HYDROGEN IN MATERIALS: FUNDAMENTALS AND APPLICATIONSmh2014.salford.ac.uk › cms › resources ›...

48
CONTENTS 1) Properties of Hydrogen 2) H 2 Interactions with materials 3) Hydrogen cycle 4) Applications and safety HYDROGEN IN MATERIALS: FUNDAMENTALS AND APPLICATIONS Andreas Züttel

Transcript of HYDROGEN IN MATERIALS: FUNDAMENTALS AND APPLICATIONSmh2014.salford.ac.uk › cms › resources ›...

  • CONTENTS 1) Properties of Hydrogen 2) H2 Interactions with materials 3) Hydrogen cycle 4) Applications and safety

    HYDROGEN IN MATERIALS: FUNDAMENTALS AND APPLICATIONS Andreas Züttel

  • Andreas Züttel, Switzerland, 17.07.14 2

    ALCHEMY 16th CENTURY

  • Andreas Züttel, Switzerland, 17.07.14 3

    LAVOISIER

    Antoine Laurent Lavoisier (1743 - 1794)

    Naming Hydrogen correctly according to its origin.

  • Sir Théodore Turquet de Mayerne (1573 – 1654) was a Swiss-born physician who treated kings of France and England and advanced the theories of Paracelsus.

    At 13:45 on December 1, 1783, Jardin des Tuileries in Paris, 1st manned spherical balloon of 4 m diameter

    Jacques Alexandre Cesar Charles (1746 - 1823)

    CHEMICAL HYDRIDES

    Fe + H2SO4 FeSO4 +H2

    Ref.: Encyclopædia Britannica

  • Andreas Züttel, Switzerland, 17.07.14 5

    HYDROGEN ISOTOPES

    H D T

  • Andreas Züttel, Switzerland, 17.07.14 6

    PROPERTIES OF HYDROGEN

    H2 Van der Waals b(H2) = 2.661·10-5 m3·mol-1 V(H2) = 26.6 cm3·mol-1 r(H2) = 2.34 Å

    Density of liquid ρ(H2) = 70.8 kg m-3 V(H2) = 28.3 cm3·mol-1 r(H2) = 2.38 Å

    r(H0) = 0.37 Å

    H0

    H-

    H+

    H

    r(H-) = 2.08 Å r(H+) = 10-5 Å

  • Andreas Züttel, Switzerland, 17.07.14 7

    STATES OF HYDROGEN

    H0 + e- → H-

    H0 → H+ + e-

    2 H0 → H2

    E / eV

    H2 → H+ + H-

    -0.75

    -4.52

    +13.60

    +17.37

    ΔEdis

    ΔEI

    0.0

    10.0

    20.0

    H0

    Ref.: Wojciech Grochala and Peter P. Edwards, Chem. Rev. 104 (2004), pp. 1283-1315

    ΔEA

  • 8

    THERMODYNAMIC PROPERTIES OF HYDROGEN

    T = 273.15 K p = 1.013 bar = 0.1013 Mpa lower heating 10'800 kJ·m-3 value: 120'000 kJ·kg-1

    33.33 kWh ·kg-1 higher heating 12'770 kJ·m-3 value: 141'890 kJ·kg-1

    39.41 kWh ·kg-1 gas constant: 4125 J·kg-1 ·K-1 cp at 293 K: 14'266 J·kg-1 ·K-1 Density (gas): 0.08988 kg·m-3 Density (liquid): 70.779 kg·m-3 Density (solid): 86.503 kg·m-3

    critical point: Tc: 33.25 K kJ·m-3 pc: 13.07 · 105 Pa phase transition: bp: 20.28 K mp: 14.1 K ΔHv: 451.9 kJ·kg-1 ΔHm: 58.6 kJ·kg-1 vapor pressure [atm] for T < 29 K A1: 2.000620 A2: -50.09708 A3: 1.0044 A4: 0.01748495 for T > 29 K A5: 1.317 ·10-3 A6: -5.926 ·10-5 A7: 3.913 ·10-6

    TAAT

    AA)plog( 43

    21a ⋅+++=

    ( )

    ( ) ( )775

    6

    35a

    29TA29TA

    29TApp

    −+−+

    −+=

  • Andreas Züttel, Switzerland, 17.07.14 9

    PRIMITIVE PHASEDIAGRAM OF HYDROGEN

    Ref: W. B. Leung, N. H. March and H. Motz, Physics Letters 56A (6) (1976), pp. 425-426

    RT

  • Andreas Züttel, Switzerland, 17.07.14 10

    MOLECULAR HYDROGEN

    2

    2

    Vna

    bnVTRn)V(p ⋅−⋅−

    ⋅⋅=

  • Andreas Züttel, Switzerland, 17.07.14 11

    MOLECULAR HYDROGEN

    2

    2

    Vna

    bnVTRn)V(p ⋅−⋅−⋅⋅

    =

    R = 8.314 J·K-1·mol-1 a(H2) = 2.476·10-2 m6·Pa·mol-2 b(H2) = 2.661·10-5 m3·mol-1

  • HYDROGEN AND SOLIDS

    Hydrogen gas Physisorption

    Metalhydride

    Liquid hydrogen

    Complex hydrides Chemical hydrides

  • AProj.

    AProj.

    st sl

    sr Dp

    Dp Dp

    da di

    dw

    casing hemisphere

    round suture length suture

    hemisphere

    a)

    b) c) d)

    Andreas Züttel, Switzerland, 17.07.14 13

    PRESSUR CYLINDER

    Ref.: Wilhelm Matek, Dieter Muhs, Herbert Wittel and Manfred Becker, Roloff/Matek Maschinenelemente , Viewegs Fachbücher der Technik, , (1994), 690 pages, ISBN: 3-528-74028-0

  • PRESSURIZED HYDROGEN STORAGE Hydrogen gas

    pp

    dd

    va

    w

    Δ+⋅

    Δ=

    σ2

    da di

    dw

    2

    2

    )(Vna

    bnVTRnVp ⋅−⋅−

    ⋅⋅=

    Material Density Tensile breaking [kg m-3] stress [GPa]

    Aluminium Alu 6061-T4 2700 0.145 AISI 4140 Steel 7850 1.650 Spider silk (protein) 1300 1.3 Kevlar (polyaramid) 1440 2.76 Basic Carbon Fiber Composite 1570 0.2 Hexcel® Carbon Fiber AS4D (12,000 Filaments) 1790 4.280

    Ref.: F. Vollrath & D. P. Knight, NATURE 410 (2001), pp. 541-549

    R = 8.314 J·K-1·mol-1 a(H2) = 2.476·10-2 m6·Pa·mol-2, b(H2) = 2.661·10-5 m3·mol-1

  • Andreas Züttel, Switzerland, 17.07.14 15

    HYDROGEN STORAGE DENSITY

    Dynatek

  • HYDROGEN STORAGE VESSELS

    Ref: Dynetek Europe GmbH, Breitscheider Weg 117a, D-40885 Ratingen, URL: http://www.dynetek.de

  • Andreas Züttel, Switzerland, 17.07.14 17

    LIQUID HYDROGEN

    Plant for liquefying hydrogen (Linde)

    Claude process for liquefying hydrogen

    Energy use for liquefaction: Wth = 3.92 kWh·kg-1 Wprac = 10 kWh·kg-1

    75% Orthohydrogen at RT 25% Parahydrogen

    ΔH(T

  • Andreas Züttel, Switzerland, 17.07.14 18

    PARA- UND ORTHO HYDROGEN

  • HYDROGEN STORAGE Liquid hydrogen 75% Orthohydrogen

    at RT 25% Parahydrogen

    ΔHvap(T=21.2K) 452 kJ·kg-1

    ΔH(T

  • 0

    50

    100

    150

    200

    0 10 20 30

    Hy

    dro

    ge

    n d

    en

    sit

    y [

    kg

    /m3]

    Hydrogen density [kg H2/ 100kg storage material] Andreas Züttel, Switzerland, 17.07.14

    HYDROGEN DENSITY

    carbon hydrates liq. hydro-

    carbons

    comp. H2 gas

    liq. H2

    liq. natural gas

    NH3

  • Andreas Züttel, Switzerland, 17.07.14 21

    LENNARD-JONES POTENTIAL

    !!"

    #

    $$%

    &'(

    )*+

    , σ−'(

    )*+

    , σ⋅ε⋅=612

    rr4)r(V

    -ε σ = collision distance ε = binding energy

    r = σ

    r0 = 21/6 σ

    Van der Waals interaction

    Pauli repulsion dipole

  • Andreas Züttel, University of Fribourg, 17.07.14

    INTERACTION OF GASES WITH SURFACES

    Adsorption Desorption

    Monolayer Multilayer

    GASPHASE

    ADSORBAT

    ADSORBER

    SURFACE OF A SOLID

  • Andreas Züttel, Switzerland, 17.07.14

    ADSORPTIONS ISOTHERMEN

  • PHYSISORPTION

    ( ) ( )( )β⋅−+⋅β−β⋅

    =111 c

    cnn

    m

    TkHH Vads

    ec ⋅Δ−Δ

    =00

    0

    ppe

    kkF Tk

    H

    d

    aV

    =⋅=β ⋅Δ

    el. chem. at 298K

    gas phase at 77 K

    theoretical calculation 32 K

    Ref.: A. Züttel et al., Int. J. of Hydrogen Energy 27 (2002), pp. 203-212 M.G. Nijkamp et al., Appl. Phys. A 72 (2001), pp. 619–623 S. Brunauer, P. H. Emmett und E. Teller, J. Amer. Chem. Soc. 60 (1938), p. 309

  • PHYSISORPTION

    Ref.: Maurice Schlichtenmayer and Michael Hirscher, „Nanosponges for hydrogen storage“, J. Mater. Chem., 22 (2012), 10134

    ρ =1

    1ρm

    + Aspec ⋅δ

  • Andreas Züttel, Switzerland, 17.07.14 26

    SINGLE WALL CARBON NANOTUBE (5,5)

    6.8 Å H2

    RNT

    Rads

    r

    R

    ΔHV

    ΔHads

    ΔHads dads

  • CHEMICAL HYDRIDES

    Ref: A. Züttel, Materials for hydrogen storage , materialstoday, Septemper (2003), pp. 18-27 http://www.youtube.com/watch?v=uixxJtJPVXk

    Al + 3 H2O → Al(OH)3 + 1½ H2 5.6 mass%

    NaAlH4 + 4 H2O → NaOH + Al(OH)3+ 4 H2 14.8 mass% NaBH4 + 3 H2O → NaOH + HBO2+ 4 H2 21.3 mass%

    LiBH4 + 3 H2O → LiOH + HBO2+ 4 H2 37.0 mass%

    NaBH4 + 4 H2O → NaOH + HBO3+ 5 H2 35.7 mass%

    LiBH4 + 4 H2O → LiOH + HBO3+ 5 H2 45.5 mass%

    M + x H2O → M(OH)x + x/2 H2 x/2 H2 + x/4 O2 → x/2 H2O

  • OXIDATION VON METALLEN MIT WASSER

  • CHEMICAL HYDRIDES

    ΔHf0 -419 kJ

    ΔHf0 +848 kJ ΔHf0

    -429 kJ

  • HYDROGEN CYCLE

    SUN

    ENERGY

    ELECTROLYSIS

    ENERGY

    COMBUSTION

    39 kWh/kg

    2 H2O → 2 H2 + O2

    STORAGE M + ½H2 → MH

    82%

    25% 85%

    50%

    CLOSED CYCLE!

  • WATER DISSOCIATION H2O → H2 + ½ O2

    -300

    -250

    -200

    -150

    -100

    -50

    0

    0 500 1000 1500 2000 2500 3000Temperature [K]

    Ene

    rgy

    [kJ]

    T·ΔSd

    ΔGd

    ΔHd

    ΔQ

    ΔW

    H2O

    H2 , O2

    ΔH

  • HYDROGEN PRODUCTION FROM RENEWABLE ENERGY

    ELECTROLYSIS 8 MW, 85% efficiency

    SOLAR CONCENTRATOR Zn-cycle, HT-Turbine

    PHOTO-ELECTROLYSIS Grätzel cell

    BIOMASS CONVERSION Methane

  • LARGE SCALE ELECTROLYSER

    Technical data: Voltage: 1.48 V (1.85 V) Energy: 39.4 kWh/kg H2 (49 kWh/kg H2) (1 kg H2 = 11.2 m3 H2 at 1 bar) Efficiency: >80%

    High pressure electrolyser (30 bar), 40‘000 Nm3H2 per day (8 MW), Lurgi, Giovanola (Monthey, Switzerland)

  • Andreas Züttel, Switzerland, 17.07.14 34

    ENERGY CONVERSION DEVICES

    Steam engine

    Steam turbine

    Internal combustion engine

    Combustion turbine Fuel cell

  • Andreas Züttel, Switzerland, 17.07.14 35

    ENERGY CONVERSION ENGINES

    Sadi Carnot (1796-1832)

    Réflexions sur la puissance motrice du feu (1824)

    Christian Friedrich Schoenbein (1799–1868)

    On the Correlation of Physical Forces (1846)

    h

    c

    h TT1

    QW

    −=Δ

    Δ=η

    HST1

    HG

    h Δ

    Δ⋅−=

    Δ

    Δ=η

    -350

    -300

    -250

    -200

    -150

    -100

    -50

    0

    0 500 1000 1500 2000 2500 3000Temperature [K]

    Ener

    gy [k

    J]

    T·ΔS0f

    ΔG0f

    ΔH0f

    ΔQ

    ΔW

    H2 + ½ O2 → H2O

    0%

    20%

    40%

    60%

    80%

    100%

    0 200 400 600 800 1000 1200 1400 1600Th [K]

    Effic

    ienc

    y

    TC = 298 K

    600 K

    900 K

    HST1 hFC Δ

    Δ⋅−=η

    h

    cC T

    T1−=η

    Sir William R. Grove (1811–1896)

  • Andreas Züttel, Switzerland, 17.07.14 36

    WATER FORMATION

    -350

    -300

    -250

    -200

    -150

    -100

    -50

    0

    0 500 1000 1500 2000 2500 3000Temperature [K]

    Ener

    gy [k

    J]

    T·ΔS0f

    ΔG0f

    ΔH0f

    ΔQ

    ΔW

    H2 + ½ O2 → H2O

  • H2 O2

    H2O

    OH-

    e-

    e-

    Anode Cathode

    ElectrolyteKOH/H2O

    H OH-

    H2

    H2O

    R

    H2O

    O2

    O2

    H2 O2

    H2O

    O2-

    e-

    e-

    Anode Cathode

    Electrolytesolid oxide

    H O2-

    H2

    H2O

    R

    O2-

    O2

    O2

    H2 O2

    H2O

    CO32-

    e- e-

    Anode Cathode

    Electrolytemoltencarbonate

    H CO32-

    H2

    H2O

    R

    CO32-

    O2

    CO2

    CO2 CO2

    CO2

    CO2

    CO2

    O2

    H2 O2H+

    e-e-

    Anode Cathode

    PEM

    H H+

    H2

    H2O

    H2O

    R

    H+

    O2

    O2

  • HYDROGEN FOR MOBILITY

    Austin A40 (1966)

    Tupolev 155 (1988) Hindenburg (1937)

    Necar 1 (1994)

    Necar 4 (2002)

    NuBus, 250kW (2002)

    Space Shuttle (1981-)

    BMW (1978-)

    Saturn (1963-) Hy.move (2009)

    Ref.: Ch. Bach, Empa

  • 0

    50

    100

    150

    200

    0 10 20 30

    Hy

    dro

    ge

    n d

    en

    sit

    y [

    kg

    /m3

    ]

    Hydrogen density [kg H2/ 100kg storage material] Andreas Züttel, Switzerland, 17.07.14

    HYDROGEN DENSITY

    carbon hydrates liq. hydro-

    carbons

    metal hydrides

    comp. H2 gas

    liq. H2

    liq. natural gas

    NH3

    complex hydrides

    physi- sorption

  • ENERGY DENSITY OF FUELS

    10

    20

    5 10 15

    Vol.

    Ene

    rgy

    dens

    ity [k

    Wh/

    l]

    Grav. Energy density [kWh/kg]

    Coal

    Oil Metal hydride

    Complex hydride

    Butane

    Alcohol

    liq. H2

    Wood comp. H2

    Battery

  • POWER PLANT APPLICATIONS

    Steam generator 100 MW

  • FUEL LEAK SIMULATION

    Before ignition t = 0 s

    Ref.: Michael R. Swain, University of Miami, Coral Cables, FL 33124, USA

    Hydrogen powered vehicle on the left. Gasoline powered vehicle on the right.

    Ignition of both fuels occur. Hydrogen flow rate 2100 SCFM (0.18 m3/min.)

    Gasoline flow rate 680 cm3/min.

    Ignition t = 3 s

  • Andreas Züttel, University of Fribourg, 17.07.14

    FUEL LEAK SIMULATION

    t = 60 s

    Ref.: Michael R. Swain, University of Miami, Coral Cables, FL 33124, USA

    Hydrogen flow is subsiding, view of gasoline vehicle begins to enlarge

    Hydrogen flow almost finished. View of gasoline powered vehicle has been expanded to nearly full screen.

    t = 90 s

  • New York / Lakehurst, May 6th 1937, 6 pm

    Accident: While the airship was landing she has got on fire about 80 meters above ground level and crashed. Fatalities: 13 of 36 passengers, 22 of 60 crew members 1 member of 228 ground staff holding the ship.

    LZ 129 “HINDENBURG”

  • Andreas Züttel, University of Fribourg, 15.12.2002 45

    CAUSE OF FIRE

    New investigation: The inflammable skin of the Hindenburg was ignited by an electric discharge arc between the electrostatic charged skin and the grounded metallic frame.

    Ref.: Addison Bain, Wm. D. Van Vorst, "The Hindenburg tragedy revisited: the fatal flaw found", Int. Journal of Hydrogen Energy 24 (1999), pp. 399-403

  • Paris / July 25th 2000, 4:44 pm

    Accident: While the jet was taking off flames were noticed at the rear side of the left side wing. All on board were killed: 9 crew, 100 passengers 4 people were killed on the ground. 5 injured on the ground, one seriously

    AF 4590 CONCORDE

  • VCard: A. Züttel