III-V Multijunction and Concentrator Photovoltaics ... · III-V Mul(jun(on & Concentrator...

17
III-V Mul(jun(on & Concentrator Photovoltaics Research at NREL John Geisz SUN UP webinar October 18, 2016

Transcript of III-V Multijunction and Concentrator Photovoltaics ... · III-V Mul(jun(on & Concentrator...

III-VMul(jun(on&ConcentratorPhotovoltaicsResearchatNRELJohnGeisz

SUNUPwebinarOctober18,2016

III-V multijunctions used in high value applications

Space: Large, flat panels - High efficiency at 1-sun AM0 - Light weight is critical - High radiation resistance - Cost not so important

Terrestrial: Small cells, high concentration - High efficiency under concentration - Low system cost - Balance of system (optics, tracking…) - Sensitivity to spectral changes

Efficiencyiscri?cal!

3

•  Mul?junc?ons–reducethermaliza?onlosses•  Concentra?on–efficiencyandeconomics•  Radia?veefficiency–materialscienceandop?cs•  III-Valloys–highqualityandversa?le

ProvenStrategiesforHighEfficiencySolarCells

4

MetalorganicVaporPhaseEpitaxy(MOVPE)

EasytogrowcomplexstructureswithmanyalloysusingelementsinGroupIIIandVcolumns

Usedinsolarcells,lasers,LEDs,transistors,powerelectronics

5

III-Vmaterialsystem

•  Highlycrystalline

•  LaXce-matchedalloys

•  Directbandgaps

•  Widerangeofbandgaps

•  N-typeandP-typedoping

•  Confinementlayers

•  Stable

6

Mul?junc?onsolarcells

70

60

50

40ef

ficie

ncy

(%)

87654321number of junctions

ideal multijunctioncell efficiency

Mul(junc(onstrategy:•  Absorbabroadpor?onofthespectrum•  Usemul?plejunc?onswithdifferentbandgapstominimizethermaliza?on

1stjunc?on

2ndjunc?on

3rdjunc?on

4thjunc?on

0.5 Eg1 Eg2 Eg3 Eg4 4Photon Energy (eV)

Eg4 Eg3 Eg2 Eg1

7

HistoryofSolarCellEfficiency

Mul?junc?onconcentratorsarehighestands?llclimbing!

NRELmul?junc?onteamleadingefficiencygainsthroughresearch

4JIMM

Invented3JIMM

InventedGaInP/GaAsTandem Invented3J

dilutenitridebutrealizedbySolarJunc?on’sMBE

8

InvertedMetamorphicMul?junc?on(IMM)SolarCell•  Near-op?mumbandgapscanbeachievedbychangingthe

laXceconstant•  Invertedgrowthhasmanyadvantages•  Worldrecord40.8%with3JIMM(nowinproduc?on)•  Demonstrated45.6%with4JIMM•  Targetof50%with5Jor6JIMMinnearfuture

GaInAs 1.0 eV

GaInP 1.8 eV

GaAs 1.4 eV

Transparent GaInP buffer

GaInAs 0.7 eV

Transparent GaInP buffer

GaAs substrate Growth

direc?on

LaXceconstant

TJ

TJ

TJ

Mismatch1.9%

3.8%

9

Understandingroleofop?csinsolarcells

-Somephotonsescapeoutthefront-Somephotonsarere-absorbedinthebulk-Mostphotonsdirecteddownwardtowardthesubstratearelost

(Enhanced)photonrecycling:Photonsdirecteddownwardarereflectedbackintothecell,enhancingthephotonrecyclingINCREASESVOLTAGE

Luminescentcouplinginamul?junc?on:Photonsdirecteddownwardcanbecoupledtoalowerbandgapjunc?onINCREASESCURRENTbandgapjunc?on

(e+ h! ⇄ ℎ!)!

Steineretal.,APL100,251106(2012)

Steineretal.,JAP113,123109(2013)

10

Mul?junc?ons-Complexoptoelectroniccircuit

Tunnel

Photocurrent

LED

Reverse

Shunt

SeriesResistance

Breakdown

DiodeTunnel

Photocurrent

LED

Reverse

Shunt

Breakdown

DiodeTunnel

Photocurrent

LED

Reverse

Shunt

Breakdown

Diode

Photocurrent

LED

Reverse

Shunt

Breakdown

J1em J2

emJ3em J4

emJ1ext

J23LC

J3ext J4

ext

J12LC

J2ext

J34LC

Geiszetal.,“Generalizedoptoelectronicmodelofseries-connectedmul?junc?onsolarcells”,IEEEJPV,5,1827(2015)

Advancedcharacteriza?onandunderstandingforimproveddesign

11

Highperformancedevicesthroughmaterialsciencesolu?ons

•  Solarcellsthatglow•  HighqualitylayerswithdifferentcrystallaXce

Franceetal.,MRSBulle?n,41,202(2016)

12

•  Reduc?onofdisloca?onsinmetamorphicalloys•  Effectsofalloyordering•  TransparencyoflayersusingBurstein-Mossshin•  Reduc?onofnon-radia?verecombina?on•  Metastablealloycombina?ons

Materialsciencechallenges

(1.4 eV)

LM#line#

InGaP&&(1.88eV)&

1.69 eV Ga0.68In0.32As0.34P0.66

1.66 eV Ga0.73In0.27As0.43P0.57

1.61 eV Ga0.78In0.22As0.54P0.46

1.79 eV Ga0.60In0.40As0.17P0.83

13

•  Funding:DOEEERESETOSunLamp•  Goal:5J–6Jinvertedmetamorphicsolarcellsforhighconcentra?on

Mul?junc?onsolarcellsfor50%efficiency

GaxIn1-xP CGB

1.4eV GaAs

1.05eV Ga.21In.79As.44P.56

2.1 eV Al.18Ga.34In.48P

1.7eV Al.23Ga.77As

reflective metal contact

front metal grid

c) 5J IMM w/ one CGB

TJ

TJ

TJ

TJ

b) 5J IMM w/ two CGB

a) 4J IMM w/ two CGB

reflective metal contact reflective metal contact

0.73eV In.53Ga.47As

GaxIn1-xP CGB

GaxIn1-xP CGBGaxIn1-xP CGB

GaxIn1-xP CGB

1.4eV GaAs1.4eV GaAs

1.7eV Al.23Ga.77As

2.1 eV Al.18Ga.34In.48P

1.8eV Ga.5In.5P

TJ

TJ

TJ

TJ

TJ

TJ

TJ

front metal grid

front metal grid

1.0eV In.3Ga.7As

0.73eV In.53Ga.47As0.73eV In.53Ga.47As

1.0eV In.3Ga.7As

GaxIn1-xP CGB

1.4eV GaAs

1.05eV Ga.21In.79As.44P.56

2.1 eV Al.18Ga.34In.48P

1.7eV Ga.65In.35As.27P.73

0.73eV Ga.47In.53As

reflective metal contact

front metal grid

TJ

TJ

TJ

TJ

1.2eV Ga.1In.9As.21P.79

TJ

d) 6J IMM"w/ one CGB"

Presentstatus Targetdesignsfor50%efficiency45.7%now

14

•  Funding:ARPA-EFOCUS•  Collaborators:Yale,NREL,SolAero•  Goal:Hightemperaturetandemsforsolar-thermalhybridcogenera?on

HighTemperatureSolarCellsforHybridEnergy

1.0

0.8

0.6

0.4

0.2

0.0

Curr

ent

(A)

3.02.52.01.51.00.50.0

Voltage (V)

25°C100°C200°C300°C400°C

100

90

80

70

60

50

40

30

20

10

0

IQE

(%)

750700650600550500450400350

Wavelength (nm)

25°C 400°C

MO098

HigherRTEgforop?malhightemperatureEg

2Jsolarcellopera?ngat400°Cand1000X

Perletal,IEEEJPV,6,1345(2016)

15

•  Funding:ARPA-EMOSAIC•  Collaborators:Caltech,UIUC,LBNL,NREL•  Goal:Tracker-free,low-profileconcentratorusinghighradia?veefficiencyquantumdotsinpolymerwaveguidecoupledtoGaInPmicrocellsandSicells

LuminescentSolarConcentrators

16

•  MOVPEcrystalgrowth•  III-Vsemiconductormaterialscience•  Mul?junc?onsolarcelldesign•  ConcentratorandSpaceapplica?ons•  Op?calmodeling•  Deviceprocessing•  Physicsofoptoelectronicdevices

Opportuni?esforresearch

Contributetoadvancingthestate-of-the-artinmul?junc?onsolarcellefficiencies!

Contactinforma?on:JohnGeisz

[email protected](303)384-6474