Ideal Tx-Line Reflection - 國立臺灣大學

67
Ideal Tx-Line Reflection 吳瑞北 Rm. 340, Department of Electrical Engineering E-mail: [email protected] google: rbwu S. H. Hall et al., High-Speed Digital Design, Chap.3 N. N. Rao, Elements of Engineering Electromagnetics, Chap. 6 1

Transcript of Ideal Tx-Line Reflection - 國立臺灣大學

Ideal Tx-Line Reflection

吳瑞北

Rm. 340, Department of Electrical Engineering

E-mail: [email protected]

google: rbwu

S. H. Hall et al., High-Speed Digital Design, Chap.3

N. N. Rao, Elements of Engineering Electromagnetics, Chap. 6 1

R. B. Wu

What will you learn?

• How to solve circuits with ideal lossless tx-line?

• Is there easier “analytic” equ. circuit model.

• How to solve “analytically” tx-line circuits with R,

L, and C loading/discontinuities?

• How does reflection come from? How to deal with

multiple reflection phenomenon?

• How to measure? Operation principle of TDR.

• How to extract tx-line parameters & discontinuities

from TDR measurement?

• How to mitigate reflection?2

R. B. Wu

Contents

• Analytic Tx-Line Analysis

• Reflections from Resistive Loads

• Reflection from Reactive Loads

• Time Domain Reflectometry

• Termination Designs

3

Analytic Tx-Line Analysis

4

R. B. Wu

Distributed Element

vS(t)

iA(t)

vB(t)

v(z,t)_

+

i(z,t)

i(z,t)

GROUND

vA(t)

iB(t)

Tx-line is also called

a distributed element

• vs. lumped elements ZS, ZL.

• Note the reference of V(z,t).

• Where is the ground of tx-line?

• I(z,t) must accompany the return-path current.

• How to interpret a negative I(z,t)?

• How to solve circuits with a distributed circuit element?

5

R. B. Wu

Eq. Circuit Model for SPICE Simulation

Rule of Thumb:

pr vt

10 segments of # Decide 1.

max freq.

segmentNote: TD 10 # 10

rt

#*GC,L,R, GC,L,R, Choose 2. segment

R. B. Wu

Equivalent Circuit Seen from Both Ends

tVtVZ

tItI

tVtVtVtV

A

A

0

1),0()(

),0()(

TtVTtVZ

tItI

TtVTtVtVtV

B

B

0

1),()(

),()(

pp

pp

vz

vz

vz

vz

tVtVZ

tzI

tVtVtzV

0

1),(

),(

Ref.: F. H. Branin, Jr., “Transient analysis of lossless transmission lines,” Proc. IEEE, vol. 55, pp.

2012-2013, Nov. 1967.

0( ) ( )

2 ( 0, )

2 ( , )

A AV t Z I t

V z t

V z t T

0( ) ( )

2 ( , )

2 ( 0, )

B BV t Z I t

V z t

V z t T

; B AV V V V V V

7

R. B. Wu

Circuit Modeling

Equivalent circuit

Time delay

Impedance

Rem: Only 4 lumped

elements, even for very

long tx-line.

A B

0; Z T

* voltage controlled voltage source

( ) 2 ( ) ( )

( ) 2 ( ) ( )

A B B

B A A

E t v t T E t T

E t v t T E t T

8

Z0

EA

VA

Z0

EB

VB

R. B. Wu

Z0

ZLEB (t) VB (t)

Zs Z0

Vs (t) EA (t)VA (t)

Time Marching

tx x 0 x 0 0 0

x x 0 x 0 0 0

x x 0 x 0 0 0

x x 0 x x x x

x x 0 x x x x

x x 0 x x x x

x x x x x x x

x x x x x x x

x x x x x x x

T

2T

3T

( ) 0S A A B BV t V (t) E (t) V ( ,t) V ( ,t) E (t) V (t)

9

At source end At load end

Reflections from Resistive Loads

10

R. B. Wu

Time-Domain Sol. w/o Simulator

1. Determine launch voltage & final “DC” or “t =0”

voltage

2. Calculate load reflection coefficient and voltage

delivered to the load

3. Calculate source reflection coefficient and

resultant source voltage

11

R. B. Wu

Determine Launch Voltage

Step 1: determine launch voltage

– Simply a voltage divider!

VsZo

RsVs

0

TD

Rt

A B

t=0, V=Vi

(initial voltage)

RSZ0

Z0VSVi

+=

RSRt

RtVSVf

+=

12

V +

I +

Rg

V0

Z = 0

I +

Rg

V0

Z = 0

Z0 V +

R. B. Wu

Z0

2Ei

VB

RL

Voltage Delivered to Load

VsZo

RsVs

0

TD

Rt

A B

t=0, V=Vi

t=TD, V=Vi + rB(Vi )

(signal is reflected)

(initial voltage)

Step 2: determine VB at t = TD− Tx-line delays the arrival of launched voltage until t = TD.

− VB for 0 < t < TD is at quiescent voltage (0 in this case)

− Voltage wavefront will be reflected at tx-line end

− VB = Vincident + Vreflected at t = TD

ZoRt

ZoRt

rB

Vreflected = rB (Vincident)

VB = Vincident + Vreflected 0

0

;2

ZVI

VVV

RZ

RVV

B

L

LB

dt for

13

R. B. Wu

IA

Rg

V0

Z = 0

VA

2Er

Z0

Voltage Reflected back to Source

VsZo

RsVs

0

TD

Rt

A B

t=0, V=Vi

t=TD, V=Vi + rB

(Vi )

t=2TD,

V=Vi + rB

(Vi) + rAr

B)(Vi )

(signal is reflected)

(initial voltage)

rA rB

14

R. B. Wu

Voltage Reflected Back to Source

Step 3: Determine VA at t = 2TD− Tx-line delays the arrival of voltage reflected from load

until t = 2TD.

− VA at time 0 < t < 2TD is at launch voltage

− Voltage wavefront will be reflected at source

− VA = Vlaunch + Vincident + Vreflected at t = 2TD

In steady state, sol. converges to VB = VS [Rt/(Rt + Rs)]

ZoRs

ZoRs

rA

Vreflected = rA (Vincident)

VA = Vlaunch + Vincident + Vreflected

15

R. B. Wu

Lattice (Bounce) Diagram

16

R. B. Wu

1st Reflection vs. 1st Incident Switching

• Applications 0

Open-circuited line 1 ( 2 )

Termination by 0 ( )

R B

R B

Γ V V

Z Γ V V

First incident switchingFirst reflection switching

17

R. B. Wu

Over Driven Tx-Line (Under Damped)

150

50

33333.05025

5025

3333.15025

50)2(

÷

ZoZl

ZoZl

ZoZs

ZoZs

ZoZs

ZoVsV

load

source

initial

r

r

Assume Zs=25 ohms

Zo =50ohms

Vs=0-2 voltsVs

Zs

ZoV(source) V(load)

TD = 250 ps0

2 v

Time V(source) V(load)

1.33v

3333.0source

r 1load

r

1.33v1.33v

-0.443v

0v

2.66v

1.77v

-0.443v2.22v

0.148v

0

500 ps

1000 ps

1500 ps

2000 ps

2500 ps 1.920.148v

2.07

Response from lattice diagram

0

0.5

1

1.5

2

2.5

3

0 250 500 750 1000 1250 1500 1750 2000 2250

Time, ps

Vo

lts

Source

Load

18

R. B. Wu

Under Driven Tx-Line (Over Damped)

Assume Zs=75 ohms

Zo=50ohms

Vs=0-2 voltsVs

Zs

ZoV(source) V(load)

Time V(source) V(load)

150

50

2.05075

5075

8.05075

50)2(

ZoZl

ZoZl

ZoZs

ZoZs

ZoZs

ZoVsV

load

source

initial

r

r0.8v

2.0sourcer 1loadr

0.8v0.8v

0.16v

0v

1.6v

1.92v

0.16v1.76v

0.032v

TD = 250 ps

0

500 ps

1000 ps

1500 ps

2000 ps

2500 ps

0

2 v

Response from lattice diagram

0

0.5

1

1.5

2

2.5

0 250 500 750 1000 1250

Time, ps

Vo

lts

Source

Load

19

R. B. Wu

Effects of Rise Time – overdriven case

20

R. B. Wu

Effects of Rise Time – underdriven case

21

R. B. Wu

Reflection and Transmission

r

1rIncident

Reflected

Transmitted

0

0

Reflection Coefficient

t

t

Z Z

Z Zr

0

0

0

=1+ 1

Transmission Coefficient

2

t

t

t

t

Z Z

Z Z

Z

Z Z

r

22

R. B. Wu

Multiple line impedance

23

R. B. Wu 24

R. B. Wu

Multi Receivers Topology

Eig 3-35

0

1 3

2

50

250 ;

125 ;

sZ R

l l ps

l ps

0 0 12 3

0 0

22 2 3

1 23 33 3

4 5

2

2

1

;

1; 1

Z Z

Z Z

T

T

43

89

5227

v

v

v

43

209

A

B

v

v

25

Rs=Zs

0-2V

Receiver 1

l3 > l2

Receiver 2

l2

l1

Z0

Z0

Z0

R. B. Wu

Effects of Non-symmetry

26

Rs=Zs

0-2V

Receiver 1

l3 > l2

Receiver 2

l2

l1

Z0

Z0

Z0

R. B. Wu

Ringing Noise on Address Lines of DDR

27

Short End

Long End

Z0L1=(Lt-Δl)/2

0-1.5V

L3

Tr=200psL2=(Lt+Δl)/2

Z0, vp, Rs, tanD

8

3

4 1

3

/ 2.5; 3.27

tanD 0.02

3 10 10

ps; / 100

/ 21 s;4p /

p s

p

t p pt

R s m

L v

T L v

v

TD

t l v

0 0.5 1 1.5 2 2.5 3-0.5

0

0.5

1

1.5

2

Ringing Effect

Volt

age(

V)

time(ns)

l/Lt=0

l/Lt=0.2, Short End

l/Lt=0.2, Long End

l/Lt=0.4, Short End

l/Lt=0.4, Long End

0 0.5 1 1.5 2 2.5 3-0.5

0

0.5

1

1.5

2

Ringing Effect

Volt

age(

V)

time(ns)

l/Lt=0.6, Short End

l/Lt=0.6, Long End

l/Lt=0.8, Short End

l/Lt=0.8, Long End

R. B. Wu

RLC Resonance Model of Ringing Noise

• The total response can be divided into the balanced response and the ringing

noise response.

• The ringing noise response can be fitted as a RLC resonance response

28

0 0.5 1 1.5 2 2.5 3-0.5

0

0.5

1

1.5

2

Step Response, l/Lt=0.12

Volt

age(

V)

time(ns)

Balanced

Precise, short end

Model, short end

Precise, long end

Model, long end

Ringing

Z0

0-1.5V

Tr=200ps

Z0, L3 Z0/2

v0

L

0-1.5VTr=200ps

vstep(t-TD)

TD=L3/vp

vn

v0

Avn

veq

0eq nv v v

2

0

sin2

sin2

t

t

t

l

LA

lL

L

2

0

sin2

2

t

p

t

l

Lbv

T

0

tT

j 1

0 0 0.884m

Equivalent

responseBalanced

response

Ringing noise

response

R. B. Wu

0 00

0

0.2 0.20.2

0.20.2

0.4

0.40.4

0.4 0.4

0.40.40.6

0.6 0.6

0.6

0.60.6

0.6

0.6

0.60.6

0.6

0.8

0.8

0.8

0.8

Eye Height/Vh

l/Lt

UI/

Tt

0 0.1 0.2 0.3 0.4 0.5 0.61

2

3

4

5

6

7

Eye Height – Bit rate Influence

• Worst case occurs at UI/Tt is odd.

29

65%

0%

UI/Tt=4, Δl/Lt=0.12

UI/Tt=3, Δl/Lt=0.12

R. B. Wu

0%

UI/Tt=3, Δl/Lt=0.12

Eye Height – Leg Difference Influence

• Worst case occurs

at where the max

of A occurs.

30

0 00

0

0.2 0.20.2

0.20.2

0.4

0.40.4

0.4 0.4

0.40.40.6

0.6 0.60.6

0.60.6

0.6

0.6

0.60.6

0.6

0.8

0.8

0.8

0.8

Eye Height/Vh

l/Lt

UI/

Tt

0 0.1 0.2 0.3 0.4 0.5 0.61

2

3

4

5

6

7

62%

UI/Tt=3, Δl/Lt=0.6

0 0 122

.t

lL

L

Ref: K.-Y. Yang, et al., “Modeling and

fast eye- diagram estimation of ringing

effects on branch line structures,” IEEE

T-CPMT, Apr. 2014.

R. B. Wu

Effect of a Long Stub

31

Reflections from Reactive Loads

32

R. B. Wu

V0

v(l,t)

V0 / 2

zz = z1 z = l

Inductive Termination

R0

V0

z = 0

t=0

z = lz = z1

LL

V0 / 2

R0

iL(t)

2v+(0, t-T)

R0

LLv(l,t)

V0

v(l,t)

0RLLT t

0(0, ) 2v t V

0tfor

for t T l u

0 0

0

0

0 0

( )

( )

0

2

( ) 1

( ) ( , )

L

L

LL L

V t T R L

L R

t T R L

L

diL R i v V

dt

i t e

v t v l t V e

0( , ) ( , ) 2v l t v l t V

2for T t T

1z l u t T

R. B. Wu

Capacitive Termination

R0

V0

t=0

CLR0

z = 0 z = lz = z1

iL(t)

2v+(0, t-T)

R0

v(l,t) CL

V0

v(l,t)

T t

V0

v(z1,t)

V0 / 2

tt1T0

V0

v(z,t1)

V0 / 2

zz = z1 z = l0tfor

Ttfor

0( , ) ( , ) 2v l t v l t V

Ttulz 11

0(0, ) 2v t V

Time Domain Reflectometry

36

R. B. Wu

Time-Domain Reflectometry

• Key advantages over frequency measurement

– Ability to extract electrical data relevant to digital systems

– Can extract impedance, velocity, tx-line parameters, and model

parameters of discontinuities.

• Basic theory

oDUT

oDUT

oDUT

ZZ

ZZ

V

V

ZZ

incident

reflected

;1

1

r

r

r

37

R. B. Wu

Impedance & Velocity

at

no

de

A

38

R. B. Wu

Peeling Idea for Reflections

• Multiple reflections.

• Need minimize reflections prior to DUT & TDR

– Use a controlled-impedance, low-loss cable btw TDR & probe

– Use a low-loop-inductance, controlled-impedance probe

J. M. Jong and V. K.

Tripathi, IEEE T-CHMT,

pp. 497-504, Aug .

1992

J. M. Jong, B. Janko

and V. K. Tripathi,

IEEE T-CHMT, pp.

119-126, Feb. 1993

41

R. B. Wu

Inductive Load in Middle of a Line

42

02

max

0

12

rZ t

L

r

Le

t Zr

ind

0

;4

sv LA

Z

vs: excitation voltage

vs

R. B. Wu

Capacitive Load in Middle of a Line

Vr

Tw,50

CD

VB-Ei

43

0cap ;

4

sv Z CA

R. B. Wu

Discontinuity Loading

44

R. B. Wu

Equally Spaced Capacitive Loads

nst

pFC

ns

Z

r

L

d

35.0

2

573.0

7.490

45

R. B. Wu

R1= 40 ohmStripline (10 mil)

R2= 40 ohm

stripline (4 mil)

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

L L L L L L L L

Microstrip (10 mil)

+A _

Simulation Model

f= 800 MHz

Tr=125 ps

Voltage = 1.5v

Package

thin trace (trace width: 4mil)

thick trace (10mil)+B _

+C _

B C

A

TDR at A and TDT at B will be considered under DDR3 to discuss

effects of FLY-BY trace design (width 10mil vs. 4mil).

FLY-BY Topology in DIM and Modeling

46

R. B. Wu

Simulation

Results

0 1 2 3 4 5 6

Time (nSec)

0

0.2

0.4

0.6

0.8

1

Vol

tage

(V

)

Trace Width = 4 mil

Trace Width = 10 mil

0 1 2 3 4 5 6

Time (nSec)

0

0.2

0.4

0.6

0.8

1

Vol

tage

(V

)

Trace Width = 4 mil

Trace Width = 10 mil

TDR TDT

Suitable trace width (thin trace) improves impedance match.

R1= 40 ohmStripline (10 mil)

R2= 40 ohm

stripline (4 mil)

C

R

C

R

L L

Microstrip (10 mil)

+B _

A

f= 800 MHz

Tr=125 ps

trace width

AV BV

H.-H. Chuang, et al., “Signal/power integrity modeling of high-speed memory

modules using chip-package-board co-analysis,” IEEE T-EMC, May 2010. 47

R. B. Wu

Inductance Measurement by TDR

0,DUT ,ref

0( ) ( )s s

oc

ZL v t v t dt

V

0Z

Rem.:

different formula

if matched at

right end

48

R. B. Wu

Capacitance Measurement by TDR

0Z

,ref ,DUT0

0

1( ) ( )o o

oc

C v t v t dtZ V

49

Termination Design

50

R. B. Wu

Termination Schemes to minimize reflection noise

• Decrease system frequency

• Shorten PCB traces

• Termination with matched impedance

– Source termination

• On-die source termination

• Series source termination

– Parallel termination (Load termination)

• Load termination with a resistive load

• AC load termination

• Active termination

Ref.: H. Johnson & M. Graham, High-Speed Digital Design, Sec.6.1-4 51

R. B. Wu

Source Termination

• On-die source termination

• Series source termination

Difficult to guarantee matched buffer impedance!

Add cost to board, and consumes board area!

52

R. B. Wu

SI is about Finding & Fixing Problems

3 inch long PCB Trace3 inch long PCB Trace

Series termination (~40 Ohms)

53

R. B. Wu

Source Termination

2(Pulse Freq.)Power

2

f DDV

R

21

E 22

DDf

V

R

CZT RC 090-10 2.22.2

overshoot

:suggested

0

ZRR ops

54

R. B. Wu

Load Termination

• Load termination with a resistive load

• AC load termination

Power delivery and thermal problems!

Capacitor value need be optimized for specific design

Capacitive loading increases signal delay! 55

R. B. Wu

Load Termination

CD

CZZRC

T

L

RC

00

term.

1.1)//(2.2

2.2

22

term:risetimenet rtT

Too much power consumption!

Eq. ckt

56

R. B. Wu

Split Termination

021 // match ZRR

0

2

1

22

2

22

2

)(

2

)()(

2

)()(

load

P

Z

V

R

VVVV

R

VVVV

LOCCHICC

EELOEEHI

57

R. B. Wu

Load Termination for Multiple Lines

Cap. of each

short stub adds

to cap. load of

receiver

• Daisy-chain configuration

End termination

• Bifurcated line

with matched

trace impedance

58

R. B. Wu

AC Load Termination

• Power saving (in DC-balanced circuit)

0

2

0

2

1 4

)()2/(

RPZ

V

Z

V

clock time1 CR

59

R. B. Wu

Concept of Load-Line Analysis

R. B. Wu

Tx-Line Bergeron-Plot Analysis

0

0

( ) ( ) 2 ( )

2 ( , )

( ) ( )

A A

B B

V t Z I t g t

V z t T

V t T Z I t T

0

0

( ) ( ) 2 ( )

2 ( 0, )

( ) ( )

B B

A A

V t Z I t f t T

V z t T

V t T Z I t T

• Easily applicable for nonlinear resistive load

AssA IRVV

BLB IRV

R. B. Wu

A Practical Example

R. B. Wu

Voltage Waveform at Transition

Voltage waveform at the receiving end of Tx-line

Low to high High to low

R. B. Wu

Match by Series Termination

R. B. Wu

Match by Parallel Termination

new

R. B. Wu

Active Termination

67

50 Ω

25 Ω1

2/3

25 ΩV L H

V L H

TTL / CMOS

Clamp to -1V on HIGH-to-LOW (limit signal undershoot)

Suitable for any Z0

Power saving

L L L

L L R0

Voo

L

Vbb

0.1 μF

ECL

R. B. Wu

Comparisons

• Rise time of an end-terminated circuit, when capacitively

loaded, is half of a series-terminated line driving same load.

• Most TTL or CMOS gates can’t source enough current to

drive end terminators. Split termination or capacitive

termination can be a remedy.

• One can daisy-chain receivers on an end-terminated line.

• At low-pulse repetition rates, source terminations dissipates

little power.

• Peak drive power for source-terminated line is

same as end-terminated line (biased at halfway point) R

V 1

2

2

68

R. B. Wu

Did you learn?

• What’s diff. of “distributed” from “lumped” circuits?

• How to solve “analytically” tx-line circuits with R,

L, and C loading/discontinuities?

• Load & source reflection coeff. & bounce diagram.

• Operation principle of time domain reflectometry.

• How to extract tx-line parameters & discontinuities

from TDR measurement?

• How to mitigate reflection?

69

R. B. Wu

References & Further Reading

• F. H. Breanin, Jr., “Transient analysis of lossless transmission lines,”

IEEE Proc. Lett., pp.2012-2013, 1967.

• J. M. Jong, B. Janko, and V. K. Tripathi, “Equivalent circuit modeling of

interconnects from time-domain measurements,” IEEE T-CHMT, vol. 16,

pp. 119-126, Feb. 1993.

• M.-H. Wang and R.-B. Wu, “Measuring method for equivalent

circuitry,” USA Patent 6,137,293, Oct. 2000.

• H.-H. Chuang, et al., “Signal/power integrity modeling of high-speed

memory modules using chip-package-board coanalysis,” IEEE T-EMC,

vol. 52, pp. 381-391, May 2010.

• K.-Y. Yang, et al., “Modeling and fast eye-diagram estimation of ringing

effects on branch line structures,” IEEE T-CPMT, Apr. 2014.

• A. Boutar, et al., "An efficient analytical method for electromagnetic

field to transmission line coupling into a rectangular enclosure excited by

an internal source", IEEE T-EMC, pp. 1-9, 2015.70

R. B. Wu

References & Further Reading

• A. Beygi and A. Dounavis, "Analysis of excited multi-conductor

transmission lines based on the passive method of characteristics

macro-model," IEEE T-EMC, vol. 54, pp. 1281 - 1288 , Dec. 2012.

• F. Capolino, et al., "Equivalent transmission line model with a lumped

X-circuit for a meta-layer made of pairs of planar conductors,” IEEE

T-AP, vol. 61, pp. 852-861, Feb. 2013.

• G. Lugrin, et al., "High-frequency electromagnetic coupling to multi-

conductor transmission lines of finite length,” IEEE T-EMC, vol. 57,

pp. 1714-1723, Dec. 2015.

• M. Chernobryvko, D. De Zutter, and D. Vande Ginste, "Nonuniform

multi-conductor transmission line analysis by a two-step perturbation

technique", IEEE T-CPMT, vol. 4, pp. 1838-1846, Nov. 2014.

• G. Antonini, et al., "Review of Clayton R. Paul studies on multi-

conductor transmission lines", IEEE T-EMC, vol. 55, pp. 639-647,

Aug. 2013.

71