IC34-R: Management of Spasticity in the Adult Patient

69
All property rights in the material presented, including common-law copyright, are expressly reserved to the speaker or the ASSH. No statement or presentation made is to be regarded as dedicated to the public domain. IC34-R: Management of Spasticity in the Adult Patient Moderator(s): Lindley B. Wall, MD Faculty: Michael S. Bednar, MD, Allan E. Peljovich, MD, MPH, Peter C. Rhee, DO, MS, and Jennifer F. Waljee, MD Session Handouts 75TH VIRTUAL ANNUAL MEETING OF THE ASSH OCTOBER 1-3, 2020 822 West Washington Blvd Chicago, IL 60607 Phone: (312) 880-1900 Web: www.assh.org Email: [email protected]

Transcript of IC34-R: Management of Spasticity in the Adult Patient

All property rights in the material presented, including common-law copyright, are expressly reserved to the speaker or the ASSH. No statement or presentation made is to be regarded as dedicated to the public domain.

IC34-R: Management of Spasticity in the

Adult Patient

Moderator(s): Lindley B. Wall, MD

Faculty: Michael S. Bednar, MD, Allan E. Peljovich, MD, MPH, Peter C. Rhee, DO, MS,

and Jennifer F. Waljee, MD

Session Handouts

75TH VIRTUAL ANNUAL MEETING OF THE ASSH

OCTOBER 1-3, 2020

822 West Washington Blvd

Chicago, IL 60607

Phone: (312) 880-1900

Web: www.assh.org

Email: [email protected]

8/10/2020

1

IC34-R: Management of Spasticity in the Adult Patient

Michael S. Bednar, MD, Allan E. Peljovich, MD, MPH, Peter C. Rhee, DO, MS, Jennifer F. Waljee, MD

Moderator: Lindley B. Wall, MD

Pathophysiology of Upper Motor Neuron Syndrome

Jennifer Waljee, MD; Associate Professor of Surgery; University of Michigan

Jennifer F. Waljee, MD

Ownership Interests: Gilead pharmaceutical stock.

1

2

3

8/10/2020

2

• Nerves in the cerebral cortex, brainstem, cerebellum, and spinal cord to initiate and modulate movement

• Pyramidal tract – voluntary movement• Corticospinal tract (spinal nerves) and Corticobulbar tract (cranial nerves)

• Injury to cranial nerves or above the anterior horn

Anatomy

• Motor areas innervate contralateral side

• Mapping along cortical homunculus

• Precentral motor cortex, premotor area, supplementary motor area, primary somatosensory cortex, superior parietal lobe  ‐‐> corona radiata  internal capsule

• CST midbrain, ventral pons, medulla and decussate 

• Lateral CST axons synapse on lower motor neurons 

Anatomy

Upper Motor Neuron Lesions

Upper extremity extensor weakness

Lower extremity flexor weakness

Minimal muscle wasting

Hyperreflexia with clonus

Spasticity

No fasciculations

Hoffman’s sign

Babinski positive

Pronator drift

Lower Motor Neuron LesionsFocal pattern weakness

Focal pattern muscle wastingReflexes absent or reduced

Fasciculations Absent Babinski

4

5

6

8/10/2020

3

Cerebral Palsy

StrokeMultiple

SclerosisTBI

Spinal cord injury

Incidence Prevalence

(US)

1.5 – 4/1,000 live births764,000

children and adults

795,000 per year

7 million adults (3% of population)

46.3 per 100,0001 million

adults (3% of population)

1.5 million per year

5.3 million adults

17,730 per year

291,000 adults

Rate of spasticity

63% 35-58% 85% 13% 65-78%

Severe spasticity

25% 20% 10-15% 75% 20-25%

Epidemiology

• Acute injury

• Polytrauma is common

• Pain – occult injury, spasticity, thromboembolism, heterotopic ossification, CRPS

• Brachial plexus involvement

• Recovery

• Spontaneous recovery ~18-24 months; most gains in early 6 months

• UMN syndrome is common: spasticity, rigidity, synergy

Traumatic Brain Injury

• MCA: • Cerebral cortex --> sensory and motor function of the trunk, upper extremity, face; speech

• ACA: • Mid cortex --> sensory and motor function of the lower extremity

• PCA: • Occipital region --> visual cortex• Bilateral: mental impairment, frontal release signs, loss of short-term memory, inability to learn.

• Vertebral basilar: • Balance and coordination

Cerebrovascular accident

7

8

9

8/10/2020

4

• Cognition• Impaired mentation, learning ability, short term memory loss, attention span, motivation

• Aphasia (loss of the ability to communicate) – receptive or expressive; left hemisphere

• Apraxia (impaired execution) – loss of learned actions; right hemisphere

• Sensation• Variable in severity • MCA lesions due to injury to the cerebral cortex: Loss of touch, pinprick, 2PD, proprioception, stereognosis

• Parietal lobe lesions: neglect

Cerebrovascular accident

• Disruption of inhibitory upper motor neuron pathways

• Impaired regulation of movement

• Loss of voluntary movement (hemiparesis or hemiplegia) with variable recovery

Recovery from injury

• Motor recovery• Flaccid paralysis: 24hrs – weeks (longer = poorer prognosis)

• Increasing muscle tone and spasticity• Clonus and hyperactive reflexes emerge• Paralysis plateaus at 3- 6 months

• Voluntary control: • Proximal distal

Recovery from injury

10

11

12

8/10/2020

5

• Loss of UMN inhibitory pathways spinal reflex hyperexcitability and hyperreflexia

• Exaggerated muscle activation in response to quick or slow stretch stimuli

• Co-contraction: spastic coactivation of antagonist and agonist muscles

• Voluntary movement:

• Pattern: synergistic movement of flexors and extensors with regression to primitive state

• Ex. hand grasp causes elbow and wrist flexion

• Selective: greater control of specific muscle(s) to provide coordination for precise movement

Recovery from injury

• A velocity-dependent increase in tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, resulting from hyperexcitability of the stretch reflex as one component of the upper motor neuron syndrome

• Imbalance of muscle forces across a joint yielding static and dynamic joint deformity

• Passively correctable --> static deformity

Lance et al. 1980

Spasticity

• Shoulder adduction and internal rotation

• Elbow flexion

• Forearm pronation

• Wrist flexion

• Clenched fist

• Intrinsic plus deformities

• Thumb in palm

Typical pattern of spasticity

13

14

15

8/10/2020

6

Restore balance across the joint to improve function and appearance

• Rhee PC. Surgical Management of Upper Extremity Deformities in Patients With Upper Motor Neuron Syndrome. JHS.2019; 44(3): 223-235

• Segal M. Muscle Overactivity in the Upper Motor Neuron Syndrome: Pathophysiology. Phys Med Rehabil Clin N Am. 2018. 29: 427–436

• Angulo-Parker FJ, Adkinson JM. Common Etiologies of Upper Extremity Spasticity. Hand Clin. 2018. 34(4):437-443.

• Baker SN, Zaaimi B, Fisher KM, Edgley SA, Demetris S. Pathways mediating functional recovery. Prog Brain Res. 2015;218:389-412.

Thank you!

16

17

18

8/11/2020

1

IC 34 – Management of Spasticity in Adult Patients

Allan Peljovich MD, MPH

Allan E. Peljovich, MD, MPH

Speaker has no relevant financial relationships with commercial interest to disclose. 

Managing Upper Extremity Spasticity:Evaluation & Non‐operative Management

Allan Peljovich, MD, MPHThe Hand & Upper Extremity Center of Georgia;

Shepherd Center;

Children’s Healthcare of Atlanta;

Atlanta Medical Center Orthopaedic Residency Program

1

2

3

8/11/2020

2

Standard Deformity is a ‘Loose’ Term

• Elbow flexion (46%)

• Forearm pronation (78%)

• Wrist flexion/ulnar deviation

• Finger flexion 

• Thumb‐in‐palm (58%)

Waters & Van Heest, 1998

No One is Standard

• Each person is different– Cognitive

– Motor

– Sensory

• Treatment ∝ Evaluation

Spectrum of Care

Neurology

OrthopaedicSurgery

HandSurgery

Physiotherapy

Social Work

PhysiatryCase 

Management

Family Support

4

5

6

8/11/2020

3

What is the goal of evaluation?

• What is the status quo?– Functional

– Nature of the limb/joints• Spasticity, flaccidity, dystonia

• What is the limb’s potential?– Is there any?

– ‘normal’ function is not in the equation

• Can the deficit be balanced?– Non‐operative treatment ≠ conservative

– Operative treatment

Pierson, 1996; Van Heest 2003; Weigl, et al, 2007; Carlson, et al, 2009 

Getting the Best Impression

• Time consuming process– Tone/control can vary in intensity

• Stress, emotion, illness

– Multiple assessments

• Modalities– Video

– ‘Call a friend’ – therapist’s input

– Adjunctive studies

– Outcome scores

Evaluation: History

• Patient/family goals– Are hopes & expectations realistic?

• Status quo• Manual Ability Classification

• House functional classification

• SHUEE

• Compliance– Support & resources

– Motivation for the ‘long game’

– Cognition• Age‐appropriate education level?

House, et al, 1981; Davids, et al, 2006; Leafblad, et al, 2015

7

8

9

8/11/2020

4

Evaluation: Skin Examination

• Especially the creases

–Maceration

– Irritation

–Dermatitis

– Foul odor

• Hand

–Need for towels to keep fingers open?

Waters & Van Heest, 1998

Evaluation: Musculoskeletal Exam

• Contracture– Spastic Myostatic Articular

– Wrist • Volkmann’s Angle

• Stability– PIP hyperextension

– Static carpal instability• Plain films

Evaluation: Neurological Exam

General Sense of the Limb• Posture

– At rest– In response to attempted actions

• When distracted• Under stress/pressure of the exam

• Tone at various joints– Flaccidity ± spasticity ± dystonia

• Extrapyramidal signs– Athetosis– Chorea– Dystonia

10

11

12

8/11/2020

5

Evaluation: Neurological Exam

Motor control• Independent joints

– Antagonist muscle • Weakness • Paralysis• Out of phase contraction

– Co‐contraction?

• Multiple joints ‐ Task activity– Dyskinesis? 57%– Mirroring 40%

Waters & Van Heest, 1998; Kozin & Zlotolow (video)

Evaluation: Neurological

What motions deserve attention?

• Elbow extension

• Forearm supination  

• Wrist extension

• Digital extension

• Thumb abduction/extension

• Lateral pinch and grasp coordination

Waters & Van Heest, 1998

Evaluation: Neurological

Sensory Perception

• Difficult to assess in children <6‐7 

• Peripheral integrity

– 2‐point discrimination (58%) 

• Higher order/cognitive sensation

– Stereognosis (36%)

– Graphesthesia (47%)

– Proprioception (19%)

13

14

15

8/11/2020

6

Evaluation: Adjunctive Studies

• Radiography

• Local anesthetic motor block

• Functional testing

• Videotape review

• Dynamic electromyogram

• Motion labs

• Clostridium botulinum toxin

Van Heest 2003

Evaluation: Motor block

• Local anesthetic ‐ office‐based assessment– Into the biceps

• Elbow flexor spasticity

• Determine if there is an independent supinator muscle

– Median n. ± ulnar n. at wrist• Extrinsic vs intrinsic spasticity

• Onabotulinum A injections– Multiple targets

– Can answer ‘what if’ surgical scenarios

Pierson, 1996; Weigl, et al, 2007 

Evaluation: Scales, Scores, Tests

• Chedoki Arm & Hand Inventory (CAHAI)• Upper Extremity Fugl‐Meyer (UE‐FM)• Stroke Impact Scale (SIS)• Manual Function Test• Wolf Motor Function Test• Strength and Difficulties Questionnaire (SDQ)• Action Research Arm Test (ARAT)• Barthel Index• Functional Independence Measure• Goal Attainment Scaling (GAS)• Physician Global Assessment (PGA)• Disability Assessment Scale (DAS) • Modified Frenchay Scale• Arm Motor Ability Test (AMAT)• Motor Activity Log (MAL)• Manual Abilities Classification• Box & Blocks Test• Modified Ashworth Scale• Jebsen‐Taylor Hand Function Test• Disabilities of the Arm, Shoulder & Hand (DASH)• Canadian Occupational Performance Measure 

(COPM)

Pediatric Specific• Shriners Hospitals Upper Extremity Eval (SHUEE)• House Functional Classification• Assisting Hand Assessment (AHA)• Zancolli Classification• Pediatric Outcomes Data Collection Instrument 

(PODCI)• Pediatric Quality of Life Inventory (PedsQL)• Children’s Assessment of Participation and 

Enjoyment (CAPE)

16

17

18

8/11/2020

7

Hoffer, et al, 1979, 1983; Mowery, et al, 1985; Van Heest, 2003; Karakostas, 2018

Evaluation: Motion Labs & Dynamic EMG

• Useful to evaluate

– Antagonistic muscles

– Muscle coordination during activity

• Can be utilized in concert

• Useful with simultaneous functional testing

• But…– Not everyone has access

– Efficacy not firmly established

Treatment: Principles

• Improve motor control

• Improve mobility

• Reduce tone

Treatment: Pharmacology

• Global spasticity

– Modified Ashworth Scale ≥ 2

• Significant tone throughout motion

• Oral administration

– Baclofen, Dantrolene, Diazepam, Tizanidine

• Intrathecal baclofen (Quadraparesis)

– Improves upper extremity functional scores

– Even in children with dystonia

Motta, et al, 2009; Motta, et al, 2008; Black 2018

19

20

21

8/11/2020

8

Treatment: Pharmacology

• Regional/focused spasticity

– Onabotulinum A

– Abobotulinum A ‐ alternate

– Phenol – longer acting/permanence

• Series of injections alone improve function

– Add bimanual therapy

• Requires continued treatment*

Koman, et al, 2013; Speth, et al, 2015; Gracies, et al, 2015; Dong, et al, 2017; Marciniak, et al, 2017; Block, 2018

Treatment: Physiotherapy

• Improving mobility– Serial casting

– Dynamic splinting

• Electrical stimulation• Strength

• Tone reduction

• Temporary

• Mental practice– Useful as an adjunct in stroke

Motta, et al, 2010; Sakzewski, et al, 2014; Sakzewski, et al, 2015; Rameckers, et al, 2015; Corbetta, et al, 2015; Block, 2018;

Treatment: Physiotherapy

• Motor Control– Bimanual training

– Task‐specific goals

– Adaptive devices

– Constraint therapy • Hemiplegia/Stroke

• ‘Dosage’ matters

– Traditional vs modified protocols

– Mirror therapy (Stroke)• ‘Dose dependent’

• Improves motor function, ADL’s

– Robotic assisted therapy

Motta, et al, 2010; Sakzewski, et al, 2014; Sakzewski, et al, 2015; Rameckers, et al, 2015; Thieme, et al 2018; Barclay, et al, 2020

22

23

24

8/11/2020

9

Treatment: Horizon?

• Virtual reality training

• Trans‐cranial electromagnetic stimulation

• Brain computer interface systems– Captures EEG activity to control external devices

– Stroke

• Extracorporeal Shock Wave Therapy (stroke)

Black 2018; Wu, et al, 2018; Mehrholz, et al, 2015, 2018, 2020; Bai, et al, 2020

Conclusion: When is it time for Surgery?

• There is more to being a surgical candidate than failing non‐operative treatment

• “...treatment...in no way promotes neurologic recovery.”

McCullough, 1975

25

26

8/11/2020

1

Surgical Techniques for Spasticity in the Adult: Forearm and Wrist

Michael S. Bednar, M.D.

Michael S. Bednar, MD

Speaker has no relevant financial relationships with commercial interest to disclose.

Evaluation

• Muscle with voluntary control

• Muscle spastic to stretch

• Muscle contracted

• Joint contracted

1

2

3

8/11/2020

2

Impairments from Stroke

Grade Motor Control Description

1 Flaccid Hypotonic, no active motion

2 Rigid Hypertonic, no active motion

3 Reflexive mass pattern (synergy)

Mass flexion or extension in response to stimulation

4 Volitional mass pattern Patient-initiated mass flexion or extension movement

5 Selective with pattern overlay

Slow volitional movement of specific joints; physiologic

stress results in mass action

6 Selective Volitional control of individual joints

Motor

• Muscle tone increases

• Stronger for elbow, wrist and finger flexors, forearm pronator

• Increased tone leads to increased spasticity

Impairments from Stroke andTBI

• Severe spasticity leads to:

• Skin hygiene

• Pressure sores

• Joint contractures

• Joint subluxation

4

5

6

8/11/2020

3

Role for Surgical Treatment

• Operate early

• Not a treatment of last resort

• Early surgery preserves

• Maximal muscle strength

• Joint mobility

• Articular cartilage

• Sadly, this doesn’t happen often

Surgical Treatment - Procedures

• Lengthen muscle

• “Slide” Muscle Origin

• Transfer muscle with voluntary activation

• Capsulotomy of Joints

• Shorten the Skeleton

Clinical Patterns of Motor Dysfunction

• Adducted, internally rotated shoulder

• Flexed elbow

• Pronated forearm

• Flexed wrist

• Clenched fist

7

8

9

8/11/2020

4

Elbow Flexion

Elbow Flexion

• Brachioradialis – continuous spastic activity

• Biceps – one or both head may be spastic

• Brachialis – least spastic

10

11

12

8/11/2020

5

Elbow Flexion

• No volitional control

•Biceps – distal tendon release or Z lengthening

•Brachialis – partial to complete release

•Brachioradialis – release from origin thru muscle belly

13

14

15

8/11/2020

6

Biceps and Brachialis Lengthening

Forearm

• Forearm pronation

• Tendon lengthening or release

• Pronator teres rerouting

• Forearm osteotomy

Pronator teres release

16

17

18

8/11/2020

7

Forearm contracture

• Mild pronation contracture

• PT release if active supination

• PT rerouting active pronation but no active supination

• Pronation contracture combined with wrist and finger flexion deformity, flexor-pronator muscle slide

• Moderate to severe pronation contracture

• Osteotomy of the radius and/or ulna

• One-bone forearm procedure

Forearm Rotational Osteotomy

• Can be used with supination or pronation deformities

• No active or passive motion

• Used to change position of forearm

19

20

21

8/11/2020

8

Soft-tissue Releases FCR lengtheningFCU lengthening Flexor pronator slide

Tendon Transfers ECU to ECRB/LFCU to ECRB/L (Green transfer)BR to ECRB/LFCR to ECRB/LP. Teres to ECRL

Joint Stabilization Wrist fusion with PRCPRC

Wrist Flexion Deformity

22

23

24

8/11/2020

9

Wrist Flexion

• Evaluation

• Assess wrist and finger flexors by assessing tightness to passive wrist extension with hand passively held in a fist versus fingers extended

• Assess volitional control of flexors and extensors

Wrist Flexion

Courtesy A. VanHeest, MD

FCU to ECRB

• Incision

• FCU exposure

Courtesy A. VanHeest, MD

25

26

27

8/11/2020

10

Post-operative Result: FCU to ECRB

Courtesy A. VanHeest, MD

FLEXOR PRONATOR SLIDE

28

29

30

8/11/2020

11

Wrist Flexion Treatment

• Botulinum toxin injections

• assess role of spastic muscles

• determine strength of antagonistic muscles

Clenched Fist

• Evaluation

• Assess FDP from FDS tightness by examining DIP flexion

• Assess volitional control of flexors and extensors (present in 50% of patients with spastic clenched fist)

• Assess for intrinsic spasticity

• Assess for joint tightness

Clenched Fist

• Treatment

• Volitional flexor control

• Fractional lengthening of flexor tendons

• Flexor pronator slide

• PRC +/- wrist fusion if unable to bring wrist to neutral

31

32

33

8/11/2020

12

34

35

36

8/11/2020

13

Motor

Clenched Fist

• Treatment

• Volitional flexor control

• Fractional lengthening of flexor tendons

• Flexor pronator slide

• PRC +/- wrist fusion if unable to bring wrist to neutral

• No volitional flexor control

• Sublimis to Profundus for patients

• Intrinsic lateral band release and ulnar motor neurectomy

37

38

39

8/11/2020

14

40

41

42

8/11/2020

15

43

44

45

8/11/2020

16

46

47

48

8/11/2020

17

Conclusions

• Injuries happen frequently, but patients see hand surgeons rarely

• Understand stages and timing of the injuries

• Surgery most likely to release contracture

49

50

ICL 34-R Surgical Techniques for Spasticity in the Adult: Forearm and

Wrist

Michael S. Bednar, M.D.

Loyola University – Chicago

1) Introduction

a) Stroke

i) Incidence: 1/1,000 with 250,000 survivors per year

ii) After first CVA, survival

(1) 73% at year 1

(2) 39% at year 5

(3) 11% at year 10

iii) >2 million people in USA with permanent neurologic deficits 2nd to CVA in

USA

b) Traumatic Brain Injury

i) Incidence: 1.5 million Americans per year

ii) 50,000 die

iii) Most injuries occur in patients <45 yo, life span is normal

iv) 80% have good to moderate neurologic recovery

v) 33% require assistance with ADL's >1 year after injury

vi) Estimated life time cost of TBI treatment - $56 billion in 1995

2) Impairments from Stroke and TBI

a) Motor

i) Flaccid paralysis from 24 hours to several weeks

(1) Longer times = poorer prognosis for functional recovery

ii) Muscle tone increases

(1) Stronger for elbow, wrist and finger flexors, forearm pronator

(2) Increased tone leads to increased spasticity

(a) Hyperreflexia

(b) Clonus

(3) Voluntary movements return first in proximal muscles (shoulder to hand)

(4) Grading muscle control (from Keenan in Green's Operative Hand Surgery,

6th ed)

Grade

Motor Control Description

1 Flaccid Hypotonic, no active motion

2 Rigid Hypertonic, no active motion

3 Reflexive mass pattern (synergy)

Mass flexion or extension in response to stimulation

4 Volitional mass pattern Patient-initiated mass flexion or extension movement

5 Selective with pattern overlay

Slow volitional movement of specific joints; physiologic stress results in mass action

6 Selective Volitional control of individual joints

(5) Require Grade 5-6 control for functional use

3) Severe spasticity leads to:

a) Joint contractures

b) Pressure sores

c) Skin hygiene

d) Malunion of healing fractures

e) Joint subluxation

f) Peripheral neuropathy

i) Carpal tunnel syndrome

ii) Cubital tunnel syndrome

g) Heterotopic ossification (TBI)

4) Role for surgical treatment

a) Wait for neurologic recovery

i) 12 months in Stroke

ii) 18 months in TBI

b) Treat spasticity earlier with

i) Therapy and splinting

ii) Oral medications and baclofen pump

iii) Phenol nerve blocks and botulinum toxin injections (allows assessment of

antagonist muscles)

c) Major functional issues

i) Elbow flexion

(1) Volitional control

(a) Biceps

(i) Dynamic deformity - proximal musculotendinous lengthening of

long and short heads of biceps

(ii) Static deformity – Z lengthening

(b) Brachialis - musculotendinous lengthing

(c) Brachioradialis - musculotendinous lengthing

(2) No volitional control

(a) Biceps – distal tendon release

(b) Brachialis – partial to complete release

(c) Brachioradialis – release from origin

(3) Ulnar nerve – consider transposition

ii) Forearm pronation

(1) Tendon lengthening or release

(2) Pronator teres rerouting

(3) Forearm osteotomy

iii) Wrist flexion

(1) Evaluation

(a) Assess wrist and finger flexors by assessing wrist extension tightness

with hand passively held in a fist versus fingers extended

(b) Assess FDP from FDS tightness by examining DIP flexion

(c) Assess volitional control of flexors and extensors

(2) Treatment

(a) Botulinum toxin injections to assess role of spastic muscles and

determine strength of antagonistic muscles

(b) Fractional lengthening of PL, FCR, FCU

(c) Flexor pronator slide

(d) Fractional lengthening of FDS/FDP vs. sublimis to profundus transfer

(e) For severe wrist flexion interfering with hygiene and putting on clothes,

PRC and wrist fusion with plate fixation

References

Adekoya N et al. Surveillance for traumatic brain injury deaths—United States, 1989-1998,MMWR Surveill Summ 51:1-14,2002.

Botte M J et al. Approaches to senior care #2: orthopaedic management of the stroke patient. Part I. Pathophysiology, limb deformity, and patient evaluation,Orthop Rev 17:637-647,1988.

Botte M J et al. Approaches to senior care #3: orthopaedic management of the stroke patient. Part II. Treating deformities of the upper and lower extremities,Orthop Rev 17:891-910,1988.

Keenan MA: Management of the spastic upper extremity in the neurologically impaired adult. Clin Orthop. 233:116-125 1988

Keenan MA: Surgical decision making for residual limb deformities following traumatic brain injury. Orthop Rev. 17:1185-1192 1988

Keenan MA, et al.: Results of fractional lengthening of the finger flexors in adults with upper extremity spasticity. J Hand Surg [Am]. 12:575-581 1987

Keenan MA, et al.: Results of transfer of the flexor digitorum superficialis tendons to the flexor digitorum profundus tendons in adults with acquired spasticity of the hand. J Bone Joint Surg Am. 69:1127-1132 1987

Waters RL, Keenan MA: Surgical treatment of the upper extremity after stroke. Chapman M Operative Orthopaedics

8/11/2020

1

Spasticity: The Thumb and Digits

Lindley B. Wall, MD MSc

Washington University

Lindley B. Wall, MD

Speaker has no relevant financial relationships with commercial interest to disclose. 

Spastic Thumb

Functional Limitations• Extension – limits span and thus size of objects held

• Flexion – blocks occupying space in the palm

1

2

3

8/11/2020

2

Spastic Thumb

House Classification (JBJS 1981)• Type 1: Metacarpal adduction

• Type 2: Metacarpal adduction, MPJ flexion

• Type 3: Metacarpal adduction, MPJ extension

• Type 4: Metacarpal adduction, IPJ flexion

• Extrinsic versus Intrinsic

Spastic Thumb

• Functional Limitations

• Metacarpal adduction*

- Adductor Pollicis

Tonkin JHS 2001

Treatment Ladder

• Splinting

• Botox

• Pinning

• Surgery – tendon or joint procedures

4

5

6

8/11/2020

3

Treatment

• Thenar release*

- Adductor and 1st DIO

• EPL reroutement (Manske 1985)*

• BR transfer to APL or extensor

• FPL lengthening

Journal of Hand Surgery 2011 36, 1526-1531DOI: (10.1016/j.jhsa.2011.06.014)

Thenar Release/Slide

Journal of Hand Surgery 2011 36, 1526-1531DOI: (10.1016/j.jhsa.2011.06.014)

Thumb

• Improved extension

• Improved abduction

• Pinch and grasp

improve

• Long Term?

EPL Reroutement

7

8

9

8/11/2020

4

Treatment

Long Term Outcomes• Trachida and Van Heest

(Hand Clinics 2018)

• Cochrane Review

-14 studies >6 month f/u – “satisfactory”

• Davis et al (JPO 2009)

(thumb combined with wrist and FA)

- Static thumb – alignment improved 55%

- Dynamic thumb – alignment improved 58%

Treatment

Outcomes Continued• Alewijnse et al (JPO 2015)

-5 year f/u of 39 patients

- Adductor release, EPL reroutement, MPJ capsulodesis

- 1 year – 13% recurrence

- 5 years – 29% worsening position

- 74% satisfied

Metacarpophalangeal Joint

• Consider CMC and MPJ together

• With MPJ hyperextension, EPL into capsule/periosteum

• MPJ hyperextension greater than 20 degrees

- Capsulorrhaphy

- Sesamoid Arthrodesis

- MPJ arthrodesis

10

11

12

8/11/2020

5

Failures

• Young Adult and Adolescent

• Previous thenar release and EPL reroutement

• Metacarpal not controlled over time

Others

• Stroke

• TBI

• CNS pathology

• Spinal cord injury

• Adult CP patient

• Metacarpal uncontrolled and CMC becomes stiff and contracted.

CMC joint

CMC Arthrodesis• Controls the metacarpal

• Then distal procedures as needed

• MP capsulodesis

• FPL lengthening

• Flexion moment on MPJ

13

14

15

8/11/2020

6

Case

16

17

18

8/11/2020

7

Conclusion

CMC arthrodesis • Optimize thumb position

• Controls thumb metacarpal

• Not complete sacrilege

• In the right patient

• Improves function

• Improves hygiene

The Digits

Dynamic deformity• Impaired active extension of fingers

-Over pull of the finger flexors vs. poor volitional control of the finger extensors

- Fractional lengthening of FDS/FDP

• Swan neck due to intrinsic/extrinsic imbalance

- Lateral band rerouting

• Tenodesis effect is highly utilized by this population

*DO NOT FUSE THE WRIST if they use wrist flexion to extend their fingers

Carlson and Carlson. JHS 2014

19

20

21

8/11/2020

8

The Digits

Static deformity• Severe contractures/no use of hand

• Superficialis to profundus transfer

• MP or IP joint fusions

• Intrinsic releases

- Intrinsic tightness

- Intrinsic slide

- Denervation

Conclusions

• Thumb is adducted into the palm

- MPJ can be flexed or extended

• Younger and supple thumbs – EPL reroutement and thenar release

• Older stiffer or failed EPL – CMC Arthrodesis

• Don’t forget MPJ, treat together with CMC

• Understand static or dynamic digit involvement

Thank you

22

23

24

8/10/2020

1

©2017 MFMER | slide-1

Peter Charles Rhee, DO, MScProgram Director, Hand Surgery FellowshipAssociate Professor of Orthopedic SurgeryDivision of Hand Surgery, Department of Orthopedic SurgeryMayo Clinic, Rochester, MN

Surgical Techniques For Spasticity in the Adult: Neurotomy/Neurectomy

Peter C. Rhee, DO, MS

Consulting Fees: TriMed Inc., Integra LifeSciences

©2017 MFMER | slide-3

Upper Extremity Spastic DeformitiesGoals of Care

• Facilitate hygiene

• Optimize cares and

activities of daily living

• Decrease pain

• Improve cosmetics

• Enhance Function

1

2

3

8/10/2020

2

©2017 MFMER | slide-4

Upper Extremity Spastic DeformitiesGoals of Care

• Facilitate hygiene

• Optimize cares and

activities of daily living

• Decrease pain

• Improve cosmetics

• Enhance Function

©2017 MFMER | slide-5

Joint/Muscle Status

Functional Non-Functional

Upper Limb Functional Status Dictates TxSurgical Techniques

• Muscle release• Lengthening

• Fractional• Z-Lengthening

• Hyperselective Neurectomy

• Tenotomy• Neurectomy/Neurotomy• Muscle release• Myotomy• Arthrodesis• Lengthening

• Z-Lengthening

©2017 MFMER | slide-6

SpasticityJoint Pathology

4

5

6

8/10/2020

3

©2017 MFMER | slide-7

SpasticityPathophysiology

©2017 MFMER | slide-8

Spinal Reflex (Spasticity)Targets for Intervention

©2017 MFMER | slide-9

Spinal Reflex (Spasticity)Target: Muscle

Fractional Lengthening/Z-lengthening/Origin Release Myotomy/Tenotomy

7

8

9

8/10/2020

4

©2017 MFMER | slide-10

Spinal Reflex (Spasticity)Target: Nerve

Neurotomy

©2017 MFMER | slide-11

Spinal Reflex (Spasticity)Target: Nerve

Neurectomy

©2017 MFMER | slide-12

Role of Neurectomy/NeurotomyHand/Thumb

10

11

12

8/10/2020

5

©2017 MFMER | slide-13

Neurectomy/NeurotomyNon-Functional Thumb and Intrinsics

©2017 MFMER | slide-14

Thumb-in-Palm DeformityAgonists and Antagonists

Agonists• Flexor pollicis longus• Adductor pollicis• Thenars

Antagonist• Abductor pollicis longus• Extensor pollicis brevis

• Extensor Pollicis Longus

©2017 MFMER | slide-15

Thumb-in-Palm DeformityRelease of Agonists

Agonists• Flexor pollicis longus• Adductor pollicis• Thenars

Antagonist• Abductor pollicis longus• Extensor pollicis brevis

• Extensor Pollicis Longus

13

14

15

8/10/2020

6

©2017 MFMER | slide-16

Thumb-in-Palm DeformityRelease of Agonists

Agonists• Flexor pollicis longus• Adductor pollicis• Thenars

Antagonist• Abductor pollicis longus• Extensor pollicis brevis

• Extensor Pollicis Longus

©2017 MFMER | slide-17

Thumb-in-Palm DeformityRelease of Agonists

Agonists• Flexor pollicis longus• Adductor pollicis• Thenars?

Antagonist• Abductor pollicis longus• Extensor pollicis brevis

• Extensor Pollicis Longus

©2017 MFMER | slide-18

Thumb-in-Palm DeformityReduction of Spasticity

Agonists• Flexor pollicis longus• Adductor pollicis• Thenars

Antagonist• Abductor pollicis longus• Extensor pollicis brevis

• Extensor Pollicis Longus

16

17

18

8/10/2020

7

©2017 MFMER | slide-19

Thumb-in-Palm DeformityRecurrent Motor Branch (M) + Deep Motor Nerve (U)

©2017 MFMER | slide-20

Non-Functional HandNeurectomy – Median/Ulnar Nerve Branches

Deep Motor & ADM Branches (Ulnar)Clenched First + Thumb-in-Palm Deformity

Recurrent Motor Branch (Median)Thumb-in-Palm Deformity

©2017 MFMER | slide-21

19

20

21

8/10/2020

8

©2017 MFMER | slide-22

Role of Neurectomy/NeurotomyElbow

©2017 MFMER | slide-23

Elbow Flexion DeformityManagement of Spastic/Contracted Structures

Biceps

Brachialis

Brachioradialis

Functional Non-Functional

FX Lengthening TenotomyZ-Lengthening

FX Lengthening TenotomyOrigin Release Origin Release

FX Lengthening Origin Release Origin Release

©2017 MFMER | slide-24

Elbow Flexion DeformityManagement of Spastic/Contracted Structures

Biceps

Brachialis

Brachioradialis

Functional Non-Functional

FX Lengthening TenotomyZ-Lengthening NeurotomyHyperselectiveneurectomy (HSN)

FX Lengthening TenotomyOrigin Release Origin ReleaseHSN Neurotomy

FX Lengthening Origin Release Origin Release

22

23

24

8/10/2020

9

©2017 MFMER | slide-25

Hyperselective NeurectomyHyponeurotization for Pure Spasticity

Biceps

Brachialis

Indications:- Predominant Spasticity- Response to Botox or Local Anesthetic

©2017 MFMER | slide-26

Spinal Reflex (Spasticity)Target: Nerve

Neurotomy

©2017 MFMER | slide-27

Spinal Reflex (Spasticity)Target: Nerve

Neurectomy

25

26

27

8/10/2020

10

©2017 MFMER | slide-28

Spinal Reflex (Spasticity)Target: Individual Motor Rami

Hyperselective Neurectomy

©2017 MFMER | slide-29

Spinal Reflex (Spasticity)Target: Individual Motor Rami

Neurectomy (10 mm) of ~30-70% of Motor Rami

30% innervation = Antigravity Strength

Axonal Sprouting = Motor Endplate Reinnervation

(Gras et al. Hand Surg & Rehab, 2017)

©2017 MFMER | slide-30

Hyperselective NeurectomyIdentification of Terminal Motor Rami

Biceps (Blue) + Brachialis (White) Motor Branches

28

29

30

8/10/2020

11

©2017 MFMER | slide-31

Hyperselective NeurectomyImmediate Decrease in Spasticity

©2017 MFMER | slide-32

Hyperselective NeurectomyDecrease in Spasticity

Pre-operative 6 weeks Post-operative

©2017 MFMER | slide-33

Hyperselective NeurectomyAdjuncts to MSK Procedures

31

32

33

8/10/2020

12

©2017 MFMER | slide-34

©2017 MFMER | slide-35

Take Home Points

• Spasticity can be alleviated with nerve surgery

• Neurotomy/neurectomy is indicated for muscles with no

volitional control

• Hyperselective neurectomy can be used for muscle with

volitional control to enhance function

• Systematic approach to address all pathologic structures

©2017 MFMER | slide-36

Thank You!

34

35

36

8/10/2020

1

Treatment Options for Spasticity: What is the Evidence?

Jennifer Waljee, MD; Associate Professor of Surgery; University of Michigan

Jennifer F. Waljee, MD

Ownership Interests: Gilead pharmaceutical stock.

Sugrue CM, Joyce CW, Sugrue RM, Carroll SM. Trends in the Level of Evidence in Clinical Hand Surgery Research. Hand. 2016. 11(2) 211–215

1

2

3

8/10/2020

2

• 126 patients

• Improvement in wrist and digit flexor tone

• Improved DASH score: 62% vs. 27%

Namdari et al. 2011. JSES – Tenotomy

• 36 adults without volitional control

• Shoulder tenotomy of pec major, lat dorsi, teres major, subscapularis

• 14 month follow up

• Improved passive motion: extension (50-85%), flexion (27-70%), abduction (27 -66%), and external rotation (1-56%)

• 95% pain free

• 97% satisfied with improved axillary care

Namdari et al. 2012. JSES – Tendon Lengthening

• 34 adults with UMN injury (23 CVA/11 TBI) with volitional control

• Shoulder tendon fractional lengthening of pec major, lat dorsi, teres major

• 12 month follow up

• Modified Ashworth spasticity score: 2.4 vs. 1.9 (p<0.001)

• Improved active flexion, abduction, and external rotation

• Improved passive extension, flexion, abduction, and external rotation

• 94% with improved pain relief (88% pain free)

• 92% satisfied

Shoulder spasticity

Keenan 1996. J Head Trauma Rehabilitation.

• 21 patients with volitional control undergoing release of BR, Z-lengthening of biceps tendon, lengthening of brachialis

• Smoother, more rapid arc of motion with extension

• Diminished spasticity with lengthening

• Mean flexion time: 2.9s 1.7s

• Mean extension time: 4.8s 2.2s

Elbow spasticity

4

5

6

8/10/2020

3

Namdari 2012. JSES – Release

• 29 patients undergoing release of brachialis, brachioradialis, and biceps

• 1.7 year follow up

• Elbow extension: -78º to -17º

• Modified Ashworth: 3.3 – 1.4

• 94% pain free

• 1 recurrence

Anakwenze. 2013. JSES

• 42 patients with volitional control

• Myotendinous lengthening; 6.6 year follow up

• Active extension: -42º to -20º; passive arc: 103º t0 131º

• Modified Ashworth: 2.7 - 1.9

Elbow spasticity

• Keenan 1987. JHS

• 27 patients (5 nonfunctional, 22 functional)

• 33 month follow-up

• Nonfunctional: improved in posture and hygiene

• Functional 91% improved spasticity; 2 patients lots grip strength related to over-lengthening

Wrist and Digit spasticity

• Thevenin-Lemoine C, JBJS 2013

• Page-Scaglietti technique: (FDP detachment from ulna, IOM; FDS, FCR detached from medial epicondyle, FPL detached from radius; Z-lengthening FCU; ECRB tenodesis or FCU ECRB)

• 55 patients; 26 month follow-up

• Mean gain in wrist extension with fingers extension: 67 ± 25

• 10 nonfunctional hands functional

• 12 partial recurrence; 7 with unmasked intrinsic contracture

Wrist and Digit spasticity

7

8

9

8/10/2020

4

Peraut et al. 2018. Orthopedics & Traumatology

• 26 patients with spasticity due to UMN syndrome and non-functional upper extremity

• Tenotomy of wrist flexors, FDS FDP transfer

• House Score 0 0.9

• 7 patients with functional improvement

• 25/26 improved hygiene and pain

• Postoperative complications common

10 patients

12 patients

3 patients

• Gatin et al. JHS. 2017

• 63 patients (70 procedures) with non-functional upper extremity

• Goal of surgery: hygeine, pain, appearance

• Preop score: 38.5 --> 52.3 “Better than expected”

10

11

12

8/10/2020

5

Future directions

• Comparative studies are needed to:

• Determine timing and role of nonoperative and operative intervention

• Relative advantages and disadvantages of surgical options, and potential heterogeneity by patient factors

13

14

15

8/10/2020

6

Thank you!

16

8/11/2020

1

Spasticity Cases and Discussion

Lindley B. Wall, MD MSc

Washington University

Lindley B. Wall, MD

Speaker has no relevant financial relationships with commercial interest to disclose. 

Case 1

• 18 year-old female with Right sided hemi-plegia.

• Previous anterior elbow release and EPL reroutement with thenar release 3 years ago. Also IF/MF/RF/SF lateral band reroutement for swan-necking.

• Now states difficulties with grasp. Does not like the contracture of her ring and small fingers.

1

2

3

8/11/2020

2

4

5

6

8/11/2020

3

Treatment?

• Tightness of lateral band reroutement

• Finger and wrist tightness?

• 43yo M who underwent thymectomy, then suffered limbic encephalitis and was placed into an induced coma for over 3 months. Awoke with B hand contractures. Initially unable to ambulate and had G-tube.

• Complaints:

-Pain

-No hand function

• PE:

-Full shoulder, elbow, FA motion. Hand clinched.

Case 2

7

8

9

8/11/2020

4

Treatment

• PIP contractures?

• Intrinsic contractures?

• Extrinsic tightness?

10

11

12

8/11/2020

5

Treatment

• Flexor pronator slide

• No PIP releases

13

14

15

8/11/2020

6

Thank you

16

17