ICT in BUILDING Class Content - WordPress.com · Class Content The second class of ICT in Building...

7
ICT in BUILDING Subject Reader Class 2: A historic overview about ICTuse across the building supply chain Class Content The second class of ICT in Building will reflect on the adoption of ICT in building over the past 34 decades. Based on a number of historical references, the class will discuss the use of electronic/digital tools applied for managing data, sharing information and communicating ideas/concepts across stakeholders in the building industry. The class will also highlight the progressing diversification of applications supporting various ICTrelated tasks and the way these availability of these applications has affected individual professions within the building industry. The class will not simply offer an overview of ICT’s role within those professions, but also scrutinise how ICT has helped to shape and transform the building industry and advance it in a certain direction. Themes explored as part of the historic overview include knowledge capture and sharing, electronic means of communication, networked connectivity and shared problem solving. As part of this historical overview the class will also touch on the bespoke nature of ‘building’ a projectcentric industry and the associated consequences for the use of ICT. Detailed Description The use of ICT has helped to transform the building industry globally over the past 4 decades. Hand in hand with the adoption of new ways for communicating designrelated information, the adoption of innovative technology has allowed users to store, process, exchange, visualise, transfer, and manage design data in unprecedented ways. In some instances ICT has helped the construction industry and its clients to become more efficient with their operations; in other instances, ICT allows designers and others to embrace complexity like never before.

Transcript of ICT in BUILDING Class Content - WordPress.com · Class Content The second class of ICT in Building...

Page 1: ICT in BUILDING Class Content - WordPress.com · Class Content The second class of ICT in Building will reflect on the adoption of ICT in building over the past 3‐4 decades. Based

ICT in BUILDING 

Subject Reader 

Class 2: A historic overview about ICT‐use across the building supply chain 

Class Content 

The second class of ICT in Building will reflect on the adoption of ICT in building over the past 3‐4 

decades. Based on a number of historical references, the class will discuss the use of 

electronic/digital tools applied for managing data, sharing information and communicating 

ideas/concepts across stakeholders in the building industry.  

The class will also highlight the progressing diversification of applications supporting various ICT‐

related tasks and the way these availability of these applications has affected individual 

professions within the building industry. The class will not simply offer an overview of ICT’s role 

within those professions, but also scrutinise how ICT has helped to shape and transform the 

building industry and advance it in a certain direction. Themes explored as part of the historic 

overview include knowledge capture and sharing, electronic means of communication, 

networked connectivity and shared problem solving. As part of this historical overview the class 

will also touch on the bespoke nature of ‘building’ a project‐centric industry and the associated 

consequences for the use of ICT.  

Detailed Description 

 The use of ICT has helped to transform the building industry globally over the past 4 decades. 

Hand in hand with the adoption of new ways for communicating design‐related information, the 

adoption of innovative technology has allowed users to store, process, exchange, visualise, 

transfer, and manage design data in unprecedented ways. In some instances ICT has helped the 

construction industry and its clients to become more efficient with their operations; in other 

instances, ICT allows designers and others to embrace complexity like never before.   

 

Page 2: ICT in BUILDING Class Content - WordPress.com · Class Content The second class of ICT in Building will reflect on the adoption of ICT in building over the past 3‐4 decades. Based

The question of efficiency has become particularly relevant in an industry where increasing 

segregation has led to a de facto decrease in productivity over the past 40+ years. Low levels of 

process and service innovation result from the project‐based nature of our industry where 

teams assemble for short periods only to then go apart at the end of a project without much 

knowledge being captured in due course of the collaboration.  

 

In the period since the Second World War a number of particularly important, closely related 

trends have been at work:  

• There has been a huge increase in the numbers and variety of standardised construction 

products, materials and components.  

• There has been a significant reduction in the use of craft‐based working on site. This has 

been replaced by relatively low‐skilled, but highly specialised, assembly and installation site 

processes. These services are increasingly provided on a labour‐only, sub‐contract basis.  

• The main contractor constructs very little; specialist sub‐contractors carry out most of the 

actual building work.  

• Concern for the health and safety and other aspects of the wellbeing of the workforce has 

increased significantly.  

• The architectural profession is becoming increasingly focused on pure design. The traditional 

role, including detailed coordination of the other disciplines' designs, and application of in‐

depth knowledge of construction techniques and materials is receding in importance. Design 

Page 3: ICT in BUILDING Class Content - WordPress.com · Class Content The second class of ICT in Building will reflect on the adoption of ICT in building over the past 3‐4 decades. Based

for craft working is disappearing; design for manufacture and assembly is beginning to 

predominate.  

• Focus on drafting, cost planning, and construction types 

• First 3D design assembly tools in the 70s (Oxsys example) 

Research and Development in computer aided architectural design has a long history of using 

virtual models to test and appraise building performance. Early approaches date back to 

experiments undertaken by Tom Maver and his colleagues at the University of Strathclyde back 

in the late 1970s and early 1980s (Maver, 1979,1987) . Over the course of the following 4 

decades such early research progressed from using virtual models to test limited sets of 

environmental factors in isolation to more extensive multi‐criteria investigations.  

 

The debate about the relation between computational design and its relevance in practice has been ongoing since

early experimentations and applications in the field. Some of the first examples of such work can be traced back

to the activities undertaken on the Oxford System (OXSYS) which was run on an Atlas II Computer in Chilton

(UK ) [1], or the investigations by Nicholas Negroponte’s Architecture Machine Group at MIT (US) in the

early-70s.

Maver et al.[2] contextualise the introduction of computationally supported design (& decision making) into the

architectural profession in the early and mid-1970s, providing examples of the inclusion of CAAD into the

architectural education as part of design studio teaching. They emphasise on the transformative nature of CAAD

on design culture by arguing that:

“… the introduction of a whole new generation of computer-based models will have a

dramatic impact on architectural practice and architectural education.” [2]

Mitchell [3] summarises the epistemological and practice-related development of CAAD in reference to its

experimental beginnings in the 60s, and 70s. By the early 80s, computer hardware started to become affordable,

but CAAD software required substantial investment; architecture as a business started to become more capital

Page 4: ICT in BUILDING Class Content - WordPress.com · Class Content The second class of ICT in Building will reflect on the adoption of ICT in building over the past 3‐4 decades. Based

than labour intensive for the first time. Mitchell (1984) calls for rigour to be applied by academic institutions in

formalising the foundations of CAAD education arguing that it is not an issue of technology, but it is one of

architecture. In that sense Mitchell already highlighted 30 years ago one of the most critical issues when

introducing technology to the architectural curriculum as he states:

“The problem of an intellectual direction for studies is a fundamental one. What exactly do we

want architectural graduates to know?”

In the review of literature, it becomes apparent that the dawn of the personal computer (PC) era, hand in hand

with commercially affordable ‘mainstream’ CAAD drafting and visualisation tools did not always reinforce the

role of the computer as a design aid [4]. The proliferation of the PC in the architecture studio rather led to

increased efficiency of the delivery process while replicating manual drafting processes. Reflecting on the above

observation, Coyne argues that computing only has relatively minor impact on the activity of design itself.

From the mid to 1980s onward, commentators debate whether and how to introduce CAAD into academic

curricula. Stevens and Radford [6] call for a reinterpretation of academic curricula in reference to the changing

context experienced in practice due to CAAD. Sliwinski [7] highlights the fast-paced often transient

development related to computation and design:

“Program of teaching CAAD prepared even with great care and accuracy is obsolete even

when it starts. “ [7 ]

 

Focus on visualisation and graphic representation in the 80s and 90s 

 

Increased use of parametric design tools and techniques with visual scripting in the early 2000s 

The increasing proliferation of geometry modelling applications in the 80s and 90s furthered the advancement of RnD related to environmental analysis tools both for architecture, as well as urban 

Page 5: ICT in BUILDING Class Content - WordPress.com · Class Content The second class of ICT in Building will reflect on the adoption of ICT in building over the past 3‐4 decades. Based

design (Maver and Petric, 1995). Fostered by feedback from building physics engineering, a number of software applications became available to designers to help them assess environmental factors of their design (Papamichael, LaPorta, and Chauvet, 1997). One of the most prominent applications for building energy simulation was DOE‐2 (later advanced into: EnergyPlus™) by the U.S Department of Energy (Birdsall, Buhl, and Ellington, 1990). One common aspect among user interfaces and software applications interacting with EnergyPlus™ is to help users overcome the need for numeric input of ‘knowledge‐heavy’ and calculus‐based engineering data. Without the pre‐configured graphic user interfaces and background calculations by some of the applications listed above, many architects would be hard‐pressed to conduct analysis effectively due to their limited understanding of the primary benchmarks for testing environmental performance.  

 

Parametric design has seen strong uptake among designers in particular for form‐finding processes 

associated to early design exploration. From around 2005 McNeel’s Grasshopper™ plugin (initially 

known as ‘Explicit History’ to their surface modelling tool Rhinoceros™, facilitated further 

advantages to users who could now set up rule‐based, ‘flexible’ geometry models to interact with 

environmental analysis functions (Rutten, 2010). Grasshopper™ offers users the option to apply 

Genetic Algorithms in for form‐finding and optimisation of bespoke building performance (Caldera, 

Gonzalo and Loyola, 2013). The rule‐based nature of parametric geometry definitions lends itself for 

the fast turnout of design variations in a (numerically) controlled setting. By linking parametrically 

defined geometry to environmental analysis, users avoid having to re‐draw their models for each 

new geometric setting and parameters stay mapped across geometry and simulation. One major 

advantage of the way McNeel introduced Grashopper™ to Rhinoceros™ users is the fact that its 

open‐source setup and expandability has led to the availability of a great number free (or low cost) 

plugins. Similar to the links between BIM and environmental analysis, the Grasshopper™ community 

embraced opportunities to tie parametric design to optimisation. A plugin (Geco) tying 

Grasshopper™ to Ecotect™ was released in 2009 and other environmental plugins followed – such as 

Diva (initially developed by researchers at Harvard University), Ladybug for sun‐path analysis, wind‐

roses (Roudsari and Pak, 2013), or shadow studies, or (the related) Honeybee which links 

Grasshopper to (daylight) simulation engines such as EnergyPlus, Radiance, or Daysim (food4rhino, 

2016).  

Shift of focus from around 2004‐5 towards object‐based virtual building information modelling 

(such as BIM and Virtual Design and Construction) 

Page 6: ICT in BUILDING Class Content - WordPress.com · Class Content The second class of ICT in Building will reflect on the adoption of ICT in building over the past 3‐4 decades. Based

 

Initially BIM tools assisted predominantly the documentation and visualisation processes. 

Increasingly BIM has developed into a multidisciplinary coordination environment.  

 

International standards have been developed to regulate ‘open BIM’ use of models from various 

software platforms. More and more professions embrace the BIM process. Starting with 

architects and structural/mechanical engineers, but soon expanding into civil engineering, 

construction, cost planning and manufacture.  

 

One of the key BIM areas developing at this point in time is the link from BIM construction data 

to Operation and Maintenance of assets.  

Page 7: ICT in BUILDING Class Content - WordPress.com · Class Content The second class of ICT in Building will reflect on the adoption of ICT in building over the past 3‐4 decades. Based

 

Reading References:  

Maver, T.W., Smith, M., Watts, J. and Aish, R., Implications for Practice and Education, 

Proceedings of PArC 79, Berlin, 1979, 221‐232. 

Mitchell, W.,  CAD Technology, Its Effects on Practice and the Response of Education ‐ an 

Overview, eCAADe  Conference Proceedings, Helsinki, 1984, 10‐15. 

Ayrle, H., Computers for Architects ‐ Only a Tool? Experiences with CAAD in Education and 

Practice, eCAADe Conference Proceedings, Munich, 1991, 88‐96.  

Coyne, R., The Impact of Computer Use on Design Practice, Education, Research, Applications 

CAAD Futures 1991 Conference Proceedings, Zürich, 1991, 413‐427. 

Linderoth, H. and Jacobsson, M. (2008) Understanding Adoption and use of ICT in Construction 

Projects through the Lens of Context, Actors and Technology, CIB W78 2008 International 

Conference on Information Technology in Construction Santiago, Chile 

Danity, A., Moore, D. and Murray, M. (2006) Communication in construction: Theory and 

practice. Oxon: Taylor and Francis. 

Peansupap V. and Walker, D.H.T., Information communication technology (ICT) implementation 

constraints ‐ A construction industry perspective, Engineering, Construction and Architectural 

Management, Vol. 13 Iss: 4, pp.364 – 379 

Saxon, R. Changing Construction Culture Interdisciplinary Design in Practice, Thomas Telford 

Publishing London UK, 2001 

Ruddock, L. 2006. ICT In the Construction Sector: Computing The Economic Benefits. 

International Journal Of Strategic Property Management, 10, 39‐50.