IAEA Demo Workshop 2016 Chan(draft3) Meeting... · Steady-State with High Duty Cycle is Key to...

36
Prospect of a High Performance, High Radia5on, SteadyState Scenario for CFETR Vincent Chan 1,2 , Jiangang Li 3 , Yuanxi Wan 1 and the CFETR Physics Team 1 USTC 2 General Atomics 3 ASIPP Presented at the 4 th IAEA Demo Workshop Karlsruhe, Germany Nov 15-18, 2016 1

Transcript of IAEA Demo Workshop 2016 Chan(draft3) Meeting... · Steady-State with High Duty Cycle is Key to...

Prospect  of  a  High  Performance,  High  Radia5on,  Steady-­‐State  Scenario  for  CFETR  

Vincent Chan1,2, Jiangang Li3, Yuanxi Wan1 and the CFETR Physics Team

1 USTC 2 General Atomics

3 ASIPP

Presented at the 4th IAEA Demo Workshop Karlsruhe, Germany Nov 15-18, 2016  

1  

-  Complementing ITER

-  Demonstration of fusion energy

production (50-200 MW for Phase I)

-  Demonstration of high duty factor, 0.3

– 0.5

-  Demonstration of tritium self-

sufficiency with TBR > 1

-  Exploring options for DEMO blanket

and divertor solution

-  Solution for easy remote

maintenance of in-vessel

components

CFETR Shares Many Characteristics with DEMO

2

Steady-State with High Duty Cycle is Key to Meeting CFETR Mission

3

Metrics ITER CFETR Phase 1-2 DEMO

Neutron wall loading (MW/m

2)

~0.5 0.4 – 2.0 2.0 – 4.0

Life of plant fluence (MW-yr/m

2)

0.2 – 0.4 1.2 – 10 10 – 34

Qfus

5 – 10 3 – 15 10 – 40 Plasma performance βN

2-3 2-4 4-6

Longest plasma duration (s) 10

2 – 10

4 10

5 - 10

6 10

7

Total availability 2% – 5% 30% – 50% 50% – 85% Tritium breeding TBR << 1 TBR≥ 1 TBR > 1 P

Heat/A

wall MW/m2( ) ~ 0.2 0.2 – 0.4 0.8 - 1.0

!

0D System Code Used to Scope out CFETR Baseline and Advanced Scenarios

B.  Wan,  Plasma  Science  IEEE,  42  (2014)  V.  Chan,  NF  55  (2015)   4

Does  not  iden*fy  specific  steady-­‐state  scenario  

Paths to Steady-State Have Experimental Basis

5

Projec5ons  From  Experiments  

Reverse  Shear  

Hybrid  Mode  

 F.Turco,  POP  2015  

S.Y.  Ding,  APS  invited  talk  2016  

ELM  control  Radia5ve  divertor  

Challenge:  -­‐  High  fbs  -­‐  qmin  control  

Challenge  -­‐  Flux  pumping?  -­‐  Avoid  2/1  

•  0D system code has missing physics

-  Pedestal contribution

-  Physics-based transport i.e. only assumes H factor

-  Profile information and stability

-  Achievable βN  and  fbs

•  IM informs key engineering design requirements

-  H&CD, Divertor heat and particle fluxes

-  Plasma control

•  Critical to CFETR diagnostics design and operation

Integrated Modeling (IM) Used to Quantify Reverse Shear (RS) Scenario and Connect with Engineering Design

6

•  Physics code suite -  TGYRO with NEO and TGLF transport; EPED -  ONETWO/NUBEAM/TORAY/GENRAY for sources and sinks;

Ip evolution -  EFIT for equilibrium; GATO, ELITE, BOUT++, NIMROD, Nova-

K for stability -  SOLPS and OEDGE/DIVIMP for SOL and divertor •  Evolving electron density, Te and Ti, and momentum -  D&T/He/impurity profiles same as ne and obey quasi-

neutrality -  Boundary conditions at pivot point ~ top of pedestal •  SOL solution matches core parameters at pivot point

Physics-Based Models and Modeling Assumptions

7

OMFIT Framework Facilitates Self-Consistent Integrated Scenario Development

O.  Meneghini,  POP  23  (2016)     8

Self-Consistent Transport, Equilibrium and Pedestal: Fully Non-Inductive RS Solution

9

Characteris5cs:  -  Strong  reverse  

shear  -  qmin  >  2  -  Moderate  ITB  

forma*on  

Optimization of Electron Cyclotron Frequency and Launch Location

E.  Poly,  Nucl.  Fus.  53  (2013)     10

ECCD  for  controling  qmin  

Optimization of Neutral Beam Energy

11

•  NB  has  reasonable  CD  efficiency  and  is  efficient  in  providing  plasma  rota*on  for  good  confinement    

•  NB  launch  angle  is  constrained  to  avoid  both  large  shine  through  and  edge  hea*ng.    

Use of a Two-NB Strategy

12

•  Fixed  high  energy  NB  at  300  keV;  op*mize  low  energy  NB  •  50  keV  NB  yields  the  highest  Q  and  lowest  edge  hea*ng  

Confinement Factor Responsible for Differences between OD and 1.5D Predictions

13

H98=1.3  is  not  achievable  even  with  NB  rota*on  for  baseline  case  

R=5.7m  BT=5T  

Pedestal Collisionality has Significant Impact on Fusion Gain

14

•  Keeping  pedestal  pressure  fixed,  pedestal  density  is  varied  •  Density  increases,  DPF  unchanged  -­‐>  Q  increases  significantly  •  Higher  pedestal  collisionality  might  also  benefit  ELM  control  PDM=pedestal  density  mul*plier  DPF=density  peaking  factor  

Turbulence Responsible for Weak Density Profile Change with Pedestal Collisionality

15

TEM  and  ITG  turbulence  influence  par*cle  transport  in  opposite  direc*ons  resul*ng  in  weaker  profile  change  

RF Dominated Steady-State Scenario is Another Option

16

NB  competes  with  Tri*um  Blanket  for  port  space  

Higher BT CFETR (R=6.7m, BT=6T) has Higher Fusion Gain

17

•  Confinement  improves  with  larger  R  and  BT  ⇒ Lower  CD  power  and  higher  fusion  gain  

•  Higher  βP  =>  higher  bootstrap  fac*on  •  n/nGW  =  0.8  

Phase  I  

Agreement  of  TGYRO/TGLF/NEO  with  Experiment  Improves  with  Lower  q95

J.T.  McClenaghan,  APS-­‐DPP  2016  C.K.Pan,  APS-­‐DPP  2015   18

q95=9  

q95=6=qCFETR  

Ti  

CFETR can Operate Over a Range of βp  and  βN

19

High  fbs  

ITER-­‐like  

High  βN  

CFETR Baseline Stable to Ideal MHD in the Core, Unstable to ELMs

20

-  Unstable  modes  driven  by  strong  pedestal  gradient  

-  Low  n  modes  stabilized  by  wall  at  r/a=1.2  

Helium Fraction Cannot Exceed 0.2 in Order to Meet CFETR Pfus Target

21

PNB  (MW)  

PRF  (MW)

Pa  (MW)

Pcyc,Pbres,Pline(MW) βN H98 Q τE

(s) Ne0,nDT0 Te0,Ti0  (KeV)

fHe=0.05 52.5 10.1 34.9 5.2,4.5,6.7 1.93 1.04 2.79 1.73 7.49,6.44 28.0,25.3

fHe=0.1   58.0 10.1 21.9 3.8,4,4,6.4 1.62 0.92 1.61 1.60 6.94,5.42 24.9,23.2

fHe=0.15 59.5 10.1 18.2 3.7,4.6,6.7 1.58 0.92 1.31 1.63 7.04,4.9 23.8,23.0

fHe=0.20 62.5 10.1 12.7 3.2,4.7,6.7 1.47 0.88 0.88 1.57 6.81,4.15 22.2,22.0

Impurity Transport Profile Determined Using TGYRO

B.  Grierson,  APS-­‐DPP  (2015)     22

Γ imp = −Dimpnimp

aa

Ln_ imp+Vimpnimp

Impurity  profile  obtained  from  TGYRO  assuming  no  impurity  source  in  core   nimp (r) = nimp (rpivot )exp(

Vimp (x)Dimp (x)rpivot

r

∫ dx)

Argon  impurity  profiles  with  different  effec*ve  charge  Zeff.  

Fusion Performance Improves before Dropping Off with Increasing Zeff

23

PNB  (MW)  

PRF  (MW)

Pa  (MW)

Pcyc,Pbres,  Pline(MW)

PLOSS/PTOT

H98 Q fbs τE(s) Ne0,nDT0

Te0,Ti0  (KeV)

Zeff=1.52 53.7 10.1 19.5 3.1,3.2,4.3 12.7% 0.86 1.44 35.5% 1.48 6.99,5.58 22.1,20.2

Zeff=1.89 53.5 10.1 21.8 3.8,4,4,6.4 17.1% 0.92 1.61 37.2% 1.60 6.94,5.42 24.9,23.2

Zeff=2.11 54.0 10.1 24.1 4.3,5.1,7.9 19.6% 0.96 1.76 39.6% 1.66 7.09,5.48 25.8,24.4

Zeff=2.35 55.3 10.1 24.5 4.3,5.8,9.5 21.8%   0.98  1.75 40.3%    1.68 7.07,5.45    25.6,24.5

Zeff=2.78 56.1 10.1 25.2 4.5,7.0,12.0 25.7% 1.01 1.76 42.1% 1.76 7.10,5.32 26.8,26.3

Zeff=3.20 57.6 10.1 23.3 4.3,8.1,14.4 29.5% 1.00 1.58 42.3% 1.78 7.02,5.08 25.2,25.2

Zeff=3.67 59.9 10.1 23.1 4.9,10.0,17.1 34.4% 1.00 1.44 43.7% 1.78 6.99,4.88 25.9,25.6

Confinement Trend with Zeff is Consistent with Experimental Observation

24

G.  Mckee,  PRL  (2000)  

R.  Dominguez,  NF  (1993)  

SOLPS Set Up to Couple Core-SOL-Divertor

25

Divertor    plates  

Consistent Boundary Coupling Demonstrated

26

Assumed  diffusion  coefficients  

Edge  hea5ng  not  included  

Heat  flux  decay  width  in  SOL  similar  to  scaling  law  

Heat Flux to Divertor Acceptable for Baseline Case

27

A Steady-State, High Performance, High Radiation CFETR is Demonstrated

28

Phase  I   Phase  II  Qfus   3.0   14.9  Pfus  (MW)   169   811  Ip  (MA)   7.6   10  Bootstrap  frac5on  fbs  (%)  

64   84  

βN 1.9   3.2  H98   1.3   1.3  NB/EC  Power  (MW)   36/20   35/20  

Neutron  wall  loading  (MW/m2)  

0.19   0.92  

Divertor  heat  load  Pdiv/R  (MW/m)  

10.4   25.8  

Ion  frac5on  nD/nT/nHe/nAr  

0.43/0.43/  0.05/0.003  

0.43/0.43/  0.05/0.003  

Ra5o  to  Greenwald  Limit  

.83   1.03  

-  R=6.6m,  BT=6T  -  2  NBs:  100/500  keV  -  Addi*onal  fueling  

needed  for  phase  II  

-  High   performance,   radia5ve   core   compa5ble   with   detached  divertor  

-  Performance  op5mized  using  NB  and  pedestal  control  -  Both  NB-­‐dominated  and  RF-­‐dominated  op5ons  are  available  

-  A  broad  opera5on  range  in  βN  and  βp,  stable  with  wall  at  r/a=1.2  -  Radia5on  in  the  core  acceptable  up  to  Zeff  ~  3.0  -  Helium  dilu5on  fHe  cannot  exceeds  0.2  to  meet  Pfus  target  

Future  work  will  focus  on  Phase  II  op5miza5on  of  the  R=6.7m  CFETR  consistent  with  steady-­‐state  and  a  radia5ve  divertor  solu5on  

Conclusion

29

A reverse-shear, steady-state scenario with performance that meets the CFETR mission has been demonstrated

 

Acknowledgement

30

Key  contributors:  J.L.  Chen,  X.  Jian,  D.  Zhao,  L.  Lao,  C.K.  Pan,  Z.Y.  Li,  N.  Shi,  X.J.  Liu,  Y.F.  Zhou,  S.F.  Mao,  G.Q.  Li,  P.  Zhu,  G.  Zhuang,  M.Y.  Ye    We  are  grateful  to  GA,  PPPL,  Wisconsin,  LLNL,  U.  York,  MPG-­‐IPP  and  U.  Toronto  for  the  use  of  their  physics  code  suites    

31

BACK  UP  SLIDES  

•  Safety factor and q95

•  Rotation profile

•  Pedestal collisionality

•  Operational space in β    

•  Radiative core compatible with divertor

Control Aspects in Optimizing CFETR Performance for Reverse Shear Scenario

32

TGYRO Flux Convergence Indicative of Transport Steady-State

J.  Candy,  POP  16  (2009)     33

All  transport  channels  are  evolved  to  steady-­‐state  

TGLF Physics-Based Transport Model Improving with Multi-scale GYRO Simulation

34

Low-n ELM Stabilized by Wall at r/a=1.2

35

Heat Flux to Divertor Consistent with Divertor Plate Angle

36