I3_015_Pukhov.ppt

21
Generation of particle beams Generation of particle beams and X-rays and X-rays in ultra-relativistic laser- in ultra-relativistic laser- plasmas plasmas . . A. Pukhov 1 , S. Gordienko 1,2 , T. Baeva 1 , O.Shorokhov 1 , S. Kiselev 1 1 Institut für Theoretische Physik Universität Düsseldorf 2 L.D.Landau Institute for Theoretical Physics, Moscow

description

 

Transcript of I3_015_Pukhov.ppt

Page 1: I3_015_Pukhov.ppt

Generation of particle beams Generation of particle beams and X-rays and X-rays

in ultra-relativistic laser-in ultra-relativistic laser-plasmasplasmas..

A. Pukhov1, S. Gordienko1,2, T. Baeva1, O.Shorokhov1, S. Kiselev1

1Institut für Theoretische PhysikUniversität Düsseldorf

2L.D.Landau Institute for Theoretical Physics, Moscow

Page 2: I3_015_Pukhov.ppt

04/10/23 [email protected]

OutlineOutline Ultra-relativistic similarity theoryUltra-relativistic similarity theory

Origin of the “ponderomotive” scalingsOrigin of the “ponderomotive” scalingsfor electron “temperatures”for electron “temperatures”

Experimental observation of Weibel Experimental observation of Weibel instabilityinstability

High harmonics from plasma surfaces: High harmonics from plasma surfaces: the universal power-law spectra up to the universal power-law spectra up to X-raysX-raysand coherent focusingand coherent focusing

Page 3: I3_015_Pukhov.ppt

04/10/23 [email protected]

SSSimilarity for Ultra-Relativistic Similarity for Ultra-Relativistic Plasmas, Plasmas,

II2210101818 W Wmm22/cm/cm22

The similarity parameter (S-number)

Valid for the Vlasov-Maxwell electron dynamics, a021 :

Gordienko, Pukhov Phys. Plasmas 12, 043109 (2005)

Page 4: I3_015_Pukhov.ppt

04/10/23 [email protected]

The similarity parameter (S-number)

Dynamics of plasmas with S=const is similar. Electrons move along the same trajectories, their momenta scale as

Gordienko, Pukhov Phys. Plasmas 12, 043109 (2005)

SSSimilarity for Ultra-Relativistic Similarity for Ultra-Relativistic Plasmas, Plasmas,

II2210101818 W Wmm22/cm/cm22

The S-number has the role of relativistically corrected plasma density.It separates relativistically overdense plasmas, S>>1,

from relativistically underdense ones, S<<1.

Page 5: I3_015_Pukhov.ppt

04/10/23 [email protected]

Scalability of laser-plasmas, Scalability of laser-plasmas, SS=const=const

If we know one interaction regime with a0 and n0, then it can be scaled so that

The energy of hot electrons scales as

The number of hot electrons scales as

The laser power scales as

Page 6: I3_015_Pukhov.ppt

04/10/23 [email protected]

Similarity in Fast Ignition Similarity in Fast Ignition context:context:

“ponderomotive “ponderomotive temperatures”temperatures”

1018 1019 1020 1021

1

10

100

Teff = I1/2

Tef

f , M

eV

Intensity, W/cm2

Ne /

MeV

Energy, MeV

0.0 100.0 200.0 300.0 400.0 500.0104

106

108

1010

1012

1 TW, 1018 W/cm2

100 TW1020 W/cm2

1000 TW1021 W/cm2

50 MeV

14 MeV

0.8 MeV

10 TW, 1019 W/cm2

4.5 MeV

Pukhov, Meyer-ter-Vehn, Sheng, Phys. Plasmas, 1999

Electron energies scale as I1/2 ~ a.Electron numbers scale as I1/2 ~ a.

Why these scalings?Interaction regime is quite complex and clearly non-ponderomotive

Page 7: I3_015_Pukhov.ppt

04/10/23 [email protected]

““Ponderomotive temperatures”Ponderomotive temperatures”in exponential preplasmasin exponential preplasmas

X

ne = nc exp(x/L)

L=30m

Laser

e-

Interaction is automatically self-similar, because laser pulses are always reflectedat the relativistic critical density, S ~ 1.

“Ponderomotive” scalings are in fact similarity scalings!

Page 8: I3_015_Pukhov.ppt

04/10/23 [email protected]

The RAL ExperimentThe RAL Experiment

VULCAN Laser Energy – 350 Jduration – 750 fs

R. Jung, et al. Phys. Rev. Lett. 94, 195001 (2005)

Page 9: I3_015_Pukhov.ppt

04/10/23 [email protected]

The RAL Experiment:The RAL Experiment: Electron SpectraElectron Spectra

PIC simulation“cold”

“hot”

R. Jung, et al. Phys. Rev. Lett. 94, 195001 (2005)

Page 10: I3_015_Pukhov.ppt

04/10/23 [email protected]

Experimental observation Experimental observation of the Weibel Instabilityof the Weibel Instability

Second harmonic emission from rear surface of 250 µm foam target.

Two concentric circles of filaments

R. Jung, J. Osterholz, K. Lowenbruck, S. Kiselev, G. Pretzler, A. Pukhov, O. Willi, S. Kar, M. Borghesi, W. Nazarov, S. Karsch, R. Clarke, D. Neely Phys. Rev. Lett. 94, 195001 (2005)

Laser: 350 J, 750 fs

Page 11: I3_015_Pukhov.ppt

04/10/23 [email protected]

Nonlinear Weibel Nonlinear Weibel InstabilityInstability

2D PIC simulations by Honda et al., Phys. Rev. Lett. (2000).

Page 12: I3_015_Pukhov.ppt

04/10/23 [email protected]

Filamentation, Filamentation, 3D PIC Simulation3D PIC Simulation

(▲) Transverse cuts of electron density

(+) The x-component of the quasi-static magnetic field.

10µm

20µm

100µm

(+)

(+)

(+)

(▲)

(▲)

(▲)

Two rings of filaments

Page 13: I3_015_Pukhov.ppt

04/10/23 [email protected]

Harmonics from plasma surfaces:Harmonics from plasma surfaces:the analytical theorythe analytical theory

S.Gordienko, A.Pukhov, O.Shorokhov, T.Baeva, Phys. Rev. Lett. 93, 115002 (2004).

Relativistically oscillatingapparent reflection point

E(X(t))=0.

X(t), (t)

Ion

boun

dary

The reflected pulse contains high harmonics

S.Gordienko, A.Pukhov, O.Shorokhov, T.Baeva, Phys. Rev. Lett. 94, 103903 (2004).

Page 14: I3_015_Pukhov.ppt

04/10/23 [email protected]

Analytical Form of the Universal Analytical Form of the Universal SpectrumSpectrum

log I n

log n

In n-2.5

n=42

ncutoff=83

Similarity theory states that a if S = const.

S.Gordienko, A.Pukhov, O.Shorokhov, T.Baeva, Phys. Rev. Lett. 94, 103903 (2004).

Page 15: I3_015_Pukhov.ppt

04/10/23 [email protected]

Reflected radiation spectra in 1D PIC Reflected radiation spectra in 1D PIC simulations simulations

1 10 100 1000 n/0

-2.5a0=20a0=10a0=5

102

104

106

108

1010

1012

Inte

nsit

y, a

.u.

The Gaussian laser pulse a=a0exp[-(t/)2]cost is incident onto an overdense plasma layer with n=30nc, .The color lines correspond to laser amplitudes a0=5,10,20.The broken line marks the analytical scaling -2.5.

S.Gordienko, A.Pukhov, O.Shorokhov, T.Baeva, Phys. Rev. Lett. 93, 115002 (2004).

Page 16: I3_015_Pukhov.ppt

04/10/23 [email protected]

Temporal profile of the reflected Temporal profile of the reflected radiationradiation

t / 2

Ref

lect

ed s

igna

l int

ensi

ty, a

.u. Unfiltered signal: train of

attosecond pulses

Harmonics with n<300 filtered out: train of zeptosecond pulses

the 300-zeptosecond pulse zoomed

S.Gordienko, A.Pukhov, O.Shorokhov, T.Baeva, Phys. Rev. Lett. 93, 115002 (2004).

Page 17: I3_015_Pukhov.ppt

04/10/23 [email protected]

Characteristics of the plasma Characteristics of the plasma harmonicsharmonics

1. The spectrum is the universal slow-decaying power law I ~ -2.5.

2. The cut-off frequency scales fast with the plasma -factor: c / 0 = 83

max

3. The shortest pulse duration scales as ~1/c=1/83

max

4. The harmonics are coherent and phase-locked

Page 18: I3_015_Pukhov.ppt

04/10/23 [email protected]

Coherent Harmonics Coherent Harmonics Focusing Focusing

S.Gordienko, A.Pukhov, O.Shorokhov, T.Baeva, Phys. Rev. Lett. 94, 103903 (2004).

Because all the harmonics are phase locked, their fields in the focus interfere constructively leading to an enormous intensity boost

Page 19: I3_015_Pukhov.ppt

04/10/23 [email protected]

3D PIC Simulation of CHF 3D PIC Simulation of CHF

Linear focusing

CHFLaser pulse with a0=3 is reflected from a concave plasma surface with n/nc=5, focal distance R0=4.

Page 20: I3_015_Pukhov.ppt

04/10/23 [email protected]

The CHF Intensity Scaling The CHF Intensity Scaling from 1D PIC Simulationsfrom 1D PIC Simulations

IQED

I CH

F, W

/cm

2

I0, W/cm2

Page 21: I3_015_Pukhov.ppt

04/10/23 [email protected]

SummarySummary

Ultra-relativistic laser-plasmas are characterized by the similarity number S = ne / anc

Spectra with “ponderomotive temperatures” are in fact due to the Ssimilarity scalings

Weibel instability has been observed experimentally

Harmonics from plasma surfaces are phase-locked, coherent and have universal power-law spectra

The Coherent Harmonics Focusing may boost the intensity above the vacuum breakdown threshold