Hypernuclear Physics with FINUDA now and in the future

47
Tullio Bressani KEK-RIKEN-INFN meeting Tsukuba, December 13-14, 2004 Hypernuclear Physics with FINUDA now and in the future Hypernuclear Physics with FINUDA now and in the future

Transcript of Hypernuclear Physics with FINUDA now and in the future

Page 1: Hypernuclear Physics with FINUDA now and in the future

Tullio BressaniKEK-RIKEN-INFN meeting

Tsukuba, December 13-14, 2004

Hypernuclear Physics with FINUDA now and in the future

Hypernuclear Physics with FINUDA now and in the future

Page 2: Hypernuclear Physics with FINUDA now and in the future

2

The FINUDA Collaboration The FINUDA Collaboration

Bari University and I.N.F.N. BariBrescia University and I.N.F.N. PaviaKEKL.N.F. / I.N.F.N. FrascatiPavia University and I.N.F.N. PaviaRIKENSeoul National UniversityTeheran Shahid Beheshty UniversityTorino University and I.N.F.N. TorinoTorino Polytechnic and I.N.F.N. TorinoTrieste University and I.N.F.N. TriesteTRIUMF

Page 3: Hypernuclear Physics with FINUDA now and in the future

3

Outline Outline 1) the FINUDA experiment

– the physics program– the apparatus

2) the results– hypernuclear spectroscopy– search for neutron-rich hypernuclei– hypernucleus (rare) decays– Kaon bound state K-pp

3) future plans

Page 4: Hypernuclear Physics with FINUDA now and in the future

4

Physics output (S=-1) Physics output (S=-1)

nuclearmodels

nuclearmodels

4B weakinteraction4B weak

interaction

quarksubstructures

quarksubstructures

neutron richΛ-hypernucleineutron richΛ-hypernuclei

mediumeffect

mediumeffect

(weak) decay(weak) decayn

nnn

np

pp

p ppΛ

low-energyN-Y interactionlow-energy

N-Y interaction

spectroscopyspectroscopy

Page 5: Hypernuclear Physics with FINUDA now and in the future

5

Drawbacks of the secondary beam techniquesDrawbacks of the secondary beam techniques

1 m

K- K-

1 m

Liquid Hetarget

Liquid Hetarget

Several meters fromproduction target to

the experimental area

Several meters fromproduction target to

the experimental areaHigh energy kaonbeam 370 MeV

High energy kaonbeam 370 MeV

Thick solid targetsto have acceptable

counting rates

Thick solid targetsto have acceptable

counting rates

limited solid angleof acceptance

limited solid angleof acceptance

Thick degradersto stop high

energy kaons

Thick degradersto stop high

energy kaons

High energy kaonbeam 280 MeV

High energy kaonbeam 280 MeV

The high resolution of available spectrometers is uselesswith:

ï Thick targets (~g/cm2) to ensure acceptable counting ratesï Thick degraders to stop high energy beams, beam

absorbtion and beam momentum spread

The high resolution of available spectrometers is uselesswith:

ï Thick targets (~g/cm2) to ensure acceptable counting ratesï Thick degraders to stop high energy beams, beam

absorbtion and beam momentum spread

Page 6: Hypernuclear Physics with FINUDA now and in the future

6

5.2 A (max)current/ring

8.9 1010part./bunch

up to 120bunch/ring

35 mmσz (rms)

0.021 mmσy (rms)

368.25 MHzfrequency (max)

12.5 mradcrossing angle

30 mmbunch length

2.11 mmσx (rms)

5 1032 cm-2 s-1luminosity

510 MeVenergy

FINUDA @ DAΦNE FINUDA @ DAΦNE

−Λ

+−+−

+→+

→→+

π

φ

ZZΚΚΚee

AAstop

→Λ ZA

nnZnpZ

Z

A

A

A

++

++−

++

)2(

)2( )1()1( π

Page 7: Hypernuclear Physics with FINUDA now and in the future

7

FINUDA @ DAΦNE FINUDA @ DAΦNE

Page 8: Hypernuclear Physics with FINUDA now and in the future

8

FINUDA @ DAΦNE FINUDA @ DAΦNE

Page 9: Hypernuclear Physics with FINUDA now and in the future

9

Detectors of the internal region Detectors of the internal region

internal scintillator barrel mounted (tofino)

internal scintillator barrel mounted (tofino)

silicon microstrips arrays ISIM/OSIM

silicon microstrips arrays ISIM/OSIM

Page 10: Hypernuclear Physics with FINUDA now and in the future

10

FINUDA detectors performancesFINUDA detectors performances❖ s.c. solenoid: B = 1.0 T; field homogeneity within 2%

❖ interaction/target region: K+/K- identification, hypernucleus production and detection

❖ tracking devices: measurement of trajectoriesand momenta of charged particles (∆p/p 3.5‰)

❖ external scintillator barrel: triggerand neutron detection

VDET z resolutionVDET z resolution

❖ He chamber: minimization of particle multiple scattering

TOFout: σt = 500 ps FWHMefficiency ≥ 10%; ∆E = 8 MeV

TOFout: σt = 500 ps FWHMefficiency ≥ 10%; ∆E = 8 MeV

∆p/p: He atmosphere = 3.5‰air = 2%

∆p/p: He atmosphere = 3.5‰air = 2%

ISIM/OSIM: σz = 30 μm; ∆E = 20% FWHMTOFin: σt = 250 ps

ISIM/OSIM: σz = 30 μm; ∆E = 20% FWHMTOFin: σt = 250 ps

LMDC: σ(ρ, φ) = 150 μm; σz ≤ 1% wire length STB: σ(ρ, φ) = 150 μm; σz 500 μm

LMDC: σ(ρ, φ) = 150 μm; σz ≤ 1% wire length STB: σ(ρ, φ) = 150 μm; σz 500 μm TOFout time resolutionTOFout time resolution

PID in OSIMPID in OSIM

Page 11: Hypernuclear Physics with FINUDA now and in the future

11

K + / K – identification K + / K – identification Hypernuclear trigger:ï 2 hits on tofino over threshold (kaon)ï extended back to backï multiplicity (>2) on tofoneï Time correlation tofino-tofone (<10ns)

Hypernuclear trigger:ï 2 hits on tofino over threshold (kaon)ï extended back to backï multiplicity (>2) on tofoneï Time correlation tofino-tofone (<10ns)

over thresholdover threshold

very effective slow kaon recognition

very effective slow kaon recognition

K stop calculationGEANE tracking

K stop calculationGEANE tracking

only twomeasured points

on ISIM

only twomeasured points

on ISIM

Page 12: Hypernuclear Physics with FINUDA now and in the future

12

FINUDA key features FINUDA key features very thin nuclear targets (0.1 ÷ 0.3 g/cm2)

decay mode studydecay mode study

high resolution spectroscopyhigh resolution spectroscopy

high degree of flexibilityhigh degree of flexibility

coincidence measurement with large acceptance

irradiation of different targets in the same run

Page 13: Hypernuclear Physics with FINUDA now and in the future

13

FINUDA first run FINUDA first run

FINUDA

FINUDA

14-Oct-2003 to 22-Mar-2004:

• 250 pb-1 delivered to IP2• 33 pb-1 machine tuning• 10 pb-1 FINUDA debugging• 190 pb-1 useful data taking

14-Oct-2003 to 22-Mar-2004:

• 250 pb-1 delivered to IP2• 33 pb-1 machine tuning• 10 pb-1 FINUDA debugging• 190 pb-1 useful data taking

Page 14: Hypernuclear Physics with FINUDA now and in the future

14

Bhabha event Bhabha event

e+

e−e+e- → e+e-e+e- → e+e-

ρ0 → e+e-ρ0 → e+e-

K → π+ π-K → π+ π-0SK

e+e- invariant mass (GeV)

Page 15: Hypernuclear Physics with FINUDA now and in the future

15

The typical event The typical event

π−

μ+

μ+

Κ+

Κ−

π−

Φ

Page 16: Hypernuclear Physics with FINUDA now and in the future

16

Target envelope by K - stopping pointsTarget envelope by K - stopping points

Φ

7Li

6Li

27Al51V

12C12C

12C

6Li

Isim 7

Isim 8

Isim 1

Isim 2

12.5 mrad

e+

e-

Φ

Page 17: Hypernuclear Physics with FINUDA now and in the future

17

K + / K - stopping pointsK + / K - stopping points

K- stop pointsin targets

K- stop pointsin targets

total K-

stop pointstotal K-

stop points

K- stop pointsin ISIM

K- stop pointsin ISIM

a supplementarysilicon target for

free

a supplementarysilicon target for

free

K- stop pointsin othervolumes

K- stop pointsin othervolumes

KaonscrossingLithium

KaonscrossingLithium

Beam pipeBeam pipe

Page 18: Hypernuclear Physics with FINUDA now and in the future

18

Improvement in momentum resolution Improvement in momentum resolution

∆p/p ~ 0.6%∆p/p ~ 0.6%

(GeV/c)

Κ+ → μ+νμΚ+ → μ+νμ

Κ+ → π+π0Κ+ → π+π0

Κ+ → μ+νμΚ+ → μ+νμ

[GeV/c]

∆p/p ~ 0.4%

∆p/p ~ 0.4%

Page 19: Hypernuclear Physics with FINUDA now and in the future

19

K- 12C ⇒ π− X inclusive spectra K- 12C ⇒ π− X inclusive spectra

12ΛC

hyperfragments

mesonic decay

No χ2 cutsó : K+/- vertex: 3 cm--- : K- vertex: 0.5 cm

K+ vertex: 3 cm

Page 20: Hypernuclear Physics with FINUDA now and in the future

20

Background reactions: π - spectrumBackground reactions: π - spectrum

K- n→Λπ-

Λ→p π-

K- p→Σ+ π-

K- p→Σ- π+

Σ-→ n π-

K- (NN)→Σ- NΣ- → n π-

K- n→Σ0 π-

TOT

Page 21: Hypernuclear Physics with FINUDA now and in the future

21

K- 12C ⇒ p X inclusive spectrum K- 12C ⇒ p X inclusive spectrum

Page 22: Hypernuclear Physics with FINUDA now and in the future

22

Spectroscopy Spectroscopy

medium-Asystems

(~ terra incognita)

neverstudiedbefore

referencenuclide

doorway forlight systems( H, He , He)HeΛ

4 He5ΛHΛ

4

Page 23: Hypernuclear Physics with FINUDA now and in the future

23

FINUDA vs. KEK-E369 FINUDA vs. KEK-E369

H. Hotchi et al., Phys. Rev. C 64 (2001) 044302 H. Hotchi et al., Phys. Rev. C 64 (2001) 044302

ΔE ~ 1.5 MeV FWHMΔE ~ 1.5 MeV FWHM

ΔE ~ 1.3 MeV FWHMΔE ~ 1.3 MeV FWHM

12C(K- ,π-)12C12C(K- ,π-)12C−stopK C12

Λ

12C(π+,K+)12C12C(π+,K+)12CC12Λ

preliminary

preliminary

Page 24: Hypernuclear Physics with FINUDA now and in the future

24

6Li target: π - spectrum6Li target: π - spectrum

Page 25: Hypernuclear Physics with FINUDA now and in the future

25

7Li target: π – spectrum7Li target: π – spectrum

# 2 274.1

# 1 276.8

# 5 267.8

Page 26: Hypernuclear Physics with FINUDA now and in the future

26

27ΛAl and 28

ΛSi: excitation spectra27ΛAl and 28

ΛSi: excitation spectra

Page 27: Hypernuclear Physics with FINUDA now and in the future

27

2 production mechanisms:1) strangeness + double charge exchange

K- + p → Λ + π0

‌→ π0 + p → n + π+

π- + p → π0 + n‌→ π0 + p → K+ + Λ

2) Strangeness exchange with Λ-Σ couplingK- + p → Σ- + π+

‌→ Σ- + p → Λ + nπ- + p → Σ- + K+

‌→ Σ- + p → Λ + n

neutron-rich hypernucleineutron-rich hypernuclei

12C

Page 28: Hypernuclear Physics with FINUDA now and in the future

28

neutron-rich hypernucleineutron-rich hypernucleipr

elimina

ry

preli

minary

− +→+ πBeCK 12stop

12

− +→+ πHLiK 6stop

6

− +→+ πHLiK 7stop

7

++ ±=ππ

σ p2MeV4246p c/.

++ ±=ππ

σ p2MeV1249p c/.

++ ±=ππ

σ p2MeV9262p c/.

Page 29: Hypernuclear Physics with FINUDA now and in the future

29

Upper limit for NRH formation probabiltyUpper limit for NRH formation probabilty

3.14.16.5

4.96.69.4

dE/dxPID

3 σ C.L.

2.53.55.6

4.05.68.3

dE/dx + TOFPID

12ΛBe6ΛH

7ΛH

12ΛBe6ΛH

7ΛH

1.62.23.5

2.02.64.1

1.31.82.8

1.62.13.3

NominalMomentumResolution(0.35%)

2.63.65.3

3.24.36.1

2.12.94.3

2.63.54.9

PresentMomentumResolution(0.9%)

dE/dx + TOFPID

dE/dxPID

dE/dx + TOFPID

dE/dxPID

2 σ C. L.90% C.L.PNRHUPPER LIMIT

(· 10-5)

Uncertainties dominated by the error on the μ+ time gate

efficiency (≈ 10%)

Uncertainties dominated by the error on the μ+ time gate

efficiency (≈ 10%)

KEK result for 12ΛBe:

6.1ï10-5 (90% C.L., no error given)KEK result for 12

ΛBe:6.1ï10-5 (90% C.L., no error given)

PRELIMINARY

PRELIMINARY

new resultsnew results

Page 30: Hypernuclear Physics with FINUDA now and in the future

30

4He + π - spectr. (102/pb-1) calibration

ppHΛ 4 ++

npHeΛ 4 ++d + d spectr. (∼0.3/pb-1 if B.R. ∼10-3)p + 3H spectr. (0.2/ pb-1 if B.R. ∼10-3) π+ + n + 3H many events (∼ 102/pb-1)how distinguishable?

pHeΛ 5 +

Γπ− about 102/pb-1

τΓp (in coinc.) about 10/pb-1

Γn (in coinc.) a few/pb-1

(rare) decay (rare) decay He4Λ

Spectroscopized

K- + 6Li → π- + Ö

Page 31: Hypernuclear Physics with FINUDA now and in the future

31

→ d + d (rare) decay → d + d (rare) decay He4Λ

Κ+

Κ−

Φ

d

d

d

d

μ+

Page 32: Hypernuclear Physics with FINUDA now and in the future

32

→ d + d (rare) decay → d + d (rare) decay He4Λ

events with two positivetracks from 6Li targetswith momentum > 400

MeV/c

events with two positivetracks from 6Li targetswith momentum > 400

MeV/c

azimuthal angle differenceazimuthal angle difference

candidates 4ΛHe ó >d+dcandidates 4

ΛHe ó >d+d

interesting events tobe recognized4ΛHe ó >d+d

4ΛHe ó >d+p+n

interesting events tobe recognized4ΛHe ó >d+d

4ΛHe ó >d+p+n

accurate backtracking and kinematic analysis neededaccurate backtracking and kinematic analysis needed

Page 33: Hypernuclear Physics with FINUDA now and in the future

33

NM proton stimulated decay NM proton stimulated decay

-3.3 < BΛ < 5.6 MeV-3.3 < BΛ < 5.6 MeV7Li12C -1.8 < BΛ < 11.0 MeV-1.8 < BΛ < 11.0 MeV

27Al -1.2 < BΛ < 16.8 MeV-1.2 < BΛ < 16.8 MeV 51V -0.2 < BΛ < 20.2 MeV-0.2 < BΛ < 20.2 MeV

preliminary,not correctedfor acceptance

preliminary,not correctedfor acceptance

Page 34: Hypernuclear Physics with FINUDA now and in the future

34

K-pp state: theoretical calculations K-pp state: theoretical calculations

Page 35: Hypernuclear Physics with FINUDA now and in the future

35

Kaonic nuclei search with Λ taggingKaonic nuclei search with Λ tagging

• Missing-mass spectroscopy– Example:

– A kaonic nucleus emits a hyperon in its decay.

• Invariant-mass spectroscopy– Example:

Page 36: Hypernuclear Physics with FINUDA now and in the future

36

Λ momentum distribution and back-to-back correlations

Λ momentum distribution and back-to-back correlations

Page 37: Hypernuclear Physics with FINUDA now and in the future

37

Before / after acceptance correction (fit 2) Before / after acceptance correction (fit 2)

Very preliminary !!(systematic error to be added)

Contribution from Σ0+p decay are seen in low mass region

No other background exists !

Page 38: Hypernuclear Physics with FINUDA now and in the future

38

K- 6Li ⇒ p X inclusive spectrum K- 6Li ⇒ p X inclusive spectrum

Page 39: Hypernuclear Physics with FINUDA now and in the future

39

K- 12C ⇒ p X inclusive spectrum K- 12C ⇒ p X inclusive spectrum

Page 40: Hypernuclear Physics with FINUDA now and in the future

40

Some preliminary data: 6Li Some preliminary data: 6Li

Page 41: Hypernuclear Physics with FINUDA now and in the future

41

Some preliminary data: 7Li Some preliminary data: 7Li

Page 42: Hypernuclear Physics with FINUDA now and in the future

42

Some preliminary data: 12C Some preliminary data: 12C

Page 43: Hypernuclear Physics with FINUDA now and in the future

43

Some preliminary data Some preliminary data

Page 44: Hypernuclear Physics with FINUDA now and in the future

44

Summary Summary First data taking period successfully carried out (30 × 106 events on tape)

Preliminary and partial results on spectroscopyare competitive with world published data

Experimental upper limit for the NRH production:✔ better than published one for Λ12Be✔ measured for the first time for Λ6H and Λ7H

First observation ofΛ4He non mesonic (rare) decay

Observation of K-pp bound state

Page 45: Hypernuclear Physics with FINUDA now and in the future

45

Short term plans Short term plans Next data-taking period scheduled in the 2nd half of 2005

v effort focused on light-medium targets (6Li, 7Li, 9Be, 16O, …)

Increase by a factor 4 of the DAQ rate

Replacement of the internal TOF detector (KEK)

Improvement of the reconstruction program☛ geometrical alignment☛ detector calibration☛ pattern recognition strategy☛ selection criteria

Page 46: Hypernuclear Physics with FINUDA now and in the future

46

Long term plans Long term plans

Geometrical acceptancereduced to 72%

Geometrical acceptancereduced to 72%

The Segmented Clover DetectorThe Segmented Clover Detector

BGO Comptonsuppression shield

Ge crystals

active collimator(scintillator)

L ≈ 1034 cm-2s-1

L ≈ 1034 cm-2s-1

Page 47: Hypernuclear Physics with FINUDA now and in the future

47

(K -, p, p) invariant mass (K -, p, p) invariant mass

Σ0p Λp

mp+ mp+ mK-

Cos(ϑΛp) < - 0.86