IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy...

24
IEEE 2011 Electrical Power and Energy Conference

Transcript of IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy...

Page 1: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

Page 2: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

Outline   Short-Term Hydro-Thermal

Scheduling Problem   Operating Cost & Emission

Minimization   Bacterial Foraging Algorithm   Improved Bacterial Foraging

Algorithm   Simulation Results   Conclusions

Page 3: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

To use up the maximum amount of

available hydroelectric energy so that the operating cost of the thermal plants is minimum.

Page 4: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

Hydro-thermal Scheduling

Hydro-thermal generation system Source: A.J. Wood, B.F. Wollenberg, “Power Generation, Operation and Control”, 2nd ed., John Wiley & Sons, Inc., New York, NY, 1996

Source:  A.J. Wood, B.F. Wollenberg, “Power Generation, Operation and Control”, 2nd ed., John Wiley & Sons, Inc., New York, NY, 1996    

Page 5: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

Page 6: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

Page 7: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

M : number of objective functions Wk : weight assigned to the kth objective

Page 8: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

Page 9: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

Page 10: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

Page 11: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

  Characteristic equation of the discharge rate qjk

:discharge rate coefficients

F1: cost function over scheduling time intervals Nk F2: NOx emission function over scheduling time intervals Nk F3: SO2 emission function over scheduling time intervals Nk F4: CO2 emission function over scheduling time intervals Nk

nk: number of hours in scheduling time interval k

ai, bi, ci: cost coefficients of the ith thermal unit

di, ei, fi: emission coefficients

Page 12: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

•  In nature, different species of animals search for nutrients in such a way that they maximize the energy they obtain (E ) and minimize time (T ) they spent on their search

  This means that they intend to maximize the following objective function:

  This search is subject to various obstacles and constraints such as the environmental and physiological constraints and the existence of predators

Page 13: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

Source: T. Audesirk and G. Audesirk, “Biology: Life on Earth”, Prentice Hall, Englewood Cliffs, NJ, 5th edition, 1999.

Page 14: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

  Chemotactic movement: -Swimming up nutrient gradient (or out of noxious substances) -Tumbling

  Reproduction:

  Elimination/ Dispersal -To explore other parts of the search space -The probability of each bacterium to experience elimination/

dispersal event is determined by a predefined fraction

Page 15: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

Compute J (i,j+1,k,l): J(i,j+1,k,l)=J(i,j+1,k,l)+Jcc(θi(j+1,k,l),P(j+1,k,l))

Tumble: m=Ns

Start

Initialization of variables: j=k=l=0

Elimination/Dispersal Loop: l=l+1

Reproduction Loop: k=k+1

Chemotactic Loop: j=j+1

l<Ned

j<Nc

k<Nre

Compute θi (j+1,k,l): θi (j+1,k,l)=θi (j,k,l)+C(i)ɸ(i)

Compute J (i,j,k,l): J(i,j,k,l)=J(i,j,k,l)+Jcc(θi(j,k,l),P(j,k,l)) Jlast=J(i,j,k,l)

Swim: m=0 (counter for swim length)

m=m+1

J(i,j+1,k,l)< Jlast

Jlast=J(i,j+1,k,l)

Let θi (j+1,k,l): θi (j+1,k,l)=θi (j+1,k,l)+C(i)ɸ(i) J(i,j+1,k,l)=J(i,j+1,k,l)+Jcc(θi(j+1,k,l),P(j+1,k,l))

m<Ns

Terminate

Yes  

Yes  

Yes  

Yes  

Yes  

No  

No  

No  

No  

No  

Page 16: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

Unit length of the chemotactic step is modified to have a decreasing function in terms of the maximum and initial chemotactic step

j : chemotactic step Nc : maximum number of chemotactic steps while C(Nc) and C(1): predefined parameters

Page 17: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

 The IBFA is applied to find the optimal scheduling of a hydro-thermal generation system

 The system consists of 2 thermal and 2 hydro plants

 Minimization of the NOx, SOx and COx emissions are considered

Page 18: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

 Coefficients for cost and emission functions Generator

Objective Coefficient 1 2 C

ost

F 1($

/h) a 0.0025 0.0008

b 3.20 3.40 c 25.00 30.00

NO

X

F 2(k

g/h)

d1 0.006483 0.006483 e1 -0.79027 -0.79027 f1 28.82488 28.82488

SO2

F 3(k

g/h)

d2 0.00232 0.00232 e2 3.84632 3.84632 f2 182.2605 182.2605

CO

2

F 4(k

g/h )

d3 0.084025 0.084025 e3 -2.944584 -2.944584 f3 137.7043 137.7043

Page 19: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

 B-coefficient matrix

Page 20: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

Hour PD MW Hour PD

MW Hour PD MW Hour PD

MW 1 400 7 450 13 1200 19 1330 2 300 8 900 14 1250 20 1250 3 250 9 1230 15 1250 21 1170 4 250 10 1250 16 1270 22 1050 5 250 11 1350 17 1350 23 900 6 300 12 1400 18 1470 24 600

 Load demand

 Water discharge rate

Page 21: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

 Case 1: Optimization of each of the objectives individually

 Hourly generation schedule and demand (Minimizing F1)

Min F1 ($) Min F2 (kg) Min F3 (kg) Min F4 (kg) F1 ($) 52753.291 55828.427 54762.238 55784.252 F2 (kg) 22803.775 19932.248 20978.468 19987.685 F3 (kg) 72355.712 72287.658 71988.754 72133.264 F4 (kg) 383106.467 337846.583 374222.436 334231.219

0  

200  

400  

600  

800  

1000  

1200  

1400  

1600  

1   2   3   4   5   6   7   8   9   10  

11  

12  

13  

14  

15  

16  

17  

18  

19  

20  

21  

22  

23  

24  

Pow

er (M

W)

Time interval

PD   Pg1   Pg2   PH1   PH2  

Page 22: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

 Case 2: Optimization of fuel cost and emissions: Non-dominated solutions Solution Weight Objective

No. w1 w2 w3 w4 F1 ($) F2 (kg) F3 (kg) F4 (kg) 1 1.0 0.0 0.0 0.0 52753.291 22803.775 72355.712 383106.467 2 0.7 0.3 0.0 0.0 52997.479 22251.424 72336.488 372854.232 3 0.4 0.6 0.0 0.0 54876.785 20864.758 72242.424 354512.426 4 0.1 0.9 0.0 0.0 55642.429 20015.000 72201.548 351444.615 5 0.7 0.0 0.3 0.0 51878.475 24857.649 72455.145 387506.232 6 0.4 0.3 0.3 0.0 53295.875 22136.425 72322.315 367475.643 7 0.1 0.6 0.3 0.0 55224.436 20303.563 72381.413 352245.218 8 0.4 0.0 0.6 0.0 52522.419 23642.865 72384.762 384542.254 9 0.1 0.3 0.6 0.0 54774.275 21341.543 72154.412 357577.563 10 0.1 0.0 0.9 0.0 54811.549 21177.424 72018.488 355214.215 11 0.7 0.0 0.0 0.3 55037.275 20883.423 72342.514 352242.385 12 0.4 0.3 0.0 0.3 55163.241 20851.812 72274.414 352111.254 13 0.1 0.6 0.0 0.3 55296.419 20832.155 72312.546 352223.549 14 0.4 0.0 0.3 0.3 54974.769 20863.215 72382.215 352256.541 15 0.1 0.3 0.3 0.3 55263.216 20841.421 72362.215 352238.453 16 0.1 0.0 0.6 0.3 55214.362 20845.414 72354.142 352214.715 17 0.4 0.0 0.0 0.6 55198.473 20845.215 72374.235 352224.542 18 0.1 0.3 0.0 0.6 55232.422 20829.958 72354.242 352214.521 19 0.1 0.0 0.3 0.6 55250.864 20841.413 72363.241 352265.413 20 0.1 0.0 0.0 0.9 55244.136 20844.431 72352.125 352278.379

Page 23: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

•  An IBFA for solving the Multi-objective STHT scheduling problem considering the emission minimization has been introduced

•  The algorithm applies a dynamic function to update the solution vector

•  The proposed algorithm has been successfully implemented to solve this complex problem

•  The algorithm could successfully find the optimum or near optimum solutions and capture the cost-emission trade-off relationships

Page 24: IEEE 2011 Electrical Power and Energy Conference · IEEE 2011 Electrical Power and Energy Conference Outline Short-Term Hydro-Thermal Scheduling Problem Operating Cost & …

IEEE 2011 Electrical Power and Energy Conference

Thanks!