6 3.9 Gate-emitter voltage V GE 20 V Power dissipation T C = 25C P tot 29 W Operating junction and storage temperature T j , T stg -40...+150 C Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260 Isolation Voltage V isol 2500 V rms 1 J-STD-020 and JESD-022

Transcript of IKA03N120H2 Rev2 3G - Infineon Technologies

Page 1: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 1 Rev. 2.3 17.07.2013

HighSpeed 2-Technology with soft, fast recovery anti-parallel Emitter ControlledHE diode

Designed for:- TV – Horizontal Line Deflection

2nd

generation HighSpeed-Technologyfor 1200V applications offers:- loss reduction in resonant circuits- temperature stable behavior- parallel switching capability- tight parameter distribution- Integrated anti-parallel diode- Eoff optimized for IC =3A

Qualified according to JEDEC2

for target applications Pb-free lead plating; RoHS compliant

G

C

E

PG-TO220-3-31(FullPAK)

PG-TO220-3-34(FullPAK)

Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/

Type VCE IC Eoff Tj Marking Package

IKA03N120H2 1200V 3A 0.15mJ 150C K03H1202 PG-TO-220-3-31

IKA03N120H2 1200V 3A 0.15mJ 150C K03H1202 PG-TO-220-3-34

Maximum Ratings

Parameter Symbol Value Unit

Collector-emitter voltage VC E 1200 V

Triangular collector peak current (VGE = 15V)

TC = 100C, f = 32kHz

IC

8.2

A

Pulsed collector current, tp limited by Tjmax IC p u l s 9

Turn off safe operating area

VCE 1200V, Tj 150C

- 9

Diode forward current

TC = 25C

TC = 100C

IF

9.6

3.9

Gate-emitter voltage VG E 20 V

Power dissipation

TC = 25C

P t o t 29 W

Operating junction and storage temperature T j , T s t g -40...+150 C

Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260

Isolation Voltage V i s o l 2500 V r m s

1J-STD-020 and JESD-022

Page 2: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 2 Rev. 2.3 17.07.2013

Thermal Resistance

Parameter Symbol Conditions Max. Value Unit

Characteristic

IGBT thermal resistance,junction – case

R t h J C 4.3 K/W

Diode thermal resistance,junction - case

R t h J C D 5.8

Thermal resistance,junction – ambient

R t h J A 62

Electrical Characteristic, at Tj = 25 C, unless otherwise specified

Parameter Symbol ConditionsValue

Unitmin. Typ. max.

Static Characteristic

Collector-emitter breakdown voltage V ( B R ) C E S VG E=0V, IC=300A 1200 - - V

Collector-emitter saturation voltage VC E ( s a t ) VG E = 15V, IC=3A

T j=25C

T j=150C

VG E = 10V, IC=3A,T j=25C

-

-

-

2.2

2.5

2.4

2.8

-

-

Diode forward voltage VF VG E = 0, IF=3A

T j=25C

T j=150C

-

-

1.55

1.6

-

-

Gate-emitter threshold voltage VG E ( t h ) IC=90A,VC E=VG E 2.1 3 3.9

Zero gate voltage collector current IC E S VC E=1200V,VG E=0V

T j=25C

T j=150C

-

-

-

-

20

80

A

Gate-emitter leakage current IG E S VC E=0V,VG E=20V - - 100 nA

Transconductance g f s VC E=20V, IC=3A - 2 - S

Dynamic Characteristic

Input capacitance C i s s VC E=25V,

VG E=0V,

f=1MHz

- 205 - pF

Output capacitance Co s s - 24 -

Reverse transfer capacitance C r s s - 7 -

Gate charge QG a t e VC C=960V, IC=3A

VG E=15V

- 8.6 - nC

Internal emitter inductance

measured 5mm (0.197 in.) from case

LE - 7 - nH

Page 3: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 3 Rev. 2.3 17.07.2013

Switching Characteristic, Inductive Load, at Tj=25 C

Parameter Symbol ConditionsValue

Unitmin. typ. max.

IGBT Characteristic

Turn-on delay time td ( o n ) T j=25C,

VC C=800V, IC=3A,

VG E=0V/15V,

RG=82 ,L

2 )=180nH,

C2 )

=40pF

Energy losses include“tail” and diode

3)

reverse recovery.

- 9.2 - ns

Rise time t r - 5.2 -

Turn-off delay time td ( o f f ) - 281 -

Fall time t f - 29 -

Turn-on energy Eo n - 0.14 - mJ

Turn-off energy Eo f f - 0.15 -

Total switching energy E t s - 0.29 -

Anti-Parallel Diode Characteristic

Diode reverse recovery time t r r T j=25C,

VR=800V, IF=3A,

RG=82

- 52 - ns

Diode reverse recovery charge Q r r - 0.23 - µC

Diode peak reverse recovery current I r r m - 9.3 - A

Diode current slope diF /d t - 723 - A/s

Switching Characteristic, Inductive Load, at Tj=150 C

Parameter Symbol ConditionsValue

Unitmin. typ. max.

IGBT Characteristic

Turn-on delay time td ( o n ) T j=150C

VC C=800V, IC=3A,

VG E=0V/15V,

RG=82 ,

L2 )

=180nH,

C2 )

=40pF

Energy losses include“tail” and diode

3)

reverse recovery.

- 9.4 - ns

Rise time t r - 6.7 -

Turn-off delay time td ( o f f ) - 340 -

Fall time t f - 63 -

Turn-on energy Eo n - 0.22 - mJ

Turn-off energy Eo f f - 0.26 -

Total switching energy E t s - 0.48 -

Anti-Parallel Diode Characteristic

Diode reverse recovery time t r r T j=150C

VR=800V, IF=3A,

RG=82

- 112 - ns

Diode reverse recovery charge Q r r - 0.52 - µC

Diode peak reverse recovery current I r r m - 11 - A

Diode current slope diF /d t - 661 - A/s

2)Leakage inductance L and stray capacity C due to dynamic test circuit in figure E

3)Commutation diode from device IKP03N120H2

Page 4: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 4 Rev. 2.3 17.07.2013

Switching Energy ZVT, Inductive Load

Parameter Symbol ConditionsValue

Unitmin. typ. max.

IGBT Characteristic

Turn-off energy Eo f f VC C=800V, IC=3A,

VG E=0V/15V,

RG=82 , C r2 )

=4nF

T j=25C

T j=150C

-

-

0.05

0.09

-

-

mJ

Page 5: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 5 Rev. 2.3 17.07.2013

I C,

CO

LLE

CT

OR

CU

RR

EN

T

10Hz 100Hz 1kHz 10kHz 100kHz0A

2A

4A

6A

8A

10A

12A

TC=100°C

TC=25°C

I C,

CO

LLE

CT

OR

CU

RR

EN

T

1V 10V 100V 1000V0,01A

0,1A

1A

10A

50s

DC

100ms

100s

20s

1ms

tp=10s

f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE

Figure 1. Collector current as a function ofswitching frequency(Tj 150C, D = 0.5, VCE = 800V,VGE = +15V/0V, RG = 82)

Figure 2. Safe operating area(D = 0, TC = 25C, Tj 150C)

Pto

t,P

OW

ER

DIS

SIP

AT

ION

25°C 50°C 75°C 100°C 125°C 150°C0W

10W

20W

30W

I C,

CO

LLE

CT

OR

CU

RR

EN

T

25°C 50°C 75°C 100°C 125°C 150°C0A

2A

4A

6A

8A

TC, CASE TEMPERATURE TC, CASE TEMPERATURE

Figure 3. Power dissipation as a functionof case temperature(Tj 150C)

Figure 4. Collector current as a function ofcase temperature(VGE 15V, Tj 150C)

Ic

Ic

Page 6: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 6 Rev. 2.3 17.07.2013

I C,

CO

LLE

CT

OR

CU

RR

EN

T

0V 1V 2V 3V 4V 5V0A

2A

4A

6A

8A

10A

12V

10V

8V

6V

VG E

=15V

I C,

CO

LLE

CT

OR

CU

RR

EN

T

0V 1V 2V 3V 4V 5V0A

2A

4A

6A

8A

10A

12V

10V

8V

6V

VGE

=15V

VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE

Figure 5. Typical output characteristics(Tj = 25C)

Figure 6. Typical output characteristics(Tj = 150C)

I C,

CO

LLE

CT

OR

CU

RR

EN

T

3V 5V 7V 9V0A

2A

4A

6A

8A

10A

12A

Tj=+150°C

Tj=+25°C

VC

E(s

at),

CO

LLE

CT

OR

-EM

ITT

ER

SA

TU

RA

TIO

NV

OLT

AG

E

-50°C 0°C 50°C 100°C 150°C0V

1V

2V

3V

IC=6A

IC=3A

IC=1.5A

VGE, GATE-EMITTER VOLTAGE Tj, JUNCTION TEMPERATURE

Figure 7. Typical transfer characteristics(VCE = 20V)

Figure 8. Typical collector-emittersaturation voltage as a function of junctiontemperature(VGE = 15V)

Page 7: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 7 Rev. 2.3 17.07.2013

t,S

WIT

CH

ING

TIM

ES

0A 2A 4A1ns

10ns

100ns

1000ns

tr

td(on)

tf

td(off)

t,S

WIT

CH

ING

TIM

ES

0 50 100 1501ns

10ns

100ns

1000ns

tr

td(on)

tf

td(off)

IC, COLLECTOR CURRENT RG, GATE RESISTOR

Figure 9. Typical switching times as afunction of collector current(inductive load, Tj = 150C,VCE = 800V, VGE = +15V/0V, RG = 82,dynamic test circuit in Fig.E)

Figure 10. Typical switching times as afunction of gate resistor(inductive load, Tj = 150C,VCE = 800V, VGE = +15V/0V, IC = 3A,dynamic test circuit in Fig.E)

t,S

WIT

CH

ING

TIM

ES

25°C 50°C 75°C 100°C 125°C 150°C1ns

10ns

100ns

1000ns

tr

td(on)

tf

td(off)

VG

E(t

h),

GA

TE-E

MIT

TE

RT

HR

ES

HO

LD

VO

LT

AG

E

-50°C 0°C 50°C 100°C 150°C0V

1V

2V

3V

4V

5V

typ.

min.

max.

Tj, JUNCTION TEMPERATURE Tj, JUNCTION TEMPERATURE

Figure 11. Typical switching times as afunction of junction temperature(inductive load, VCE = 800V,VGE = +15V/0V, IC = 3A, RG = 82,dynamic test circuit in Fig.E)

Figure 12. Gate-emitter threshold voltageas a function of junction temperature(IC = 0.09mA)

Page 8: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 8 Rev. 2.3 17.07.2013

E,

SW

ITC

HIN

GE

NE

RG

YLO

SS

ES

0A 2A 4A0.0mJ

0.5mJ

1.0mJ

Eon

1

Eoff

Ets

1

E,

SW

ITC

HIN

GE

NE

RG

YLO

SS

ES

0 50 100 150 200 250

0.2mJ

0.3mJ

0.4mJ

0.5mJ

0.6mJ

0.7mJ

Eon

1

Ets

1

Eoff

IC, COLLECTOR CURRENT RG, GATE RESISTOR

Figure 13. Typical switching energy lossesas a function of collector current(inductive load, Tj = 150C,VCE = 800V, VGE = +15V/0V, RG = 82,dynamic test circuit in Fig.E )

Figure 14. Typical switching energy lossesas a function of gate resistor(inductive load, Tj = 150C,VCE = 800V, VGE = +15V/0V, IC = 3A,dynamic test circuit in Fig.E )

E,

SW

ITC

HIN

GE

NE

RG

YLO

SS

ES

25°C 80°C 125°C 150°C

0.1mJ

0.2mJ

0.3mJ

0.4mJ

0.5mJ

Ets

1

Eon

1

Eoff

Eoff,

TU

RN

OF

FS

WIT

CH

ING

EN

ER

GY

LO

SS

0V/us 1000V/us 2000V/us 3000V/us0.00mJ

0.04mJ

0.08mJ

0.12mJ

0.16mJ

IC=1A, T

J=150°C

IC=1A, T

J=25°C

IC=3A, T

J=150°C

IC=3A, T

J=25°C

Tj, JUNCTION TEMPERATURE dv/dt, VOLTAGE SLOPE

Figure 15. Typical switching energy lossesas a function of junction temperature(inductive load, VCE = 800V,VGE = +15V/0V, IC = 3A, RG = 82,dynamic test circuit in Fig.E )

Figure 16. Typical turn off switching energyloss for soft switching(dynamic test circuit in Fig. E)

1) Eon and Ets include lossesdue to diode recovery.

1) Eon and Ets include lossesdue to diode recovery.

1) Eon and Ets include lossesdue to diode recovery.

Page 9: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 9 Rev. 2.3 17.07.2013

C,

CA

PA

CIT

AN

CE

0V 10V 20V 30V

10pF

100pF

1nF

Crss

Coss

Ciss

VG

E,

GA

TE-E

MIT

TE

RV

OLT

AG

E

0nC 10nC 20nC 30nC0V

5V

10V

15V

20V

UCE

=240V

UCE

=960V

VCE, COLLECTOR-EMITTER VOLTAGE QGE, GATE CHARGE

Figure 17. Typical capacitance as afunction of collector-emitter voltage(VGE = 0V, f = 1MHz)

Figure 18. Typical gate charge(IC = 3A)

Zth

JC,

TR

AN

SIE

NT

TH

ER

MA

LR

ES

IST

AN

CE

1µs 10µs 100µs 1ms 10ms100ms 1s 10s

10-2

K/W

10-1

K/W

100K/W

101K/W

0.01

0.02

0.05

0.1 0.2

single pulse

D=0.5

Zth

JC,

TR

AN

SIE

NT

TH

ER

MA

LR

ES

IST

AN

CE

10µs 100µs 1ms 10ms100ms 1s 10s10

-2K/W

10-1

K/W

100K/W

single pulse

0.01

0.02

0.05

0.1

0.2

D=0.5

tP, PULSE WIDTH tP, PULSE WIDTH

Figure 19. Typical IGBT transient thermalimpedance as a function of pulse width(D=tP/T)

Figure 22. Typical Diode transientthermal impedance as a function ofpulse width(D=tP/T)

R , ( K / W ) , ( s ) 1,4285 5,24041,8838 1,76880,4057 0,075920,4234 0,0050180,3241 0,0005950,1021 0,0001260,1340 0,000018

C1=1/R1

R1 R2

C2=2/R2

R , ( K / W ) , ( s ) 0.9734 4.2791.452 1.0940.6213 4.899*10-2

0.7174 3.081*10-3

0.7037 4.341*10-4

0.1445 0.833*10-5

C 1= 1 /R 1

R 1 R 2

C2= 2/R 2

Page 10: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 10 Rev. 2.3 17.07.2013

t rr,

RE

VE

RS

ER

EC

OV

ER

YT

IME

0Ohm 100Ohm 200Ohm 300Ohm

40ns

60ns

80ns

100ns

120ns

140ns

160ns

180ns

TJ=150°C

TJ=25°C

Qrr,

RE

VE

RS

ER

EC

OV

ER

YC

HA

RG

E

0Ohm 100Ohm 200Ohm 300Ohm0.2uC

0.3uC

0.4uC

0.5uC

0.6uC

TJ=150°C

TJ=25°C

RG, GATE RESISTANCE RG, GATE RESISTANCE

Figure 23. Typical reverse recovery timeas a function of diode current slopeVR=800V, IF=3A,Dynamic test circuit in Figure E)

Figure 24. Typical reverse recoverycharge as a function of diode currentslope(VR=800V, IF=3A,Dynamic test circuit in Figure E)

I rr,

RE

VE

RS

ER

EC

OV

ER

YC

UR

RE

NT

0Ohm 100Ohm 200Ohm 300Ohm8A

10A

12A

14A

16A

TJ=150°C

TJ=25°C

di rr

/dt,

DIO

DE

PE

AK

RA

TE

OF

FA

LL

OF

RE

VE

RS

ER

EC

OV

ER

YC

UR

RE

NT

0Ohm 100Ohm 200Ohm 300Ohm-1800A/us

-1600A/us

-1400A/us

-1200A/us

-1000A/us

-800A/us

-600A/us

TJ=150°C

TJ=25°C

RG, GATE RESISTANCE RG, GATE RESISTANCE

Figure 25. Typical reverse recoverycurrent as a function of diode currentslope(VR=800V, IF=3A,Dynamic test circuit in Figure E)

Figure 26. Typical diode peak rate of fallof reverse recovery current as afunction of diode current slope(VR=800V, IF=3A,Dynamic test circuit in Figure E)

Page 11: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 11 Rev. 2.3 17.07.2013

I F,

FO

RW

AR

DC

UR

RE

NT

0V 1V 2V 3V0A

2A

4A TJ=150°C

TJ=25°C

VF,

FO

RW

AR

DV

OLT

AG

E-50°C 0°C 50°C 100°C 150°C

1.0V

1.5V

2.0V

2.5V

3.0V

IF=4A

IF=2A

IF=1A

VF, FORWARD VOLTAGE TJ, JUNCTION TEMPERATURE

Figure 27. Typical diode forward currentas a function of forward voltage

Figure 28. Typical diode forwardvoltage as a function of junctiontemperature

Page 12: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 12 Rev. 2.3 17.07.2013

TO-220-3-FP

Page 13: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 13 Rev. 2.3 17.07.2013

Ir r m

90% Ir r m

10% Ir r m

di /dtF

tr r

IF

i,v

tQS

QF

tS

tF

VR

di /dtr r

Q =Q Qr r S F

+

t =t tr r S F

+

Figure C. Definition of diodesswitching characteristics

p(t)1 2 n

T (t)j

11

2

2

n

n

TC

r r

r

r

rr

Figure D. Thermal equivalentcircuit

Figure E. Dynamic test circuit

Leakage inductance L= 180nH,Stray capacitor C = 40pF,Relief capacitor Cr = 4nF (only forZVT switching)

Figure A. Definition of switching times

Figure B. Definition of switching losses

öö

VDC

DUT(Diode)

½ L

RG DUT(IGBT)

L

½ L

C Cr

Page 14: IKA03N120H2 Rev2 3G - Infineon Technologies

IKA03N120H2

Power Semiconductors 14 Rev. 2.3 17.07.2013

Published byInfineon Technologies AG81726 Munich, Germany© 2013 Infineon Technologies AGAll Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or

characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or

any information regarding the application of the device, Infineon Technologies hereby disclaims any and all

warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual

property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearestInfineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on thetypes in question, please contact the nearest Infineon Technologies Office.The Infineon Technologies component described in this Data Sheet may be used in life-support devices orsystems and/or automotive, aviation and aerospace applications or systems only with the express writtenapproval of Infineon Technologies, if a failure of such components can reasonably be expected to cause thefailure of that life-support, automotive, aviation and aerospace device or system or to affect the safety oreffectiveness of that device or system. Life support devices or systems are intended to be implanted in thehuman body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonableto assume that the health of the user or other persons may be endangered.