Hydrologie continentale ressources eau Tworequirements...

9
Bloc 1. Hydrologie quantitative 1. Introduction: water cycles on Earth 2. Water in the atmosphere 3. Evapotranspiration 3.1 Introduction 3.2 Turbulent fluxes in the ABL 3.3 From turbulence to aerodynamic resistance 3.4 Aerodynamic methods 3.5 The Earth’s energy balance 3.6 Formulations related to the energy budget M1 SDE MEC558 Hydrologie continentale et ressources en eau Continental Hydrology and Water Resources 2 Two requirements for evaporation from natural surfaces 3.1 Introduction Figure 3.1 Brutsaert, p118 1. Energy supply 2. Escape mecanism = turbulence 3 3.2 Turbulent fluxes in the ABL Fluid mechanics In a fluid in motion along a surface, a boundary layer is the layer of fluid in the immediate vicinity of the surface where the effects of friction are significant. In particular, velocity is zero at the surface. A boundary layer can be either laminar or turbulent (cf Reynolds number) Garratt (1992). The atmospheric boundary layer. In the atmospheric context, it has never been easy to define precisely what the boundary layer is. Nevertheless a useful working definition identifies the boundary layer as the layer of air directly above the Earth’s surface in which the effects of the surface (friction, heating and cooling) are felt directly on time scales less than a day, and in which significant fluxes of momentum, heat or matter are carried by turbulent motion on a scale of the order of the depth of the boundary layer or less. The atmospheric boundary layer 4 Outer layer / couche d’Ekman : vent en spirale par équilibre entre gradient de pression, force de Coriolis et friction Couche de surface : direction du vent constante + profils logarithmiques de vitesse Couche “rugueuse” : où la vitesse tend vers 0 : u(z 0 )=0 Si H 1.5 km ( 850 mb) : 0.1H 150 m 0.01H 0.001H 15 1.5 m 0,01H 0,001H 3.2 Turbulent fluxes in the ABL Vertical structure of the ABL 5

Transcript of Hydrologie continentale ressources eau Tworequirements...

  • Bloc1.Hydrologiequantitative

    1. Introduction:watercyclesonEarth2. Waterintheatmosphere3. Evapotranspiration

    3.1 Introduction3.2 TurbulentfluxesintheABL3.3 Fromturbulencetoaerodynamicresistance3.4 Aerodynamicmethods3.5 TheEarthsenergybalance3.6 Formulationsrelatedtotheenergybudget

    M1SDEMEC558Hydrologiecontinentaleetressourceseneau

    ContinentalHydrology andWaterResources

    2

    Two requirements forevaporation from natural surfaces

    3.1 Introduction Figure3.1

    Brutsaert,p118

    1.Energy supply

    2.Escapemecanism =turbulence

    3

    3.2 TurbulentfluxesintheABL

    Fluidmechanics

    Inafluidinmotionalongasurface,aboundarylayeristhelayeroffluidintheimmediatevicinityofthesurfacewheretheeffectsoffrictionaresignificant.Inparticular,velocityiszeroatthesurface.

    Aboundarylayercanbeeitherlaminarorturbulent(cf Reynoldsnumber)

    Garratt(1992).Theatmosphericboundarylayer.

    Intheatmosphericcontext,ithasneverbeeneasytodefinepreciselywhattheboundarylayeris.

    NeverthelessausefulworkingdefinitionidentifiestheboundarylayerasthelayerofairdirectlyabovetheEarthssurfaceinwhichtheeffectsofthesurface(friction,heatingandcooling)arefeltdirectlyontimescaleslessthanaday,andinwhichsignificantfluxesofmomentum,heatormatterarecarriedbyturbulentmotiononascaleoftheorderofthedepthoftheboundarylayerorless.

    Theatmospheric boundary layer

    4

    Outerlayer/couche dEkman :ventenspirale parquilibre entregradientdepression,forcedeCoriolis etfriction

    Couche desurface:directionduventconstante +profils logarithmiques devitesse

    Couche rugueuse:o lavitesse tendvers 0:u(z0)=0

    SiH 1.5km( 850mb):0.1H 150m0.01H 0.001H 15 1.5m

    0,01H0,001H

    3.2 TurbulentfluxesintheABL

    VerticalstructureoftheABL

    5

  • 3.2 TurbulentfluxesintheABL

    Surfacelayer thehorizontalscales ofairflowarelarger thantheverticalones

    Roughnesslayer

    Brutsaert p38

    Figure3.2

    6

    3.2 TurbulentfluxesintheABL Figure3.3

    Reynoldsdecomposition

    Mean over15minto1h,fluctuationat much higher frequency

    7

    Convectivetransportofwatervapor is :

    Reynoldsdecomposition applies toqandthewind speedcomponents.After timeaveraging (inthesense ofReynolds):

    ABL:scales ofatmospheric flowandmean velocities arelarger along thehorizontal

    Assuming uniform source/sink at thesurface,concentrationsmostly changealongtheverticalandcan be assumed constantinthehorizontaldirection

    3.2 TurbulentfluxesintheABL

    Interesting consequences from turbulence

    transportbymean flow transportbyturbulence

    8

    3.2 TurbulentfluxesintheABL

    Surfaceturbulentfluxes

    Onaccount ofcontinuity overauniform surface,theverticalfluxesmustbe constantwith z

    Surface=source

    Surface=sink

    9

  • 3.2 TurbulentfluxesintheABL

    Thelandsurfaceis asink forhorizontalmomentum (mu)

    0 :shear stressat thesurface[kgm1 s2]

    u* :frictionvelocity[ms1]

    u*depends on fluidviscosity surfaceroughness meanhorizontalvelocity

    Figure3.4

    Dingman p59310

    Horizontalmomentum inneutral conditions

    3.3 From turbulencetoaerodynamic resistance

    Figure3.5

    Guyotp83z0=roughness length =valeurdezou(z)=0(parextrapolation)

    11

    Turbulenceclosure anddimensional analysis

    3.3 From turbulencetoaerodynamic resistance Figure3.5

    Stull,1988.AnIntroductiontoBoundaryLayerMeteorology

    When theempirical dataareplotted ongraphsofonedimensionless groupversusanother,often datafrom many disparatemeteorological conditionswill result inonecommon curve,yielding asimilarity relationship that maybe universal.

    Dimensional analysis hasbeenused extensively andsuccessfully instudiesoftheatmospheric boundary layer,where turbulenceprecludes othermoreprecise descriptionsoftheflowbecause exactsolutionsoftheequations ofmotionareimpossibletofind duetotheclosure problem.

    12

    Horizontalmomentum inneutral conditions

    Lesdiffrentescourbescorrespondentdesvitessesmoyennesdiffrentespourunealtitudedonne,i.e.desu*diffrentes

    Elmentsdesimilarit: relationssemilog pente=k/u* z0(liausite)

    3.3 From turbulencetoaerodynamic resistance Figure3.6

    Guyotp8413

  • Roughness length z0

    3.3 From turbulencetoaerodynamic resistance Figure3.7

    Brutsaert p4514

    Mean qprofileinneutral conditions

    3.3 From turbulencetoaerodynamic resistance

    Dimensional analysis

    Brutsaert p45

    WARNING:z0v

  • Eddycovariance

    3.4 Aerodynamic methods

    wandqaremeasured at thesame place,at very highfrequency >510Hz

    Sonic anemometers Infrared hygrometers

    Figure3.11

    18

    Eddycovariance

    3.4 Aerodynamic methods

    19

    Toursdeflux

    3.4 Aerodynamic methods

    Bulk method

    Cd,Ce,Ch pourleshauteursdemesurez1etz2(sachantz0,z0v,z0h,oupas)

    Mesures:u(z1),q(z2)etT(z2)+T0andq0 Surtoututilissurlesocansetlacryosphre

    Mesuresatmosphriques1niveauviades dragcoefficients constants:

    =

    Figure3.12

    20

    Thegoalis toestimate E

    We start from theaerodynamic equation

    We assumewe knowra andq(z) theunknown is q0

    Theprinciple is torelateq0 toqs(T0)

    1. Thisis trivialforsaturated surface!

    Inthis case,we speak ofevaporation at potential rate

    2.Evaporationfrom soils

    Introductionofasoil resistance,which depends onsoil moisture

    3.4 Aerodynamic methods

    Resistance models fordifferent surfaceconditions

    (

    21

  • Transpirationfrom leaves andstomatal resistance

    Evaporationoffreewater

    Transpirationfrom oneleaf

    Structureofonestomata

    3.4 Aerodynamic methods Figure3.13

    22

    Stomatal conductance asafunction ofenvironmental conditions

    3.4 Aerodynamic methods Figure3.14

    Guyotp127VPD=es(Ta)ea23

    3.4 Aerodynamic methods

    Complex canopy

    LAI=Leaf AreaIndex=If=Ratiooftotalprojectedleafarea(onesideonly)perunitgroundarea

    Transpirationinparallelfromdifferentleaflayers Solarradiationisattenuatedbythecanopy

    Figure3.15

    24

    SVAT(SoilVegetationAtmosphere Transfers)models

    3.4 Aerodynamic methods Figure3.16

    25

  • BilandnergiemoyendusystmeTerre

    Mars 2000 Mars 2004, valeurs en W/m (Trenberth et al., 2009)

    3.5TheEarths energy balance Figure3.17

    26

    Solar andterrestrial radiation

    Wiendisplacement law :thewavelength ofradiationemitted byablackbodyis inversely proportional toits absolute temperature

    3.5TheEarths energy balance

    27

    3.5TheEarths energy balance

    Bilanradiatifensurface

    Albdo(sansunit)

    Limonsilteux sec 0,23Limonargileuxsec 0,18Limonargileuxhumide 0,11

    Herbe/Gazon/Crops 0,150,25Fort 0,050,20

    Eau 0,030,1Neige 0,70,95

    MoraineduglacierZongoBolivie,Andes,Alti=5200m

    (Gascoin etal.,2009)VWC=volumetric watercontent

    Figure3.18

    28

    Annualmeannetsurfaceradiation calculatedfromtheECMWF40yearreanalysis.UnitsareW/m2.

    FromKallberg etal2005.ERA40Atlas,ECMWF.

    3.5TheEarths energy balance

    29

  • Enrgimestationnaire(quilibre)ousiestassezpetit:

    Gpeutsouventtrengligdevantlesautrestermes:

    Bilandnergiedunecouchedesurface

    Bilanradiatifdelasurface:

    Tempraturedunecouchedesurfacedpaisseur

    3.5TheEarths energy balance

    30

    Rledel'eaudanslebilandnergiemoyendusystmeTerre

    LEdissipates50%ofabsorbedsolarradiation,and80%ofnetradiationatthesurface(usingvaluesfromFigure3.2)

    LEH

    3.5TheEarths energy balance

    31

    Saturated surfaces

    3.6 Formulationsrelated totheenergy budget

    Radiativecontrol

    Aerodynamiccontrol

    ThePenman equation hasbeencalibrated forboth: freewater saturated vegetation covers :MtoFrancehaslongused the

    Penman equation tocalculate thereference ET,ET032

    Importantdfinitions

    3.6 Formulationsrelated totheenergy budget

    PotentialevaporationEvaporationfromalargeuniformsurfacethatissufficientlywetsothattheairissaturatedatthesurface(ex:freewater,soilorvegetationcoverafterarainshower).Thisquantitydoesnotdependonthesoil/vegetationcharacteristics,apartfromtheirroughnessandalbedo,thuscorrespondstotheconceptofclimaticevaporationdemand.

    PotentialET(Thornthwaite,1948)MaximumETfromalargeareacoveredcompletelyanduniformlybyanactivelygrowingvegetationwithanonlimitingsoilmoisturesupply

    ReferenceET=ET0Idem,butforareferencegrass,withspecificproperties:height=0.12m,albedo=0.23,rc =70s/m(=rcmin asthereisnostress)

    33

  • ReferenceET

    ThePenmanMonteith equation can be used for: unstressed reference grass (r0 =70s/m)=>ET0(FAOrecommendation) unstressed vegetation stressed vegetation using theadequate setofresistances

    3.6 Formulationsrelated totheenergy budget

    34

    From theunstressed reference grass togeneric vegetation covers

    3.6 Formulationsrelated totheenergy budget Figure3.19

    35

    Actual ET

    3.4 Formulationsrelated totheenergy budget

    Figure3.20

    Stressfactorasafunction ofasoil moisture index

    TheeffectofKc andtheenvironmentalstressesonETc canalsobedescribedbyappropriateresistanceformulationswithinthePenmanMonteith equation.

    36

    Actual ET

    3.4 Formulationsrelated totheenergy budget Figure3.20

    TheeffectofKc andtheenvironmentalstressesonETc canalsobedescribedbyappropriateresistanceformulationswithinthePenmanMonteith equation. 37

    Stressfactorasafunction ofsoil moisture

    with < 1

    Stressed ET

    Unstressed ET