IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 ›...

31
IEEE Webinar Robust Constrained Model Predictive Voltage Control in Active Distribution Networks Presenter: Salish Maharjan Email: [email protected]/[email protected] Organizer: Newcastle University, Singapore. June 15, 2020

Transcript of IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 ›...

Page 1: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

IEEE Webinar

Robust Constrained Model Predictive VoltageControl in Active Distribution Networks

Presenter: Salish MaharjanEmail: [email protected]/[email protected]: Newcastle University, Singapore.June 15, 2020

Page 2: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Presentation Outlines

1. Closed-loop operation of the distribution networks2. DER integration standards3. Adjustment rule for local voltage control characteristics4. Why robust control? Why not stochastic control?5. Formulation of robust voltage control6. Simulation of robust voltage control in the UKGDS network7. Conclusions and future works

1

Page 3: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Closed-loop operation of the distribution networkDescription

• x: states ,u: control inputs, and d:disturbance vector

• Time step of network controller isgenerally 5 to 15 minutes1,2.

Time division within each time-step(∆t) of control

wide area measurements

state estimation

sensitivity estimation

modelupdates

solve optimal control problem

dispatch set-points

reaction time for network

Δt

wide area measurements

reaction time for network

dispatch set-points

bus9

bus8

bus7

bus6

bus5

bus4

bus3

bus34

bus33

bus32

bus31

bus30

bus2

bus29

bus28

bus27

bus26

bus25bus24

bus23

bus22

bus21

bus20

bus19

bus18 bus17bus16

bus15 bus14

bus13

bus12

bus11

bus10

bus1

network modeloptimization over

physical power network

set-

po

ints

(u

)

x = f(x,u,d) (d)Disturbanceprediction

me

asu

rem

en

ts (x

)

controllerFigure 1: Distribution network control.

Note: computational efficiency is thenecessity.

• mixed-integer-convex/convexmodeling of optimization problem

1Valentina Dabic and Djordje Atanackovic. “Voltage VAR optimization real time closed loop deployment - BC Hydro challenges and opportunities”. In: IEEEPower and Energy Society General Meeting 2015-Septe (2015), pp. 1–5. issn: 19449933. doi: 10.1109/PESGM.2015.72863132K P Schneider and T F Weaver. “A Method for Evaluating Volt-VAR Optimization Field Demonstrations”. In: IEEE Transactions on Smart Grid 5.4 (July 2014),pp. 1696–1703. issn: 1949-3053. doi: 10.1109/TSG.2014.2308872 2

Page 4: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Implication of discrete time-step on distribution network model

• For each time-step, the distribution network is modeled (x = f(x, u, d)).• The disturbance is not a constant within the time-step rather stochastic.• Therefore, the states of network also becomes stochastic in nature.

Example: PV generation as the disturbance input to a controller

10 11 12 13 14Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Powe

r (M

W)

1.1 MWp PV plant

Figure 2: Instantaneous value.

10:00 11:00 12:00 13:00 14:00Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Powe

r (M

W)

1.1 MWp PV plant

Figure 3: 5 min distribution.

10 11 12 13 14Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Powe

r (M

W)

1.1 MWp PV plant

Figure 4: 15 min distribution.

• Generation uncertainty (band between lower and upper bound) is large at largertime-step3.

3Enrica Scolari, Fabrizio Sossan, and Mario Paolone. “Irradiance prediction intervals for PV stochastic generation in microgrid applications”. In: SolarEnergy 139 (2016), pp. 116–129. issn: 0038092X. doi: 10.1016/j.solener.2016.09.030. url:http://dx.doi.org/10.1016/j.solener.2016.09.030 3

Page 5: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Robust voltage control

What is voltage control?

• Nodes’ voltage are modeled as the state variables

• All node voltages are regulated within the desired limit

Challenge in voltage control at higher penetration of renewables

• Nodes’ voltage are uncertain

• What to regulate? (expected value or lower/upper bounds)

What is robust voltage control?

• it regulates lower/upper bound of nodes’ voltage

4

Page 6: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Why robust voltage control?

• generation uncertainties are predicted using short-term predictionintervals 4.

• short-term prediction intervals provides lower/upper bound ofgeneration rather than probability distribution function (PDF).

• Without knowing PDF of uncertain variables, stochastic voltage controlmay not be feasible.

• Robust control can be designed with lower computational burdencompared to stochastic control.

Why model predictive control?

• to minimize the frequent usage of resources (cost)• trade-off voltage fluctuation and cost of control resources.

4Qiang Ni et al. “An Optimized Prediction Intervals Approach for Short Term PV Power Forecasting”. In: Energies 10.10 (Oct. 2017), p. 1669. issn: 1996-1073.doi: 10.3390/en10101669. url: http://www.mdpi.com/1996-1073/10/10/1669

5

Page 7: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

DER integration standard

• North America and Europe havedefined the requirement ofminimum Q-capability of DERs 5,6

• local voltage support has becomethe requirement

• One of the local voltage controlrecommended in the standard isQ(V) control

1.05

1.1

0.484

0.95

0.9overexcitedunderexcited

0.484

Q/PD

U/UC

Figure 5: Minimum Q capability curve of DERs

Figure 6: Local Q(V) characteristics.

5IEEE Standard Association. IEEE Std. 1547-2018. Standard for Interconnection and Interoperability of Distributed Energy Resources with AssociatedElectric Power Systems Interfaces. IEEE, 2018, pp. 1–138. isbn: 9781504446396. doi: 10.1109/IEEESTD.2018.83321126Requirements for generating plants to be connected in parallel with distribution networks - Part 2: Connection to a MV distribution network. 2015. url:https://standards.globalspec.com/std/9900626/ds-clc-ts-50549-2 6

Page 8: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Implementation of local voltage control

PowerContro-

ller1

1+sτ

RMS computation

Vrms

Q(V)

refQ

refPrefId

refIq

networkQofrom CC)(

Figure 7: Local voltage control in DERs with Q(V) characteristics.

The first order delay is kept to meet the stability criteria7,8

7Filip Andren et al. “On the Stability of Local Voltage Control in Distribution Networks With a High Penetration of Inverter-Based Generation”. In: IEEETransactions on Industrial Electronics 62.4 (Apr. 2015), pp. 2519–2529. issn: 0278-0046. doi: 10.1109/TIE.2014.23453478Adrian Constantin and Radu Dan Lazar. “Open Loop Q(U) Stability Investigation in case of PV Power Plants”. In: 27th European Photovoltaic Solar EnergyConference and Exhibition OPEN. 2012, pp. 3745–3749

7

Page 9: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Research Questions

• How to coordinate local controllers and centralized network controllers?• How to robustly control the node voltage of the network?• How to solve the robust problem efficiently?• Do we really need robust or stochastic controllers in place ofdeterministic controllers?

8

Page 10: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Proposed Q(V) adjustment rule to follow centralized control

max-Q

Q (pu)

maxQ

V (pu)loVR

Qo

1

scitN se irtw eo tr ck ac rha

with localQ support

with local + centralizedcontroller

upVR

loVT

upVT

static Q-injection region

dynamic Q-injection region

Figure 8: Local Q(V) characteristics altered by Qo value.

Q(V) =

Qmax if V ≤ VloR

Qo + Qmax−QoVlo

R−VloT(Vlo

T − V) if VloR ≤ V ≤ Vlo

T

Qo if VloT ≤ V ≤ Vup

T

Qo − Qmax+QoVup

R −VupT(V − Vup

T ) if VloR ≤ V ≤ Vlo

T

−Qmax otherwise

(1)

9

Page 11: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Formulation of the RCMPC controller

Ext. Grid

301

1101

1102

1103

1104

1105

1106

1115

1116

1117

1118

1119

1120

11211125

1124

1122

1123

1110

1111

1113111211

09

1108

1107

11371138

11391140

1141

1142

1149

1143

1144

1145

1150

1147

1148

1146

1126

1151

1152

1167 1153

1154

11691168

1155

1156

1157

1170 1158

1159

11711160

1161

1172

11621173

1163

1164

1174 1165

1166

1175

11271133

11281129

113411301135

1131

11321136

1114

F 7

F 6

F 8

F 5

F 1

F 3

F 4

F 2

: Ind. Feeder

F 1,2,3,4 F 6,7F 5,8

1100

: non-curt. PV: curt. PV

: Res. Feeder: Com. Feeder

Figure 9: Test Distribution Network.10

Page 12: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Formulation of the proposed RCMPC controller

Linear Model of distribution networkV(t) = V(t − 1) + E∆u(t) + F∆d(t) + ξ(t) t ∈ T (2)where,

E =[ ∂V∂Qj

∣∣∣j∈ICPV

,∂V∂Qj

∣∣∣j∈IPV

,∂V

∂tapij

∣∣∣i,j∈IOLTC

]F =

[ ∂V∂Pj

∣∣∣j∈ICPV

,∂V∂Pj

∣∣∣j∈IPV

,− ∂V∂Pj

∣∣∣i,j∈IL

,− ∂V∂Qj

∣∣∣i,j∈IL

](control input )u =

[Qj|j∈ICPV ,Qj|j∈IPV , tapij|i,j∈IOLTC

]T

(disturbance input )d =[Pj|j∈ICPV ,Pj|j∈IPV ,Pj|j∈IL ,Qj|j∈IL

]T

∆u(t) = u(t)− u(t − 1), ∆d(t) = d(t)− d(t − 1)

• The disturbance input (d(t)) arise from PVs and loads, and are anticipated withuncertainty.

• A naive approach is to use Monte-Carlo method to determine node voltagestates at various scenario.

• However, our interest lies on the lower and upper bound of node voltage, whichwe intend to arrest within the required limit. 11

Page 13: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Worst voltage perturbation under PV uncertainty

(a) Non-curtailable PVs

∆Vpvi (t) =

∑j∈IPV

(∂Vi

∂Pj

)∆Pj(t), i ∈ Ib t ∈ T (3)

where ∆Pj(t) = Pj(t)− Pj(t − 1), j ∈ IPV (4)

P(t) is the short-term PV forecasting which is characterized by lower and upperbound values (i.e., Pj(t) ∈ [plo

j (t), pupj (t)])

12

Page 14: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Worst voltage perturbations under PV uncertainty

(a) Non-curtailable PVs

t-1 t+1

Ppv PpvPpv

po

t

upp

lop

upp

lop

poupp

lop

upp

loppo

upp

lop

upp

lop

t-1 t+1t t-1 t+1t

Figure 10: Probable transition in non-curtailable PV from t-1 to t+1 instant.

∆Pmaxj (t) =pup

j (t)− pupj (t − 1) (5)

∆Pminj (t) =plo

j (t)− ploj (t − 1), j ∈ IPV t ∈ T (6)

∆Vpv,upi (t) =

∑j∈IPV

(∂Vi

∂Pj

)[∆Pmax

j (t)sgn(∂Vi

∂Pj

)+∆Pmin

j (t){

1 − sgn(∂Vi

∂Pj

)}](7)

∆Vpv,loi (t) =

∑j∈IPV

(∂Vi

∂Pj

)[∆Pmax

j (t){

1 − sgn(∂Vi

∂Pj

)}+∆Pmin

j (t)sgn(∂Vi

∂Pj

)](8)13

Page 15: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Worst Voltage perturbations under PV uncertainty

(b) Curtailable PVsPpv

Ppv

Ppv

po

upp

lop

upp

lop

po

upp

lop

upp

lop

po

upp

lop

upp

lopmaxp

maxp

maxpmaxp

maxp

maxp

maxp

t-1 t+1t t-1 t+1t t-1 t+1t

Figure 11: Limiting probable transition in curtailable PV from t-1 to t+1 instant.

Here, pmaxj (t) be the desired upper limit of PV generation.

case 1When pmax

j (t) is in between the predictionband [plo

j (t), pupj (t)]:

∆Pmaxj (t) =pmax

j (t)− pmaxj (t − 1),

∆Pminj (t) =plo

j (t)− ploj (t − 1).

case 2When pmax

j (t) is below ploj (t):

∆Pminj (t) =∆Pmax

j (t)=pmax

j (t)− pmaxj (t − 1)

14

Page 16: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Worst Voltage perturbations under PV uncertainty

Curtailable PVsCombine case 1 and case 2 to form a general expression:

∆Pmaxj (t) =pmax

j (t)− pmaxj (t − 1), (9)

∆Pminj (t) =plo

j (t)(1 − δj(t))− ploj (t − 1)(1 − δj(t)) + zj(t)− zj(t − 1) (10)

Here, auxiliary variable zj(t) and binary variable (δ(t)) are defined by:

z(t) =δj(t)pmaxj (t) (11)

δj(t) =

1, if ploj (t)− pmax

j (t) > 00, otherwise

(12)

∆Vcpv,upi (t) =

∑j∈ICPV

(∂Vi

∂Pj

)[∆Pmax

j (t)sgn(∂Vi

∂Pj

)+∆Pmin

j (t){

1 − sgn(∂Vi

∂Pj

)}]

∆Vcpv,loi (t) =

∑j∈ICPV

(∂Vi

∂Pj

)[∆Pmax

j (t){

1 − sgn(∂Vi

∂Pj

)}+∆Pmin

j (t)sgn(∂Vi

∂Pj

)]

15

Page 17: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Worst voltage perturbations under load uncertainty

Active power uncertainty

∆VPL,upi (t) =

∑j∈IL

(−∂Vi

∂Pj

)[∆Pmax

j (t)sgn(−∂Vi

∂Pj

)+∆Pmin

j (t){

1 − sgn(−∂Vi

∂Pj

)}]

∆VPL,loi (t) =

∑j∈IL

(−∂Vi

∂Pj

)[∆Pmax

j (t){

1 − sgn(−∂Vi

∂Pj

)}+∆Pmin

j (t)sgn(−∂Vi

∂Pj

)]

Reactive power uncertainty

∆VQL,upi (t) =

∑j∈IL

(−

∂Vi

∂Qj

)[∆Pmax

j (t) sgn(−

∂Vi

∂Pj

)+ ∆Pmin

j (t){

1 − sgn(−

∂Vi

∂Pj

)}]tan(θj)

∆VQL,loi (t) =

∑j∈IL

(−

∂Vi

∂Qj

)[∆Pmax

j (t){

1 − sgn(−

∂Vi

∂Pj

)}+ ∆Pmin

j (t) sgn(−

∂Vi

∂Pj

)]tan(θj)

where, θj =acos(pfj)

16

Page 18: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

lower and upper bound of node voltages in distribution network

Open loop node voltage:

Vopen,up(t) =Vup(t − 1) + ∆Vpv,up(t) + ∆Vcpv,up(t) + ∆VPL,up(t) + ∆VQL,up(t)Vopen,lo(t) =Vlo(t − 1) + ∆Vpv,lo(t) + ∆Vcpv,lo(t) + ∆VPL,lo(t) + ∆VQL,lo(t)

Closed loop node voltage:

Vup(t) = Vopen,up(t) + ∆Vctrl (13)Vlo(t) = Vopen,lo(t) + ∆Vctrl (14)

where, ∆Vctrl =∑

j∈ICPV

[∂V∂Qj

]∆Qj(t) +

∑j∈IPV

[∂V∂Qj

]∆Qj(t)+

∑i,j∈IOLTC

[∂V

∂tapij

]∆tapij(t)

Finally, (13) and (14) is the required model of lower and upper bound of nodevoltages in distribution network.

17

Page 19: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Robust Constrained Model Predictive Control

Robust Objective function

min∑t=T

[ control effort︷ ︸︸ ︷∆u(t)Ru∆u(t)T +

∑j∈ICPV

rc(Pupj (t)− Pmax

j (t))+

voltage violations︷ ︸︸ ︷∑i∈Ib

max ϕ(Vi(t))+vol. fluct.︷ ︸︸ ︷rv∆vb

]

where,ϕ(Vi) =

cd(Vlo

lim − Vi), if Vi < Vlolim,

cd(Vi − Vuplim), if Vi > Vup

lim,

0, otherwise.

• regulates the lower/upper bound ofthe voltage.

• optimizes the control effort overvoltage quality.

VupVtar

loVtar

up

c(V

-V)

d

lim

lo

c(V

-V)

d

lim

(a)

V

ϕ(V)

1

(a)

Δvb

upVreg

loVreg

Figure 12: cost function(ϕ)

18

Page 20: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Conversion of min-max to simple min problem

An auxiliary variable ϵ(t) is introduced such that ϵi(t) = max ϕ(Vi(t))

min∑t=T

[�u(t)Ru�u(t)T +

∑j∈ICPV

rc(Pupj (t)− Pmax

j (t)) +∑i∈Ib

ϵi(t) + rv∆vb

](15)

ϵi(t) ≥ max cd

(Vlo

T − Vi(t)),

ϵi(t) ≥ max cd (Vi(t)− VupT ) , ϵi(t) ≥ 0 i ∈ Ib (16)

The additional constraints are simplified as:

ϵi(t) ≥(

VloT − Vlo

i (t)), ϵi(t) ≥ (Vup

i (t)− VupT ) ,

ϵi(t) ≥ 0. i ∈ Ib (17)

19

Page 21: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Control Constraints and Framework of controller

−0.44Sratj ≤ Qj(t) ≤ 0.44Srat

j , j ∈ IPV (Qj(t))2 ≤ S2j − (pmax

j )2, j ∈ ICPV

0 ≤ pmaxj (t) ≤ pup

j (t), j ∈ ICPV Tapmin ≤ tapij(t) ≤ Tapmax, i, j ∈ IOLTC

0 < ∆vd < 0.05

Calculate

, , &v v v

P Q tap

é ù é ù¶ ¶ ¶é ùê ú ê úê ú¶ ¶ ¶ë û ë û ë û

NetworkZ-bus matrix

Short-term prediction of PV and load

Formulation of piecewise

linear model

Robust Constrained Model Predictive Control

Distribution Network Controller

Power flow model of distribution

network

Measurements and measurement

error

State Estimator (PandaPower)

instantaneous PV and load time series

RMS Simulation (DigSILENT)

Active Distribution

Network

Z-bus method

measurements

sen

sitiv

ity

Ma

tric

es

Co

ntr

ol

set-

po

ints

busV%

busS%

gˆ ˆ[ , ]lP P

Centralized Control

Figure 13: Centralized scheme for implementing RCMPC control.

20

Page 22: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Test System

04 06 08 10 12 14 16 18 20Time (hrs)

0.00.20.40.60.81.01.2

PV11

62 (M

W)

(a)instant. output

04 06 08 10 12 14 16 18 20Time (hrs)

0.00.20.40.60.81.01.2

Fore

cast

(MW

)

(b)short-term Pred.Ave.

Figure 14: Instantaneous and forecasted PV profile(node 1162).

00 02 04 06 08 10 12 14 16 18 20 22 00Time (hrs)

0369

121518

Fore

cast

(MW

) Res_predCom_predInd_pred

Figure 15: Forecasted load profile of customers inaggregated form.

Ext. Grid

301

1101

1102

1103

1104

1105

1106

1115

1116

1117

1118

1119

1120

11211125

1124

1122

1123

1110

1111

1113111211

09

1108

1107

11371138

11391140

1141

1142

1149

1143

1144

1145

1150

1147

1148

1146

1126

1151

1152

1167 1153

1154

11691168

1155

1156

1157

1170 1158

1159

11711160

1161

1172

11621173

1163

1164

1174 1165

1166

1175

11271133

11281129

113411301135

1131

11321136

1114

F 7

F 6

F 8

F 5

F 1

F 3

F 4

F 2

: Ind. Feeder

F 1,2,3,4 F 6,7F 5,8

1100

: non-curt. PV: curt. PV

: Res. Feeder: Com. Feeder

Figure 16: Test Distribution Network.

21

Page 23: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Simulation Results

Without centralized control

0.92

0.96

1.00

1.04

1.08

Bus

Vol

.(p.

u.)

limit

04 06 08 10 12 14 16 18 20 22

Time (hrs)

−8−6−4−2

Tap

Figure 17: Day simulation of UKGDS network with only OLTC control.

• Duration of voltage violation = 48.8 minutes• no. of tap operation = 36

22

Page 24: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Simulations Results

Verification of lower/upper bound estimation of nodes voltage

12:00 12:15 12:30 12:45 13:00

0.96

0.98

1.00

1.02

Volta

ge_1

175

(pu)

measurement RCMPC Monte-Carlo DMPC

15:00 15:15 15:30 15:45 16:00Time

Figure 18: Open-loop boundary voltage estimation at bus 1175 by RCPMC and DMPC at 12:00 and 15:00, andtheir comparison with the Monte-Carlo method.

23

Page 25: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Simulations Results

With Deterministic MPC control

0.951.001.05

V bus

(p.u

.) targeted limit

0.00

0.25

Qref

(p.u

.) non-curt. PV inv.

0.0

0.2

Qref

(p.u

.) curt. PV inv.

−1.05−1.00−0.95

tap

04 06 08 10 12 14 16 18 20 22Time (hrs)

0.0

0.5

PV (p

.u.) MPP: PV1175

actual: PV1175curtailed

Figure 19: A day simulation result of network voltage and controlresources with DMPC control.

• Duration of voltageviolations = 31.86 minutes

• no. of tap operation = 0

24

Page 26: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Simulations Results

RCMPC with fixed targeted limit

0.95

1.00

1.05

V bus

(p.u

.) targeted limit

−0.250.000.25

Qref

(p.u

.)

non-curt. PV inv.

0.0

0.5

Qref

(p.u

.)

curt. PV inv.

−2

−1

tap

04 06 08 10 12 14 16 18 20 22Time (hrs)

0

1

PV (p

.u.) MPP: PV1166 actual: PV1166 curtailed

Figure 20: A day simulation of the test distributionnetwork with RCMPC control considering fixed targetedlimit.

RCMPC with optimal targeted limit

0.95

1.00

1.05

V bus

(p.u

.) targeted limit

−0.250.000.25

Qref

(p.u

.)

non-curt. PV inv.

0.0

0.5

Qref

(p.u

.)

curt. PV inv.

−2

−1

tap

04 06 08 10 12 14 16 18 20 22Time (hrs)

0

1

PV (p

.u.) MPP: PV1166 actual: PV1166 curtailed

Figure 21: A day simulation results of test distributionnetwork with RCMPC control with an optimal targetedlimit.

25

Page 27: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Simulation Results

Local control response at voltage dip(a) considering first order delay

0.95

1.00

Vb

us

(p.

u.)

11:26 11:31 11:36 11:41 11:46

Time (hrs)

−1

0

1

Q (

MV

ar)

centralized control Local control

Figure 22: Local Q(U) controller responses during avoltage dip of 0.9 p.u.

(b) without first order delay

0.80

1.00

1.20

V bus

(p.u

.)11:26 11:31 11:36 11:41 11:46

Time (hrs)

0

10

Q (M

Var)

Figure 23: Local Q(U) controller responses during avoltage dip of 0.9 p.u.

26

Page 28: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Simulation results summary

Table 1: Performance vs control resource usage

TS Controller Qpv PV-curt. tap TLVmin type (MVARh) (MWh) (min)

5DMPC fix TL 99.75 0 0 1.17RCMPC fix TL 147.47 0 0 0RCMPC opt TL 144.42 0 0 0

10DMPC fix TL 94.64 0 0 3.8RCMPC fix TL 154.03 0.025 0 0RCMPC opt TL 150.05 0.025 0 0

15DMPC fix TL 86.34 0 0 31.86RCMPC fix TL 181.39 0.093 1 0RCMPC opt TL 170.72 0.093 1 0

27

Page 29: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Conclusions

• An adjustment rule in local Q(V) control characteristics to follow the Q-injectionas directed by the centralized controller.

• The RCMPC based centralized voltage controller which robustly regulate thenode voltage between the targeted limit under the uncertainty of renewableDERs and loads. Moreover, it is also capable of dynamically optimizing thetargeted limit to trade-off control resources usage and voltage fluctuationsband.

• Performance comparisons are carried out between DMPC and RCMPC at thevarious time-steps of centralized control.

28

Page 30: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Future works

1. Robust techno-economic control: RCMPC based centralizedtechno-economic control considering uncertainty of PVs and loads.

2. Distributed control using ADMM.

29

Page 31: IEEEWebinar RobustConstrainedModelPredictiveVoltage ... › ... › 06 › Salish-Webinar-Slides.pdf · PresentationOutlines 1. Closed-loopoperationofthedistributionnetworks 2. DERintegrationstandards

Thank you for [email protected]

30