IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar...

17
IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I. Resistors II.Bipolar Transistors III.MOS IV.DMOS
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    0

Transcript of IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar...

Page 1: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

IC Transistors and Resistors

Chris KendrickJan. 29, 2003BiCMOS Design

I. ResistorsII. Bipolar TransistorsIII. MOSIV. DMOS

Page 3: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

Resistor Voltage Coefficient

% Change PHV Resistance vs. Body Bias

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

0 10 20 30 40 50

Body Bias (V)

% C

ha

ng

e R

esi

sta

nce

30x300

12x300

6x300

12x120

12x30

VApplied = 5V

Page 4: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

Resistor Temperature Coefficient

PHV Resistance vs. Temperature

-40.0%

-20.0%

0.0%

20.0%

40.0%

60.0%

80.0%

-100 -50 0 50 100 150 200

Temperature (C)

% C

ha

ng

e in

Re

sist

an

ce

30x300

12x300

6x300

VBody = 5V

Page 5: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

Resistor Voltage limits

Diffusion Breakdown (V)

Buried Layer – Isolation 95

PWell – Epi 95

PHV – Epi 60

NHV - PWell 43

PSD - Epi 30

NSD - PWell 17.5

NSD – PHV 12

NSD – PSD (in PWell) 5.8

• The maximum resistor voltage is NOT defined by the tub it’s sitting in!

• The voltage rating of the tub determines the spacing of PHV to Epi

Page 7: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

Low current NPN/PNP biasing

• What’s the lowest current bipolars can be biased at?

Lateral PNP

ICmin ~ 5uA

PNP (PHV/Epi - Emitter 21x 21 UDR) cross-section

Epi

Substrate

EC

PSD

FOX

PHV NSDPSDPSD PHV

B

PHV

FOX FOX

Page 8: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

Low current NPN/PNP biasing

• What’s the lowest current bipolars can be biased at?

Vertical PNP

ICmin ~ 20nA

PWell

PNPV (PSD/NHV - Emitter 28 x 28 UDR) cross-section

Epi

Substrate

B

PSDNHVPSD

PSD PHV

C

PHV

E

NSDNSD

C

FOXFOX

Page 9: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

Low current NPN/PNP biasing

• What’s the lowest current bipolars can be biased at?

NPN

ICmin ~ 20nA

PWell

NPN (NSD/PWell - Emitter 21 x 21 UDR) cross-section

Epi

Substrate

E B

PSD PHV NSDNSDPSD PHV

FOX

C

FOX FOX

Page 10: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

MOS Safe Operating Area

• Hot carrier injection limits NMOS operating voltage

Low Voltage NMOS cross-section

Epi

Substrate

PWell

FOX FOXBPSG BPSG

Poly S G D

NSD

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

3.5E-05

4.0E-05

0 1 2 3 4 5 6

Gate Voltage (V)

Bu

lk C

urr

en

t (A

)

Page 11: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

LV LVT NMOS 100x6Time to 10% IDlin degredation vs. Vds

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22

1/Vds (V-1)

Tim

e @

10

% Id

lin d

eg

red

ati

on

10 yrs -> Vds=4.6V

LV NMOS Hot Carrier Injection

• Maximum Vds determined from HCI measurements 10% degradation in 10 yrs

• Transient Vds rating based on 10% duty cycle

Measured Vds Max (V) Id 10%

Device 1 yr. 10 yr.

LV NMOS 100x6 5.5 5.1

LV NMOS 100x16 6.8 6.5

LV LVT NMOS 100x6 5.1 4.6

LV LVT NMOS 100x16 6.4 6.1

Page 12: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

LV LVT PMOS drain-source leakage• Drain-source leakage determines maximum Vds at high temperature• Minimum channel length targeted based on process variation and independent

SEM measurement

LV LVT PMOS Leakage vs. Gate Length (Vds=5V)L29894, wf #19

1.0E-16

1.0E-15

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

4.5 5.0 5.5 6.0 6.5 7.0 7.5

Gate Length (UDR)

Le

ak

ag

e C

urr

en

t (A

/um

)

Flat_27

Flat_150

Center_150

Top_27

Top_150

Flat_poly1_27

1.69um

1.70um

1.43um

Minimum Poly2 CD = 1.57um

150C

27C

Page 13: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

DMOS Specific Rdson

Rsp = Rdson x transistor active area

Active Area width

Act

ive

Are

a le

ngth

Ex : LDMOS transistor

Device Rdson () Area (cm2) Rsp. (m.cm2)

LV NLDMOS 0.66 5.19E-4 0.34

MV1 NLDMOS 1.93 7.32E-4 1.41

LV PLDMOS 2.58 5.19E-4 1.34

MV PLDMOS 4.92 7.32E-4 3.6

VDMOS_HEC 1.53 1.77E-3 2.7

transistor active area = # cells x cell area

Page 14: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

DMOS Specific Rdson

N-Buried Layer

N-Epi

PHV PHV PWN+

SinkerN+ N+ N+P+ P+

P-substrate

S G D

• More components to Rdson than just channel resistance RCH + REpi + RBL + RMetal

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

0 2 4 6 8 10 12

VGS (V)

IDS

(A

)

• Series resistance causes ‘bend’ in ID vs. VG curve

Page 15: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

A useful way to extract DMOS series resistance

DSV

TV

GSV

L

WoxC

DI )( S

RDI

DSV

DSV

L

WCOX

2))(1(TV

GSV

SR

DSV

GSVDSI

MG

SDDSTGS

D

RIVVV

I

(1)

(2)

(3)2

))((

D

DSTGSMDS I

VVVGIR

  

Device size (cells) R-series (Ohms) Total rdson (OHMs) % series resistance

NLDMOS_13V 5x20 0.37 0.69 54 %

NLDMOS_30V 5x20      

NLDMOS_45V 5x20 1.44 1.99 72 %

PLDMOS_13V 5x20 1.25 2.66 47 %

PLDMOS_45V 5x20 2.8 5.0 36 %

VDMOS_HD 15x46 1.63 1.84 89 %

VDMOS_HEC 13x46      

Substituting (2) into (3) gives,

Page 16: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

DMOS Clamped Inductive Switching• Clamping the flyback voltage below the DMOS breakdown increases energy

capability.• Power dissipation eventually allows parasitic bipolar to turn on, killing device

-5.00x10-4 -2.50x10-4 0.00 2.50x10-4 5.00x10-4 7.50x10-4

-10

0

10

20

30

40

50

60

70

80

Vd

Dra

in V

olta

ge (

V)

Time (sec.)

-0.5

0.0

0.5

1.0

1.5

2.0

to

Id

Energy CapabilityDevice Comparison

y = 1.7849x0.6421

y = 1.9762x0.6223

y = 2.8072x0.6032

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500

Time (uS)

En

erg

y (

mJ

/mm

2)

47V VDMOS_HD

47V VDMOS_HEC

47V MV2_NLDMOS

Power (47V VDMOS_HD)

Power (47V VDMOS_HEC)

Power (47V MV2_NLDMOS)

Page 17: IC Transistors and Resistors Chris Kendrick Jan. 29, 2003 BiCMOS Design I.Resistors II.Bipolar Transistors III.MOS IV.DMOS.

Energy capability can determine device size

DMOS Rdson vs. Energy Capability

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.0E+00 2.5E-03 5.0E-03 7.5E-03 1.0E-02

Area (cm 2)

Rd

son

(

)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Rdson

Energy Capability