IC Transistors Resistors

17
IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I. Resistors II.Bipolar Transistors III.MOS IV.DMOS

description

Circuit design

Transcript of IC Transistors Resistors

Page 1: IC Transistors Resistors

IC Transistors and Resistors

Chris KendrickJan. 29, 2003BiCMOS Design

I. ResistorsII. Bipolar TransistorsIII. MOSIV. DMOS

Page 3: IC Transistors Resistors

Resistor Voltage Coefficient

% Change PHV Resistance vs. Body Bias

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

0 10 20 30 40 50

Body Bias (V)

% C

ha

ng

e R

esi

sta

nce

30x300

12x300

6x300

12x120

12x30

VApplied = 5V

Page 4: IC Transistors Resistors

Resistor Temperature Coefficient

PHV Resistance vs. Temperature

-40.0%

-20.0%

0.0%

20.0%

40.0%

60.0%

80.0%

-100 -50 0 50 100 150 200

Temperature (C)

% C

ha

ng

e in

Re

sist

an

ce

30x300

12x300

6x300

VBody = 5V

Page 5: IC Transistors Resistors

Resistor Voltage limits

Diffusion Breakdown (V)

Buried Layer – Isolation 95

PWell – Epi 95

PHV – Epi 60

NHV - PWell 43

PSD - Epi 30

NSD - PWell 17.5

NSD – PHV 12

NSD – PSD (in PWell) 5.8

• The maximum resistor voltage is NOT defined by the tub it’s sitting in!

• The voltage rating of the tub determines the spacing of PHV to Epi

Page 7: IC Transistors Resistors

Low current NPN/PNP biasing

• What’s the lowest current bipolars can be biased at?

Lateral PNP

ICmin ~ 5uA

PNP (PHV/Epi - Emitter 21x 21 UDR) cross-section

Epi

Substrate

EC

PSD

FOX

PHV NSDPSDPSD PHV

B

PHV

FOX FOX

Page 8: IC Transistors Resistors

Low current NPN/PNP biasing

• What’s the lowest current bipolars can be biased at?

Vertical PNP

ICmin ~ 20nA

PWell

PNPV (PSD/NHV - Emitter 28 x 28 UDR) cross-section

Epi

Substrate

B

PSDNHVPSD

PSD PHV

C

PHV

E

NSDNSD

C

FOXFOX

Page 9: IC Transistors Resistors

Low current NPN/PNP biasing

• What’s the lowest current bipolars can be biased at?

NPN

ICmin ~ 20nA

PWell

NPN (NSD/PWell - Emitter 21 x 21 UDR) cross-section

Epi

Substrate

E B

PSD PHV NSDNSDPSD PHV

FOX

C

FOX FOX

Page 10: IC Transistors Resistors

MOS Safe Operating Area

• Hot carrier injection limits NMOS operating voltage

Low Voltage NMOS cross-section

Epi

Substrate

PWell

FOX FOXBPSG BPSG

Poly S G D

NSD

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

3.5E-05

4.0E-05

0 1 2 3 4 5 6

Gate Voltage (V)

Bu

lk C

urr

en

t (A

)

Page 11: IC Transistors Resistors

LV LVT NMOS 100x6Time to 10% IDlin degredation vs. Vds

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22

1/Vds (V-1)

Tim

e @

10

% Id

lin d

eg

red

ati

on

10 yrs -> Vds=4.6V

LV NMOS Hot Carrier Injection

• Maximum Vds determined from HCI measurements 10% degradation in 10 yrs

• Transient Vds rating based on 10% duty cycle

Measured Vds Max (V) Id 10%

Device 1 yr. 10 yr.

LV NMOS 100x6 5.5 5.1

LV NMOS 100x16 6.8 6.5

LV LVT NMOS 100x6 5.1 4.6

LV LVT NMOS 100x16 6.4 6.1

Page 12: IC Transistors Resistors

LV LVT PMOS drain-source leakage• Drain-source leakage determines maximum Vds at high temperature• Minimum channel length targeted based on process variation and independent

SEM measurement

LV LVT PMOS Leakage vs. Gate Length (Vds=5V)L29894, wf #19

1.0E-16

1.0E-15

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

4.5 5.0 5.5 6.0 6.5 7.0 7.5

Gate Length (UDR)

Le

ak

ag

e C

urr

en

t (A

/um

)

Flat_27

Flat_150

Center_150

Top_27

Top_150

Flat_poly1_27

1.69um

1.70um

1.43um

Minimum Poly2 CD = 1.57um

150C

27C

Page 13: IC Transistors Resistors

DMOS Specific Rdson

Rsp = Rdson x transistor active area

Active Area width

Act

ive

Are

a le

ngth

Ex : LDMOS transistor

Device Rdson () Area (cm2) Rsp. (m.cm2)

LV NLDMOS 0.66 5.19E-4 0.34

MV1 NLDMOS 1.93 7.32E-4 1.41

LV PLDMOS 2.58 5.19E-4 1.34

MV PLDMOS 4.92 7.32E-4 3.6

VDMOS_HEC 1.53 1.77E-3 2.7

transistor active area = # cells x cell area

Page 14: IC Transistors Resistors

DMOS Specific Rdson

N-Buried Layer

N-Epi

PHV PHV PWN+

SinkerN+ N+ N+P+ P+

P-substrate

S G D

• More components to Rdson than just channel resistance RCH + REpi + RBL + RMetal

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

0 2 4 6 8 10 12

VGS (V)

IDS

(A

)

• Series resistance causes ‘bend’ in ID vs. VG curve

Page 15: IC Transistors Resistors

A useful way to extract DMOS series resistance

DSV

TV

GSV

L

WoxC

DI )( S

RDI

DSV

DSV

L

WCOX

2))(1(TV

GSV

SR

DSV

GSVDSI

MG

SDDSTGS

D

RIVVV

I

(1)

(2)

(3)2

))((

D

DSTGSMDS I

VVVGIR

  

Device size (cells) R-series (Ohms) Total rdson (OHMs) % series resistance

NLDMOS_13V 5x20 0.37 0.69 54 %

NLDMOS_30V 5x20      

NLDMOS_45V 5x20 1.44 1.99 72 %

PLDMOS_13V 5x20 1.25 2.66 47 %

PLDMOS_45V 5x20 2.8 5.0 36 %

VDMOS_HD 15x46 1.63 1.84 89 %

VDMOS_HEC 13x46      

Substituting (2) into (3) gives,

Page 16: IC Transistors Resistors

DMOS Clamped Inductive Switching• Clamping the flyback voltage below the DMOS breakdown increases energy

capability.• Power dissipation eventually allows parasitic bipolar to turn on, killing device

-5.00x10-4 -2.50x10-4 0.00 2.50x10-4 5.00x10-4 7.50x10-4

-10

0

10

20

30

40

50

60

70

80

Vd

Dra

in V

olta

ge (

V)

Time (sec.)

-0.5

0.0

0.5

1.0

1.5

2.0

to

Id

Energy CapabilityDevice Comparison

y = 1.7849x0.6421

y = 1.9762x0.6223

y = 2.8072x0.6032

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500

Time (uS)

En

erg

y (

mJ

/mm

2)

47V VDMOS_HD

47V VDMOS_HEC

47V MV2_NLDMOS

Power (47V VDMOS_HD)

Power (47V VDMOS_HEC)

Power (47V MV2_NLDMOS)

Page 17: IC Transistors Resistors

Energy capability can determine device size

DMOS Rdson vs. Energy Capability

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.0E+00 2.5E-03 5.0E-03 7.5E-03 1.0E-02

Area (cm 2)

Rd

son

(

)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Rdson

Energy Capability