HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature...

43
HW2, Math 322, Fall 2016 Nasser M. Abbasi December 30, 2019 Contents 0.1 Summary table .................................... 3 0.2 section 2.3.1 (problem 1) .............................. 4 0.2.1 part (a) .................................... 4 0.2.2 Part (b) .................................... 5 0.2.3 Part (d) .................................... 6 0.3 section 2.3.2 (problem 2) .............................. 7 0.3.1 Part (d) .................................... 7 0.3.2 Part (f) .................................... 9 0.3.3 Part (g) .................................... 11 0.4 section 2.3.3 (problem 3) .............................. 13 0.4.1 Part (b) .................................... 13 0.4.2 Part (d) .................................... 16 0.5 section 2.3.4 (problem 4) .............................. 18 0.5.1 Part (a) .................................... 18 0.5.2 Part (b) .................................... 19 0.5.3 Part (c) .................................... 19 0.6 section 2.3.5 (problem 5) .............................. 20 0.7 section 2.3.7 (problem 6) .............................. 22 0.7.1 part (a) .................................... 22 0.7.2 Part (b) .................................... 22 0.7.3 Part c ..................................... 25 0.7.4 Part d ..................................... 26 0.7.5 Part (e) .................................... 27 0.8 section 2.3.8 (problem 7) .............................. 27 0.8.1 part (a) .................................... 27 0.8.2 Part (b) .................................... 28 0.9 section 2.3.10 (problem 8) .............................. 30 0.9.1 Part b ..................................... 31 0.9.2 Part c ..................................... 31 0.10 section 2.4.1 (problem 9) .............................. 32 1

Transcript of HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature...

Page 1: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

HW2, Math 322, Fall 2016

Nasser M. Abbasi

December 30, 2019

Contents

0.1 Summary table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.2 section 2.3.1 (problem 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.2.1 part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.2.2 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50.2.3 Part (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

0.3 section 2.3.2 (problem 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70.3.1 Part (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70.3.2 Part (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90.3.3 Part (g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

0.4 section 2.3.3 (problem 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130.4.1 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130.4.2 Part (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

0.5 section 2.3.4 (problem 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180.5.1 Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180.5.2 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190.5.3 Part (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

0.6 section 2.3.5 (problem 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200.7 section 2.3.7 (problem 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

0.7.1 part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220.7.2 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220.7.3 Part c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250.7.4 Part d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260.7.5 Part (e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

0.8 section 2.3.8 (problem 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270.8.1 part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270.8.2 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

0.9 section 2.3.10 (problem 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300.9.1 Part b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310.9.2 Part c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

0.10 section 2.4.1 (problem 9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1

Page 2: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

2

0.10.1 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320.10.2 Part (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

0.11 section 2.4.2 (problem 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340.12 section 2.4.3 (problem 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370.13 section 2.4.6 (problem 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

0.13.1 Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420.13.2 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Page 3: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

3

0.1 Summary table

For 1𝐷 bar

Left Right πœ† = 0 πœ† > 0 𝑒 (π‘₯, 𝑑)

𝑒 (0) = 0 𝑒 (𝐿) = 0 Noπœ†π‘› = οΏ½

π‘›πœ‹πΏοΏ½2, 𝑛 = 1, 2, 3,β‹―

𝑋𝑛 = 𝐡𝑛 sin οΏ½βˆšπœ†π‘›π‘₯οΏ½βˆ‘βˆžπ‘›=1 𝐡𝑛 sin οΏ½βˆšπœ†π‘›π‘₯οΏ½ π‘’βˆ’π‘˜πœ†π‘›π‘‘

𝑒 (0) = 0 πœ•π‘’(𝐿)πœ•π‘₯ = 0 No

πœ†π‘› = οΏ½π‘›πœ‹2𝐿�2, 𝑛 = 1, 3, 5,β‹―

𝑋𝑛 = 𝐡𝑛 sin οΏ½βˆšπœ†π‘›π‘₯οΏ½βˆ‘βˆžπ‘›=1,3,5,β‹― 𝐡𝑛 sin οΏ½βˆšπœ†π‘›π‘₯οΏ½ π‘’βˆ’π‘˜πœ†π‘›π‘‘

πœ•π‘’(0)πœ•π‘₯ = 0 𝑒 (𝐿) = 0 No

πœ†π‘› = οΏ½π‘›πœ‹2𝐿�2, 𝑛 = 1, 3, 5,β‹―

𝑋𝑛 = 𝐴𝑛 cos οΏ½βˆšπœ†π‘›π‘₯οΏ½βˆ‘βˆžπ‘›=1,3,5⋯𝐴𝑛 cos οΏ½βˆšπœ†π‘›π‘₯οΏ½ π‘’βˆ’π‘˜πœ†π‘›π‘‘

𝑒 (0) = 0 𝑒 (𝐿) + πœ•π‘’(𝐿)πœ•π‘₯ = 0

πœ†0 = 0𝑋0 = 𝐴0

tan οΏ½βˆšπœ†π‘›πΏοΏ½ = βˆ’πœ†π‘›π‘‹πœ† = π΅πœ† sin οΏ½βˆšπœ†π‘›π‘₯οΏ½

𝐴0 +βˆ‘βˆžπ‘›=1 𝐡𝑛 sin οΏ½βˆšπœ†π‘›π‘₯οΏ½ π‘’βˆ’π‘˜πœ†π‘›π‘‘

πœ•π‘’(0)πœ•π‘₯ = 0 πœ•π‘’(𝐿)

πœ•π‘₯ = 0πœ†0 = 0𝑋0 = 𝐴0

πœ†π‘› = οΏ½π‘›πœ‹πΏοΏ½2, 𝑛 = 1, 2, 3,β‹―

𝑋𝑛 = 𝐴𝑛 cos οΏ½βˆšπœ†π‘›π‘₯�𝐴0 +βˆ‘

βˆžπ‘›=1𝐴𝑛 cos οΏ½βˆšπœ†π‘›π‘₯οΏ½ π‘’βˆ’π‘˜πœ†π‘›π‘‘

For periodic conditions 𝑒 (βˆ’πΏ) = 𝑒 (𝐿) and πœ•π‘’(βˆ’πΏ)πœ•π‘₯ = πœ•π‘’(𝐿)

πœ•π‘₯

πœ†π‘› = οΏ½π‘›πœ‹πΏοΏ½2, 𝑛 = 1, 2, 3,β‹―

𝑒 (π‘₯, 𝑑) =πœ†=0βžπ‘Ž0 +

πœ†>0

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½οΏ½πœ†π‘›π‘₯οΏ½ π‘’βˆ’π‘˜πœ†π‘›π‘‘ +βˆžοΏ½π‘›=1

𝐡𝑛 sin οΏ½οΏ½πœ†π‘›π‘₯οΏ½ π‘’βˆ’π‘˜πœ†π‘›π‘‘

Note on notation When using separation of variables 𝑇 (𝑑) is used for the time function and𝑋 (π‘₯) , 𝑅 (π‘Ÿ) , Θ (πœƒ) etc. for the spatial functions. This notation is more common in other booksand easier to work with as the dependent variable 𝑇,𝑋,β‹― and the independent variable𝑑, π‘₯,β‹― are easier to match (one is upper case and is one lower case) and this produces lesssymbols to remember and less chance of mixing wrong letters.

Page 4: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

4

0.2 section 2.3.1 (problem 1)2.3. Heat Equation With Zero Temperature Ends

EXERCISES 2.3

55

2.3.1. For the following partial differential equations, what ordinary differentialequations are implied by the method of separation of variables?

(a) au ka (r2u)

* at r ar &

a2u a2u*

(C) 09x2 + ft2 = o

&U 04U

*(e) at = ka 44

a2u 2 02U

ate ax

2.3.2. Consider the differential equation

z2+A0=0.

Determine the eigenvalues \ (and corresponding eigenfunctions) if 0 satisfiesthe following boundary conditions. Analyze three cases (.\ > 0, A = 0, A <0). You may assume that the eigenvalues are real.

(a) 0(0) = 0 and 0(-,r) = 0*(b) 0(0) = 0 and 5(1) = 0

(c) !LO (0) = 0 and LO (L) = 0 (If necessary, see Sec. 2.4.1.)

*(d) 0(0) = 0 and O (L) = 0

(e) LO (0) = 0 and O(L) = 0

*(f) O(a) = 0 and O(b) = 0 (You may assume that A > 0.)

(g) Β’(0) = 0 and LO(L)

+ cb(L) = 0 (If necessary, see Sec. 5.8.)

2.3.3. Consider the heat equation

OU 82U

at - kax2subject to the boundary conditions

u(0,t) = 0 and u(L,t) = 0.

Solve the initial value problem if the temperature is initially

(a) u(x, 0) = 6 sin s (b) u(x, 0) = 3 sin i - sin i

(b) -` = k09x22

- v0 ax

(d)

* (f)=c

* (c) u(x, 0) = 2 cos lmE (d) u(x, 0)1 0 < x < L/22 L/2<x<L

0.2.1 part (a)

1π‘˜πœ•π‘’πœ•π‘‘

=1π‘Ÿπœ•πœ•π‘Ÿ οΏ½

π‘Ÿπœ•π‘’πœ•π‘Ÿ οΏ½

(1)

Let

𝑒 (𝑑, π‘Ÿ) = 𝑇 (𝑑) 𝑅 (π‘Ÿ)

Thenπœ•π‘’πœ•π‘‘

= 𝑇′ (𝑑) 𝑅 (π‘Ÿ)

Andπœ•πœ•π‘Ÿ οΏ½

π‘Ÿπœ•π‘’πœ•π‘Ÿ οΏ½

=πœ•π‘’πœ•π‘Ÿ

+ π‘Ÿπœ•2π‘’πœ•π‘Ÿ2

= 𝑇𝑅′ (π‘Ÿ) + π‘Ÿπ‘‡π‘…β€²β€² (π‘Ÿ)

Hence (1) becomes1π‘˜π‘‡β€² (𝑑) 𝑅 (π‘Ÿ) =

1π‘Ÿ(𝑇𝑅′ (π‘Ÿ) + π‘Ÿπ‘‡π‘…β€²β€² (π‘Ÿ))

Note From now on 𝑇′ (𝑑) is written as just 𝑇′ and similarly for 𝑅′ (π‘Ÿ) = 𝑅′ and 𝑅′′ (π‘Ÿ) = 𝑅′′ tosimplify notations and make it easier and more clear to read. The above is reduced to

1π‘˜π‘‡β€²π‘… =

1π‘Ÿπ‘‡π‘…β€² + 𝑇𝑅′′

Dividing throughout 1 by 𝑇 (𝑑) 𝑅 (π‘Ÿ) gives1π‘˜π‘‡β€²

𝑇=1π‘Ÿπ‘…β€²

𝑅+𝑅′′

𝑅Since each side in the above depends on a diοΏ½erent independent variable and both are equal

1𝑇 (𝑑) 𝑅 (π‘Ÿ) can not be zero, as this would imply that either 𝑇 (𝑑) = 0 or 𝑅 (π‘Ÿ) = 0 or both are zero, in whichcase there is only the trivial solution.

Page 5: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

5

to each others, then each side is equal to the same constant, say βˆ’πœ†. Therefore1π‘˜π‘‡β€²

𝑇=1π‘Ÿπ‘…β€²

𝑅+𝑅′′

𝑅= βˆ’πœ†

The following diοΏ½erential equations are obtained

𝑇′ + πœ†π‘˜π‘‡ = 0π‘Ÿπ‘…β€²β€² + 𝑅′ + π‘Ÿπœ†π‘… = 0

In expanded form, the above is𝑑𝑇𝑑𝑑+ πœ†π‘˜π‘‡ (𝑑) = 0

π‘Ÿπ‘‘2π‘…π‘‘π‘Ÿ2

+𝑑𝑅𝑑𝑑+ π‘Ÿπœ†π‘… (π‘Ÿ) = 0

0.2.2 Part (b)

1π‘˜πœ•π‘’πœ•π‘‘

=πœ•2π‘’πœ•π‘₯2

βˆ’π‘£0π‘˜πœ•π‘’πœ•π‘₯

(1)

Let

𝑒 (π‘₯, 𝑑) = 𝑇𝑋

Thenπœ•π‘’πœ•π‘‘

= 𝑇′𝑋

Andπœ•π‘’πœ•π‘₯

= 𝑋′𝑇

πœ•2π‘’πœ•π‘₯2

= 𝑋′′𝑇

Substituting these in (1) gives1π‘˜π‘‡β€²π‘‹ = 𝑋′′𝑇 βˆ’

𝑣0π‘˜π‘‹β€²π‘‡

Dividing throughout by 𝑇𝑋 β‰  0 gives1π‘˜π‘‡β€²

𝑇=𝑋′′

π‘‹βˆ’π‘£0π‘˜π‘‹β€²

𝑋Since each side in the above depends on a diοΏ½erent independent variable and both are equalto each others, then each side is equal to the same constant, say βˆ’πœ†. Therefore

1π‘˜π‘‡β€²

𝑇=𝑋′′

π‘‹βˆ’π‘£0π‘˜π‘‹β€²

𝑋= βˆ’πœ†

The following diοΏ½erential equations are obtained

𝑇′ + πœ†π‘˜π‘‡ = 0

𝑋′′ βˆ’π‘£0π‘˜π‘‹β€² + πœ†π‘‹ = 0

Page 6: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

6

The above in expanded form is𝑑𝑇𝑑𝑑+ πœ†π‘˜π‘‡ (𝑑) = 0

𝑑2𝑋𝑑π‘₯2

βˆ’π‘£0π‘˜π‘‘π‘‹π‘‘π‘₯

+ πœ†π‘‹ (π‘₯) = 0

0.2.3 Part (d)

1π‘˜πœ•π‘’πœ•π‘‘

=1π‘Ÿ2πœ•πœ•π‘Ÿ οΏ½

π‘Ÿ2πœ•π‘’πœ•π‘Ÿ οΏ½

(1)

Let

𝑒 (𝑑, π‘Ÿ) ≑ 𝑇𝑅

Thenπœ•π‘’πœ•π‘‘

= 𝑇′𝑅

Andπœ•πœ•π‘Ÿ οΏ½

π‘Ÿ2πœ•π‘’πœ•π‘Ÿ οΏ½

= 2π‘Ÿπœ•π‘’πœ•π‘Ÿ

+ π‘Ÿ2πœ•2π‘’πœ•π‘Ÿ2

= 2π‘Ÿπ‘‡π‘…β€² + π‘Ÿ2𝑇𝑅′′

Substituting these in (1) gives1π‘˜π‘‡β€²π‘… =

1π‘Ÿ2οΏ½2π‘Ÿπ‘‡π‘…β€² + π‘Ÿ2𝑇𝑅′′�

=2π‘Ÿπ‘‡π‘…β€² + 𝑇𝑅′′

Dividing throughout by 𝑇𝑅 β‰  0 gives1π‘˜π‘‡β€²

𝑇=2π‘Ÿπ‘…β€²

𝑅+𝑅′′

𝑅Since each side in the above depends on a diοΏ½erent independent variable and both are equalto each others, then each side is equal to the same constant, say βˆ’πœ†. Therefore

1π‘˜π‘‡β€²

𝑇=2π‘Ÿπ‘…β€²

𝑅+𝑅′′

𝑅= βˆ’πœ†

The following diοΏ½erential equations are obtained

𝑇′ + πœ†π‘˜π‘‡ = 0π‘Ÿπ‘…β€²β€² + 2𝑅′ + πœ†π‘Ÿπ‘… = 0

The above in expanded form is𝑑𝑇𝑑𝑑+ πœ†π‘˜π‘‡ (𝑑) = 0

π‘Ÿπ‘‘2π‘…π‘‘π‘Ÿ2

+ 2π‘‘π‘…π‘‘π‘Ÿ

+ πœ†π‘Ÿπ‘… (π‘Ÿ) = 0

Page 7: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

7

0.3 section 2.3.2 (problem 2)

2.3. Heat Equation With Zero Temperature Ends

EXERCISES 2.3

55

2.3.1. For the following partial differential equations, what ordinary differentialequations are implied by the method of separation of variables?

(a) au ka (r2u)

* at r ar &

a2u a2u*

(C) 09x2 + ft2 = o

&U 04U

*(e) at = ka 44

a2u 2 02U

ate ax

2.3.2. Consider the differential equation

z2+A0=0.

Determine the eigenvalues \ (and corresponding eigenfunctions) if 0 satisfiesthe following boundary conditions. Analyze three cases (.\ > 0, A = 0, A <0). You may assume that the eigenvalues are real.

(a) 0(0) = 0 and 0(-,r) = 0*(b) 0(0) = 0 and 5(1) = 0

(c) !LO (0) = 0 and LO (L) = 0 (If necessary, see Sec. 2.4.1.)

*(d) 0(0) = 0 and O (L) = 0

(e) LO (0) = 0 and O(L) = 0

*(f) O(a) = 0 and O(b) = 0 (You may assume that A > 0.)

(g) Β’(0) = 0 and LO(L)

+ cb(L) = 0 (If necessary, see Sec. 5.8.)

2.3.3. Consider the heat equation

OU 82U

at - kax2subject to the boundary conditions

u(0,t) = 0 and u(L,t) = 0.

Solve the initial value problem if the temperature is initially

(a) u(x, 0) = 6 sin s (b) u(x, 0) = 3 sin i - sin i

(b) -` = k09x22

- v0 ax

(d)

* (f)=c

* (c) u(x, 0) = 2 cos lmE (d) u(x, 0)1 0 < x < L/22 L/2<x<L

0.3.1 Part (d)

𝑑2πœ™π‘‘π‘₯2

+ πœ†πœ™ = 0

πœ™ (0) = 0π‘‘πœ™π‘‘π‘₯

(𝐿) = 0

Substituting an assumed solution of the form πœ™ = π΄π‘’π‘Ÿπ‘₯ in the above ODE and simplifyinggives the characteristic equation

π‘Ÿ2 + πœ† = 0π‘Ÿ2 = βˆ’πœ†

π‘Ÿ = Β±βˆšβˆ’πœ†

Assuming πœ† is real. The following cases are considered.

case πœ† < 0 In this case, βˆ’πœ† and also βˆšβˆ’πœ†, are positive. Hence both roots Β±βˆšβˆ’πœ† are real andpositive. Let

βˆšβˆ’πœ† = 𝑠

Page 8: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

8

Where 𝑠 > 0. Therefore the solution is

πœ™ (π‘₯) = 𝐴𝑒𝑠π‘₯ + π΅π‘’βˆ’π‘ π‘₯

π‘‘πœ™π‘‘π‘₯

= 𝐴𝑠𝑒𝑠π‘₯ βˆ’ π΅π‘ π‘’βˆ’π‘ π‘₯

Applying the first boundary conditions (B.C.) gives

0 = πœ™ (0)= 𝐴 + 𝐡

Applying the second B.C. gives

0 =π‘‘πœ™π‘‘π‘₯

(𝐿)

= 𝐴𝑠 βˆ’ 𝐡𝑠= 𝑠 (𝐴 βˆ’ 𝐡)= 𝐴 βˆ’ 𝐡

The last step above was after dividing by 𝑠 since 𝑠 β‰  0. Therefore, the following two equationsare solved for 𝐴,𝐡

0 = 𝐴 + 𝐡0 = 𝐴 βˆ’ 𝐡

The second equation implies 𝐴 = 𝐡 and the first gives 2𝐴 = 0 or 𝐴 = 0. Hence 𝐡 = 0.Therefore the only solution is the trivial solution πœ™ (π‘₯) = 0. πœ† < 0 is not an eigenvalue.

case πœ† = 0 In this case the ODE becomes

𝑑2πœ™π‘‘π‘₯2

= 0

The solution is

πœ™ (π‘₯) = 𝐴π‘₯ + π΅π‘‘πœ™π‘‘π‘₯

= 𝐴

Applying the first B.C. gives

0 = πœ™ (0)= 𝐡

Applying the second B.C. gives

0 =π‘‘πœ™π‘‘π‘₯

(𝐿)

= 𝐴

Hence 𝐴,𝐡 are both zero in this case as well and the only solution is the trivial one πœ™ (π‘₯) = 0.πœ† = 0 is not an eigenvalue.

case πœ† > 0 In this case, βˆ’πœ† is negative, therefore the roots are both complex.

π‘Ÿ = Β±π‘–βˆšπœ†

Page 9: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

9

Hence the solution is

πœ™ (π‘₯) = π΄π‘’π‘–βˆšπœ†π‘₯ + π΅π‘’βˆ’π‘–βˆšπœ†π‘₯

Which can be writing in terms of cos, sin using Euler identity as

πœ™ (π‘₯) = 𝐴 cos οΏ½βˆšπœ†π‘₯οΏ½ + 𝐡 sin οΏ½βˆšπœ†π‘₯οΏ½

Applying first B.C. gives

0 = πœ™ (0)= 𝐴 cos (0) + 𝐡 sin (0)

0 = 𝐴

The solution now is πœ™ (π‘₯) = 𝐡 sin οΏ½βˆšπœ†π‘₯οΏ½ . Hence

π‘‘πœ™π‘‘π‘₯

= βˆšπœ†π΅ cos οΏ½βˆšπœ†π‘₯οΏ½

Applying the second B.C. gives

0 =π‘‘πœ™π‘‘π‘₯

(𝐿)

= βˆšπœ†π΅ cos οΏ½βˆšπœ†πΏοΏ½

= βˆšπœ†π΅ cos οΏ½βˆšπœ†πΏοΏ½

Since πœ† β‰  0 then either 𝐡 = 0 or cos οΏ½βˆšπœ†πΏοΏ½ = 0. But 𝐡 = 0 gives trivial solution, therefore

cos οΏ½βˆšπœ†πΏοΏ½ = 0

This implies

βˆšπœ†πΏ =π‘›πœ‹2

𝑛 = 1, 3, 5,β‹―

In other words, for all positive odd integers. 𝑛 < 0 can not be used since πœ† is assumedpositive.

πœ† = οΏ½π‘›πœ‹2𝐿 οΏ½2

𝑛 = 1, 3, 5,β‹―

The eigenfunctions associated with these eigenvalues are

πœ™π‘› (π‘₯) = 𝐡𝑛 sin οΏ½π‘›πœ‹2𝐿π‘₯οΏ½ 𝑛 = 1, 3, 5,β‹―

0.3.2 Part (f)

𝑑2πœ™π‘‘π‘₯2

+ πœ†πœ™ = 0

πœ™ (π‘Ž) = 0πœ™ (𝑏) = 0

It is easier to solve this if one boundary condition was at π‘₯ = 0. (So that one constant drops

Page 10: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

10

out). Let 𝜏 = π‘₯ βˆ’ π‘Ž and the ODE becomes (where now the independent variable is 𝜏)𝑑2πœ™ (𝜏)π‘‘πœ2

+ πœ†πœ™ (𝜏) = 0 (1)

With the new boundary conditions πœ™ (0) = 0 and πœ™ (𝑏 βˆ’ π‘Ž) = 0. Assuming the solution isπœ™ = π΄π‘’π‘Ÿπœ, the characteristic equation is

π‘Ÿ2 + πœ† = 0π‘Ÿ2 = βˆ’πœ†

π‘Ÿ = Β±βˆšβˆ’πœ†

Assuming πœ† is real and also assuming πœ† > 0 (per the problem statement) then βˆ’πœ† is negative,and both roots are complex.

π‘Ÿ = Β±π‘–βˆšπœ†

This gives the solution

πœ™ (𝜏) = 𝐴 cos οΏ½βˆšπœ†πœοΏ½ + 𝐡 sin οΏ½βˆšπœ†πœοΏ½

Applying first B.C.

0 = πœ™ (0)= 𝐴 cos 0 + 𝐡 sin 0= 𝐴

Therefore the solution is πœ™ (𝜏) = 𝐡 sin οΏ½βˆšπœ†πœοΏ½. Applying the second B.C.

0 = πœ™ (𝑏 βˆ’ π‘Ž)

= 𝐡 sin οΏ½βˆšπœ† (𝑏 βˆ’ π‘Ž)οΏ½

𝐡 = 0 leads to trivial solution. Choosing sin οΏ½βˆšπœ† (𝑏 βˆ’ π‘Ž)οΏ½ = 0 gives

οΏ½πœ†π‘› (𝑏 βˆ’ π‘Ž) = π‘›πœ‹

οΏ½πœ†π‘› =π‘›πœ‹

(𝑏 βˆ’ π‘Ž)𝑛 = 1, 2, 3β‹―

Or

πœ†π‘› = οΏ½π‘›πœ‹π‘βˆ’π‘ŽοΏ½2

𝑛 = 1, 2, 3,β‹―

The eigenfunctions associated with these eigenvalue are

πœ™π‘› (𝜏) = 𝐡𝑛 sin οΏ½οΏ½πœ†π‘›πœοΏ½

= 𝐡𝑛 sin οΏ½π‘›πœ‹

(𝑏 βˆ’ π‘Ž)𝜏�

Transforming back to π‘₯

πœ™π‘› (π‘₯) = 𝐡𝑛 sin οΏ½π‘›πœ‹

(𝑏 βˆ’ π‘Ž)(π‘₯ βˆ’ π‘Ž)οΏ½

Page 11: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

11

0.3.3 Part (g)

𝑑2πœ™π‘‘π‘₯2

+ πœ†πœ™ = 0

πœ™ (0) = 0π‘‘πœ™π‘‘π‘₯

(𝐿) + πœ™ (𝐿) = 0

Assuming solution is πœ™ = π΄π‘’π‘Ÿπ‘₯, the characteristic equation is

π‘Ÿ2 + πœ† = 0π‘Ÿ2 = βˆ’πœ†

π‘Ÿ = Β±βˆšβˆ’πœ†

The following cases are considered.

case πœ† < 0 In this case βˆ’πœ† and also βˆšβˆ’πœ† are positive. Hence the roots Β±βˆšβˆ’πœ† are both real.Let

βˆšβˆ’πœ† = 𝑠

Where 𝑠 > 0. This gives the solution

πœ™ (π‘₯) = 𝐴0𝑒𝑠π‘₯ + 𝐡0π‘’βˆ’π‘ π‘₯

Which can be manipulated using sinh (𝑠π‘₯) = 𝑒𝑠π‘₯βˆ’π‘’βˆ’π‘ π‘₯

2 , cosh (𝑠π‘₯) = 𝑒𝑠π‘₯+π‘’βˆ’π‘ π‘₯

2 to the following

πœ™ (π‘₯) = 𝐴 cosh (𝑠π‘₯) + 𝐡 sinh (𝑠π‘₯)Where 𝐴,𝐡 above are new constants. Applying the left boundary condition gives

0 = πœ™ (0)= 𝐴

The solution becomes πœ™ (π‘₯) = 𝐡 sinh (𝑠π‘₯) and henceπ‘‘πœ™π‘‘π‘₯ = 𝑠 cosh (𝑠π‘₯) . Applying the right

boundary conditions gives

0 = πœ™ (𝐿) +π‘‘πœ™π‘‘π‘₯

(𝐿)

= 𝐡 sinh (𝑠𝐿) + 𝐡𝑠 cosh (𝑠𝐿)= 𝐡 (sinh (𝑠𝐿) + 𝑠 cosh (𝑠𝐿))

But 𝐡 = 0 leads to trivial solution, therefore the other option is that

sinh (𝑠𝐿) + 𝑠 cosh (𝑠𝐿) = 0But the above is

tanh (𝑠𝐿) = βˆ’π‘ Since it was assumed that 𝑠 > 0 then the RHS in the above is a negative quantity. Howeverthe tanh function is positive for positive argument and negative for negative argument.The above implies then that 𝑠𝐿 < 0. Which is invalid since it was assumed 𝑠 > 0 and 𝐿is the length of the bar. Hence 𝐡 = 0 is the only choice, and this leads to trivial solution.πœ† < 0 is not an eigenvalue.

Page 12: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

12

case πœ† = 0

In this case, the ODE becomes

𝑑2πœ™π‘‘π‘₯2

= 0

The solution is

πœ™ (π‘₯) = 𝑐1π‘₯ + 𝑐2Applying left B.C. gives

0 = πœ™ (0)= 𝑐2

The solution becomes πœ™ (π‘₯) = 𝑐1π‘₯. Applying the right B.C. gives

0 = πœ™ (𝐿) +π‘‘πœ™π‘‘π‘₯

(𝐿)

= 𝑐1𝐿 + 𝑐1= 𝑐1 (1 + 𝐿)

Since 𝑐1 = 0 leads to trivial solution, then 1 + 𝐿 = 0 is the only other choice. But thisinvalid since 𝐿 > 0 (length of the bar). Hence 𝑐1 = 0 and this leads to trivial solution.πœ† = 0 is not an eigenvalue.

case πœ† > 0

This implies that βˆ’πœ† is negative, and therefore the roots are both complex.

π‘Ÿ = Β±π‘–βˆšπœ†

This gives the solution

πœ™ (π‘₯) = π΄π‘’π‘–βˆšπœ†π‘₯ + π΅π‘’βˆ’π‘–βˆšπœ†π‘₯

= 𝐴 cos οΏ½βˆšπœ†π‘₯οΏ½ + 𝐡 sin οΏ½βˆšπœ†π‘₯οΏ½

Applying first B.C. gives

πœ™ (0) = 0 = 𝐴 cos (0) + 𝐡 sin (0)0 = 𝐴

The solution becomes πœ™ (π‘₯) = 𝐡 sin οΏ½βˆšπœ†π‘₯οΏ½ andπ‘‘πœ™π‘‘π‘₯

= βˆšπœ†π΅ cos οΏ½βˆšπœ†π‘₯οΏ½

Applying the second B.C.

0 =π‘‘πœ™π‘‘π‘₯

(𝐿) + πœ™ (𝐿)

= βˆšπœ†π΅ cos οΏ½βˆšπœ†πΏοΏ½ + 𝐡 sin οΏ½βˆšπœ†πΏοΏ½ (1)

Dividing (1) by cos οΏ½βˆšπœ†πΏοΏ½ , which can not be zero, because if cos οΏ½βˆšπœ†πΏοΏ½ = 0, then 𝐡 sin οΏ½βˆšπœ†πΏοΏ½ =

Page 13: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

13

0 from above, and this means the trivial solution, results in

𝐡 οΏ½βˆšπœ† + tan οΏ½βˆšπœ†πΏοΏ½οΏ½ = 0

But 𝐡 β‰  0, else the solution is trivial. Therefore

tan οΏ½βˆšπœ†πΏοΏ½ = βˆ’βˆšπœ†

The eigenvalue πœ† is given by the solution to the above nonlinear equation. The text book, insection 5.4, page 196 gives the following approximate (asymptotic) solution which becomesaccurate only for large 𝑛 and not used here

οΏ½πœ†π‘› βˆΌπœ‹πΏ �𝑛 βˆ’

12οΏ½

Therefore the eigenfunction is

πœ™πœ† (π‘₯) = 𝐡 sin οΏ½βˆšπœ†π‘₯οΏ½

Where πœ† is the solution to tan οΏ½βˆšπœ†πΏοΏ½ = βˆ’βˆšπœ†.

0.4 section 2.3.3 (problem 3)

2.3. Heat Equation With Zero Temperature Ends

EXERCISES 2.3

55

2.3.1. For the following partial differential equations, what ordinary differentialequations are implied by the method of separation of variables?

(a) au ka (r2u)

* at r ar &

a2u a2u*

(C) 09x2 + ft2 = o

&U 04U

*(e) at = ka 44

a2u 2 02U

ate ax

2.3.2. Consider the differential equation

z2+A0=0.

Determine the eigenvalues \ (and corresponding eigenfunctions) if 0 satisfiesthe following boundary conditions. Analyze three cases (.\ > 0, A = 0, A <0). You may assume that the eigenvalues are real.

(a) 0(0) = 0 and 0(-,r) = 0*(b) 0(0) = 0 and 5(1) = 0

(c) !LO (0) = 0 and LO (L) = 0 (If necessary, see Sec. 2.4.1.)

*(d) 0(0) = 0 and O (L) = 0

(e) LO (0) = 0 and O(L) = 0

*(f) O(a) = 0 and O(b) = 0 (You may assume that A > 0.)

(g) Β’(0) = 0 and LO(L)

+ cb(L) = 0 (If necessary, see Sec. 5.8.)

2.3.3. Consider the heat equation

OU 82U

at - kax2subject to the boundary conditions

u(0,t) = 0 and u(L,t) = 0.

Solve the initial value problem if the temperature is initially

(a) u(x, 0) = 6 sin s (b) u(x, 0) = 3 sin i - sin i

(b) -` = k09x22

- v0 ax

(d)

* (f)=c

* (c) u(x, 0) = 2 cos lmE (d) u(x, 0)1 0 < x < L/22 L/2<x<L

0.4.1 Part (b)

πœ•π‘’πœ•π‘‘

= π‘˜πœ•2π‘’πœ•π‘₯2

Let 𝑒 (π‘₯, 𝑑) = 𝑇 (𝑑) 𝑋 (π‘₯), and the PDE becomes1π‘˜π‘‡β€²π‘‹ = 𝑋′′𝑇

Page 14: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

14

Dividing by 𝑋𝑇 β‰  01π‘˜π‘‡β€²

𝑇=𝑋′′

𝑋Since each side depends on diοΏ½erent independent variable and both are equal, they mustbe both equal to same constant, say βˆ’πœ† where πœ† is assumed to be real.

1π‘˜π‘‡β€²

𝑇=𝑋′′

𝑋= βˆ’πœ†

The two ODE’s are

𝑇′ + π‘˜πœ†π‘‡ = 0 (1)

𝑋′′ + πœ†π‘‹ = 0 (2)

Starting with the space ODE equation (2), with corresponding boundary conditions 𝑋 (0) =0, 𝑋 (𝐿) = 0. Assuming the solution is 𝑋 (π‘₯) = π‘’π‘Ÿπ‘₯, Then the characteristic equation is

π‘Ÿ2 + πœ† = 0π‘Ÿ2 = βˆ’πœ†

π‘Ÿ = Β±βˆšβˆ’πœ†

The following cases are considered.

case πœ† < 0 In this case, βˆ’πœ† and also βˆšβˆ’πœ† are positive. Hence the roots Β±βˆšβˆ’πœ† are both real.Let

βˆšβˆ’πœ† = 𝑠

Where 𝑠 > 0. This gives the solution

𝑋 (π‘₯) = 𝐴 cosh (𝑠π‘₯) + 𝐡 sinh (𝑠π‘₯)Applying the left B.C. 𝑋 (0) = 0 gives

0 = 𝐴 cosh (0) + 𝐡 sinh (0)= 𝐴

The solution becomes 𝑋 (π‘₯) = 𝐡 sinh (𝑠π‘₯). Applying the right B.C. 𝑒 (𝐿, 𝑑) = 0 gives

0 = 𝐡 sinh (𝑠𝐿)We want 𝐡 β‰  0 (else trivial solution). This means sinh (𝑠𝐿) must be zero. But sinh (𝑠𝐿) is zeroonly when its argument is zero. This means either 𝐿 = 0 which is not possible or πœ† = 0, butwe assumed πœ† β‰  0 in this case, therefore we run out of options to satisfy this case. Henceπœ† < 0 is not an eigenvalue.

case πœ† = 0

The ODE becomes𝑑2𝑋𝑑π‘₯2

= 0

The solution is

𝑋 (π‘₯) = 𝑐1π‘₯ + 𝑐2

Page 15: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

15

Applying left boundary conditions 𝑋 (0) = 0 gives

0 = 𝑋 (0)= 𝑐2

Hence the solution becomes 𝑋 (π‘₯) = 𝑐1π‘₯. Applying the right B.C. gives

0 = 𝑋 (𝐿)= 𝑐1𝐿

Hence 𝑐1 = 0. Hence trivial solution. πœ† = 0 is not an eigenvalue.

case πœ† > 0

Hence βˆ’πœ† is negative, and the roots are both complex.

π‘Ÿ = Β±π‘–βˆšπœ†

The solution is

𝑋 (π‘₯) = 𝐴 cos οΏ½βˆšπœ†π‘₯οΏ½ + 𝐡 sin οΏ½βˆšπœ†π‘₯οΏ½

The boundary conditions are now applied. The first B.C. 𝑋 (0) = 0 gives

0 = 𝐴 cos (0) + 𝐡 sin (0)= 𝐴

The ODE becomes 𝑋 (π‘₯) = 𝐡 sin οΏ½βˆšπœ†π‘₯οΏ½. Applying the second B.C. gives

0 = 𝐡 sin οΏ½βˆšπœ†πΏοΏ½

𝐡 β‰  0 else the solution is trivial. Therefore taking

sin οΏ½βˆšπœ†πΏοΏ½ = 0

οΏ½πœ†π‘›πΏ = π‘›πœ‹ 𝑛 = 1, 2, 3,β‹―

Hence eigenvalues are

πœ†π‘› =𝑛2πœ‹2

𝐿2𝑛 = 1, 2, 3,β‹―

The eigenfunctions associated with these eigenvalues are

𝑋𝑛 (π‘₯) = 𝐡𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

The time domain ODE is now solved. 𝑇′ + π‘˜πœ†π‘›π‘‡ = 0 has the solution

𝑇𝑛 (𝑑) = π‘’βˆ’π‘˜πœ†π‘›π‘‘

For the same set of eigenvalues. Notice that there is no need to add a new constant in theabove as it will be absorbed in the 𝐡𝑛 when combined in the following step below. Thesolution to the PDE becomes

𝑒𝑛 (π‘₯, 𝑑) = 𝑇𝑛 (𝑑) 𝑋𝑛 (π‘₯)

Page 16: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

16

But for linear system the sum of eigenfunctions is also a solution, therefore

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

𝑒𝑛 (π‘₯, 𝑑)

=βˆžοΏ½π‘›=1

𝐡𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑

Initial conditions are now applied. Setting 𝑑 = 0, the above becomes

𝑒 (π‘₯, 0) = 3 sin πœ‹π‘₯πΏβˆ’ sin 3πœ‹π‘₯

𝐿=

βˆžοΏ½π‘›=1

𝐡𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

As the series is unique, the terms coeοΏ½cients must match for those shown only, and all other𝐡𝑛 terms vanish. This means that by comparing terms

3 sin οΏ½πœ‹π‘₯𝐿� βˆ’ sin οΏ½

3πœ‹π‘₯𝐿 οΏ½ = 𝐡1 sin οΏ½πœ‹π‘₯

𝐿� + 𝐡3 sin �

3πœ‹πΏπ‘₯οΏ½

Therefore

𝐡1 = 3𝐡3 = βˆ’1

And all other 𝐡𝑛 = 0. The solution is

𝑒 (π‘₯, 𝑑) = 3 sin οΏ½πœ‹πΏπ‘₯οΏ½ π‘’βˆ’π‘˜οΏ½

πœ‹πΏ οΏ½

2𝑑 βˆ’ sin οΏ½

3πœ‹πΏπ‘₯οΏ½ 𝑒

βˆ’π‘˜οΏ½ 3πœ‹πΏ οΏ½2𝑑

0.4.2 Part (d)

Part (b) found the solution to be

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

𝐡𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑

The new initial conditions are now applied.

𝑓 (π‘₯) =βˆžοΏ½π‘›=1

𝐡𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ (1)

Where

𝑓 (π‘₯) =

⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩1 0 < π‘₯ ≀ 𝐿/22 𝐿/2 < π‘₯ < 𝐿

Multiplying both sides of (1) by sin οΏ½π‘šπœ‹πΏ π‘₯οΏ½ and integrating over the domain gives

�𝐿

0sin οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑓 (π‘₯) 𝑑π‘₯ = οΏ½

𝐿

0οΏ½βˆžοΏ½π‘›=1

𝐡𝑛 sin οΏ½π‘šπœ‹πΏπ‘₯οΏ½ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½οΏ½ 𝑑π‘₯

Interchanging the order of integration and summation

�𝐿

0sin οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑓 (π‘₯) 𝑑π‘₯ =

βˆžοΏ½π‘›=1

�𝐡𝑛 ��𝐿

0sin οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½οΏ½

Page 17: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

17

But ∫𝐿

0sin οΏ½π‘šπœ‹πΏ π‘₯οΏ½ sin οΏ½π‘›πœ‹πΏ π‘₯οΏ½ 𝑑π‘₯ = 0 for 𝑛 β‰  π‘š, hence only one term survives

�𝐿

0sin οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑓 (π‘₯) 𝑑π‘₯ = π΅π‘šοΏ½

𝐿

0sin2 οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

Renaming π‘š back to 𝑛 and since ∫𝐿

0sin2 οΏ½π‘šπœ‹πΏ π‘₯οΏ½ 𝑑π‘₯ =

𝐿2 the above becomes

�𝐿

0sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑓 (π‘₯) 𝑑π‘₯ =

𝐿2𝐡𝑛

𝐡𝑛 =2𝐿 οΏ½

𝐿

0sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑓 (π‘₯) 𝑑π‘₯

=2𝐿

βŽ›βŽœβŽœβŽœβŽœβŽοΏ½

𝐿2

0sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑓 (π‘₯) 𝑑π‘₯ +οΏ½

𝐿

𝐿2

sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ 𝑓 (π‘₯) 𝑑π‘₯

⎞⎟⎟⎟⎟⎠

=2𝐿

βŽ›βŽœβŽœβŽœβŽœβŽοΏ½

𝐿2

0sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ + 2οΏ½

𝐿

𝐿2

sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ 𝑑π‘₯

⎞⎟⎟⎟⎟⎠

=2𝐿

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

βˆ’ cos οΏ½π‘›πœ‹πΏ π‘₯οΏ½π‘›πœ‹πΏ

οΏ½

𝐿2

0

+ 2βˆ’ cos οΏ½π‘›πœ‹πΏ π‘₯οΏ½

π‘›πœ‹πΏ

οΏ½

𝐿

𝐿2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=2π‘›πœ‹

βŽ›βŽœβŽœβŽœβŽœβŽοΏ½βˆ’ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½οΏ½

𝐿2

0+ 2 οΏ½βˆ’ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½οΏ½

𝐿

𝐿2

⎞⎟⎟⎟⎟⎠

=2π‘›πœ‹ οΏ½οΏ½

βˆ’ cos οΏ½π‘›πœ‹πΏπΏ2οΏ½+ cos (0)οΏ½ + 2 οΏ½βˆ’ cos (π‘›πœ‹) + cos οΏ½π‘›πœ‹

2οΏ½οΏ½οΏ½

=2π‘›πœ‹

οΏ½βˆ’ cos οΏ½π‘›πœ‹2οΏ½ + 1 βˆ’ 2 cos (π‘›πœ‹) + 2 cos οΏ½π‘›πœ‹

2οΏ½οΏ½

=2π‘›πœ‹

οΏ½cos οΏ½π‘›πœ‹2οΏ½ + 1 βˆ’ 2 cos (π‘›πœ‹)οΏ½

Hence the solution is

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

𝐡𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑

With

𝐡𝑛 =2π‘›πœ‹

οΏ½cos οΏ½π‘›πœ‹2οΏ½ βˆ’ 2 cos (π‘›πœ‹) + 1οΏ½

=2π‘›πœ‹

οΏ½1 βˆ’ 2 (βˆ’1)𝑛 + cos οΏ½π‘›πœ‹2οΏ½οΏ½

Page 18: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

18

0.5 section 2.3.4 (problem 4)56 Chapter 2. Method of Separation of Variables

[Your answer in part (c) may involve certain integrals that do not need tobe evaluated.]

2.3.4. Consider

k02,

subject to u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f (x).

*(a) What is the total heat energy in the rod as a function of time?

(b) What is the flow of heat energy out of the rod at x = 0? at x = L?

*(c) What relationship should exist between parts (a) and (b)?

2.3.5. Evaluate (be careful if n = m)

L nzrx m7rxsin L sin L dx forn>0,m>0.

Use the trigonometric identity

*2.3.6. Evaluate

sin asin b = 2 [cos(a - b) - cos(a + b)] .

L n7rx m7rxcog L cc

Ldx for n > O, m > 0.

Use the trigonometric identity

cos a cos b = 2 [cos(a + b) + cos(a - b)] .

(Be careful if a - b = 0 or a + b = 0.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

= k82U

with au (0, t)=O, au (L, t) = 0, and u(x, 0) = f (x).at ax2 ax ax

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that thereare no separated solutions which exponentially grow in time. [Hint:The answer is

u(x, t) = Ao + > cos nix .

n=1

What is An?

0.5.1 Part (a)

By definition the total heat energy is

𝐸 = οΏ½π‘‰πœŒπ‘π‘’ (π‘₯, 𝑑) 𝑑𝑣

Assuming constant cross section area 𝐴, the above becomes (assuming all thermal propertiesare constant)

𝐸 = �𝐿

0πœŒπ‘π‘’ (π‘₯, 𝑑) 𝐴𝑑π‘₯

But 𝑒 (π‘₯, 𝑑) was found to be

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

𝐡𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑

For these boundary conditions from problem 2.3.3. Where 𝐡𝑛 was found from initial condi-tions. Substituting the solution found into the energy equation gives

𝐸 = πœŒπ‘π΄οΏ½πΏ

0οΏ½βˆžοΏ½π‘›=1

𝐡𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑� 𝑑π‘₯

= πœŒπ‘π΄βˆžοΏ½π‘›=1

οΏ½π΅π‘›π‘’βˆ’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½

2𝑑�

𝐿

0sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½

= πœŒπ‘π΄βˆžοΏ½π‘›=1

π΅π‘›π‘’βˆ’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½

2𝑑

βŽ›βŽœβŽœβŽœβŽœβŽœβŽβˆ’ cos οΏ½π‘›πœ‹πΏ π‘₯οΏ½

π‘›πœ‹πΏ

⎞⎟⎟⎟⎟⎟⎠

𝐿

0

= πœŒπ‘π΄βˆžοΏ½π‘›=1

π΅π‘›π‘’βˆ’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½

2𝑑 πΏπ‘›πœ‹

οΏ½βˆ’ cos οΏ½π‘›πœ‹πΏπΏοΏ½ + cos (0)οΏ½

= πœŒπ‘π΄βˆžοΏ½π‘›=1

π΅π‘›π‘’βˆ’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½

2𝑑 πΏπ‘›πœ‹

(1 βˆ’ cos (π‘›πœ‹))

=πΏπœŒπ‘π΄πœ‹

βˆžοΏ½π‘›=1

�𝐡𝑛𝑛(1 βˆ’ cos (π‘›πœ‹)) π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑�

Page 19: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

19

0.5.2 Part (b)

By definition, the flux is the amount of heat flow per unit time per unit area. Assuming thearea is 𝐴, then heat flow at π‘₯ = 0 into the rod per unit time (call it 𝐻 (π‘₯)) is

𝐻|π‘₯=0 = 𝐴 πœ™οΏ½π‘₯=0

= βˆ’π΄π‘˜πœ•π‘’πœ•π‘₯οΏ½π‘₯=0

Similarly, heat flow at π‘₯ = 𝐿 out of the rod per unit time is

𝐻|π‘₯=𝐿 = 𝐴 πœ™οΏ½π‘₯=𝐿

= βˆ’π΄π‘˜πœ•π‘’πœ•π‘₯οΏ½π‘₯=𝐿

To obtain heat flow at π‘₯ = 0 leaving the rod, the sign is changed and it becomes π΄π‘˜ πœ•π‘’πœ•π‘₯ οΏ½π‘₯=0

.

Since 𝑒 (π‘₯, 𝑑) = βˆ‘βˆžπ‘›=1 𝐡𝑛 sin οΏ½π‘›πœ‹πΏ π‘₯οΏ½ 𝑒

βˆ’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½2𝑑 then

πœ•π‘’πœ•π‘₯

=βˆžοΏ½π‘›=1

π΅π‘›π‘›πœ‹πΏ

cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½ π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑

Then at π‘₯ = 0 then heat flow leaving of the rod becomes

π΄π‘˜πœ•π‘’πœ•π‘₯οΏ½π‘₯=0

= π΄π‘˜βˆžοΏ½π‘›=1

π‘›πœ‹πΏπ΅π‘›π‘’

βˆ’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½2𝑑

And at π‘₯ = 𝐿, the heat flow out of the bar

βˆ’π΄π‘˜πœ•π‘’πœ•π‘₯οΏ½π‘₯=𝐿

= βˆ’π΄π‘˜βˆžοΏ½π‘›=1

π΅π‘›π‘›πœ‹πΏ

cos οΏ½π‘›πœ‹πΏπΏοΏ½ π‘’βˆ’πœ…οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑

= βˆ’π΄π‘˜βˆžοΏ½π‘›=1

π΅π‘›π‘›πœ‹πΏ

cos (π‘›πœ‹) π‘’βˆ’πœ…οΏ½π‘›πœ‹πΏ οΏ½

2𝑑

= βˆ’π΄π‘˜βˆžοΏ½π‘›=1

(βˆ’1)𝑛 π΅π‘›π‘›πœ‹πΏπ‘’βˆ’πœ…οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑

0.5.3 Part (c)

Total 𝐸 inside the bar at time 𝑑 is given by initial energy 𝐸𝑑=0 and time integral of flow ofheat energy into the bar. Since from part (a)

𝐸 = πΏπœŒπ‘π΄πœ‹

βˆžοΏ½π‘›=1

π΅π‘›π‘›π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑 (1 βˆ’ cos (π‘›πœ‹))

Then initial energy is

𝐸𝑑=0 = πΏπœŒπ‘π΄πœ‹

βˆžοΏ½π‘›=1

𝐡𝑛𝑛(1 βˆ’ cos (π‘›πœ‹))

Page 20: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

20

And total heat flow into the rod (per unit time) is οΏ½βˆ’π΄π‘˜πœ•π‘’πœ•π‘₯ οΏ½π‘₯=0

+ π΄π‘˜ πœ•π‘’πœ•π‘₯ οΏ½π‘₯=𝐿

οΏ½, therefore

πΏπœŒπ‘π΄πœ‹

βˆžοΏ½π‘›=1

π΅π‘›π‘›π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑 (1 βˆ’ cos (π‘›πœ‹)) = οΏ½

𝑑

0οΏ½βˆ’π΄π‘˜

πœ•π‘’πœ•π‘₯οΏ½π‘₯=0

+ π΄π‘˜πœ•π‘’πœ•π‘₯οΏ½π‘₯=𝐿� 𝑑π‘₯

= π΄π‘˜οΏ½π‘‘

0οΏ½πœ•π‘’ (𝐿)πœ•π‘₯

βˆ’πœ•π‘’ (0)πœ•π‘₯ οΏ½ 𝑑π‘₯

Butπœ•π‘’ (𝐿)πœ•π‘₯

βˆ’πœ•π‘’ (0)πœ•π‘₯

=πœ‹πΏ

βˆžοΏ½π‘›=1

𝑛𝐡𝑛 (βˆ’1)𝑛 π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑 βˆ’

πœ‹πΏ

βˆžοΏ½π‘›=1

π‘›π΅π‘›π‘’βˆ’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½

2𝑑

=πœ‹πΏ οΏ½

βˆžοΏ½π‘›=1

𝑛𝐡𝑛 (βˆ’1)𝑛 π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑 βˆ’

βˆžοΏ½π‘›=1

π‘›π΅π‘›π‘’βˆ’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½

2𝑑�

HenceπΏπœŒπ‘π΄πœ‹

βˆžοΏ½π‘›=1

𝐡𝑛𝑛

expβˆ’π‘˜οΏ½π‘›πœ‹πΏ οΏ½

2𝑑 (1 βˆ’ cos (π‘›πœ‹)) = π΄π‘˜πœ‹

𝐿 �𝑑

0οΏ½βˆžοΏ½π‘›=1

𝑛𝐡𝑛 (βˆ’1)𝑛 π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑 βˆ’

βˆžοΏ½π‘›=1

π‘›π΅π‘›π‘’βˆ’π‘˜οΏ½ π‘›πœ‹πΏ οΏ½

2𝑑� 𝑑π‘₯

0.6 section 2.3.5 (problem 5)

56 Chapter 2. Method of Separation of Variables

[Your answer in part (c) may involve certain integrals that do not need tobe evaluated.]

2.3.4. Consider

k02,

subject to u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f (x).

*(a) What is the total heat energy in the rod as a function of time?

(b) What is the flow of heat energy out of the rod at x = 0? at x = L?

*(c) What relationship should exist between parts (a) and (b)?

2.3.5. Evaluate (be careful if n = m)

L nzrx m7rxsin L sin L dx forn>0,m>0.

Use the trigonometric identity

*2.3.6. Evaluate

sin asin b = 2 [cos(a - b) - cos(a + b)] .

L n7rx m7rxcog L cc

Ldx for n > O, m > 0.

Use the trigonometric identity

cos a cos b = 2 [cos(a + b) + cos(a - b)] .

(Be careful if a - b = 0 or a + b = 0.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

= k82U

with au (0, t)=O, au (L, t) = 0, and u(x, 0) = f (x).at ax2 ax ax

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that thereare no separated solutions which exponentially grow in time. [Hint:The answer is

u(x, t) = Ao + > cos nix .

n=1

What is An?

𝐼 = �𝐿

0sin οΏ½π‘›πœ‹π‘₯

𝐿� sin οΏ½π‘šπœ‹π‘₯

𝐿� 𝑑π‘₯

Considering first the case π‘š = 𝑛. The integral becomes

𝐼 = �𝐿

0sin2 οΏ½π‘›πœ‹π‘₯

𝐿� 𝑑π‘₯ =

𝐿2

For the case where 𝑛 β‰  π‘š, using

sin π‘Ž sin 𝑏 = 12(cos (π‘Ž βˆ’ 𝑏) βˆ’ cos (π‘Ž + 𝑏))

Page 21: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

21

The integral 𝐼 becomes 2

𝐼 =12 �

𝐿

0cos οΏ½π‘›πœ‹π‘₯

πΏβˆ’π‘šπœ‹π‘₯𝐿

οΏ½ βˆ’ cos οΏ½π‘›πœ‹π‘₯𝐿

+π‘šπœ‹π‘₯𝐿

οΏ½ 𝑑π‘₯

=12 οΏ½

𝐿

0cos οΏ½

πœ‹π‘₯ (𝑛 βˆ’ π‘š)𝐿 οΏ½ βˆ’ cos οΏ½

πœ‹π‘₯ (𝑛 + π‘š)𝐿 οΏ½ 𝑑π‘₯

=12

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

sin οΏ½πœ‹π‘₯(π‘›βˆ’π‘š)𝐿�

πœ‹(π‘›βˆ’π‘š)𝐿

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐿

0

βˆ’12

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

sin οΏ½πœ‹π‘₯(𝑛+π‘š)𝐿�

πœ‹(𝑛+π‘š)𝐿

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐿

0

=𝐿

2πœ‹ (𝑛 βˆ’ π‘š) οΏ½sin οΏ½

πœ‹π‘₯ (𝑛 βˆ’ π‘š)𝐿 οΏ½οΏ½

𝐿

0βˆ’

𝐿2πœ‹ (𝑛 + π‘š) οΏ½

sin οΏ½πœ‹π‘₯ (𝑛 + π‘š)

𝐿 ��𝐿

0(1)

But

οΏ½sin οΏ½πœ‹π‘₯ (𝑛 βˆ’ π‘š)

𝐿 ��𝐿

0= sin (πœ‹ (𝑛 βˆ’ π‘š)) βˆ’ sin (0)

And since 𝑛 βˆ’ π‘š is integer, then sin (πœ‹ (𝑛 βˆ’ π‘š)) = 0, therefore οΏ½sin οΏ½πœ‹π‘₯(π‘›βˆ’π‘š)𝐿��𝐿

0= 0. Similarly

οΏ½sin οΏ½πœ‹π‘₯ (𝑛 + π‘š)

𝐿 ��𝐿

0= sin (πœ‹ (𝑛 + π‘š)) βˆ’ sin (0)

Since 𝑛 + π‘š is integer then sin (πœ‹ (𝑛 + π‘š)) = 0 and οΏ½sin οΏ½πœ‹π‘₯(𝑛+π‘š)𝐿��𝐿

0= 0. Therefore

�𝐿

0sin οΏ½π‘›πœ‹π‘₯

𝐿� sin οΏ½π‘šπœ‹π‘₯

𝐿� 𝑑π‘₯ =

⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩

𝐿2 𝑛 = π‘š0 otherwise

2Note that the term (𝑛 βˆ’ π‘š) showing in the denominator is not a problem now, since this is the case where𝑛 β‰  π‘š.

Page 22: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

22

0.7 section 2.3.7 (problem 6)

56 Chapter 2. Method of Separation of Variables

[Your answer in part (c) may involve certain integrals that do not need tobe evaluated.]

2.3.4. Consider

k02,

subject to u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f (x).

*(a) What is the total heat energy in the rod as a function of time?

(b) What is the flow of heat energy out of the rod at x = 0? at x = L?

*(c) What relationship should exist between parts (a) and (b)?

2.3.5. Evaluate (be careful if n = m)

L nzrx m7rxsin L sin L dx forn>0,m>0.

Use the trigonometric identity

*2.3.6. Evaluate

sin asin b = 2 [cos(a - b) - cos(a + b)] .

L n7rx m7rxcog L cc

Ldx for n > O, m > 0.

Use the trigonometric identity

cos a cos b = 2 [cos(a + b) + cos(a - b)] .

(Be careful if a - b = 0 or a + b = 0.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

= k82U

with au (0, t)=O, au (L, t) = 0, and u(x, 0) = f (x).at ax2 ax ax

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that thereare no separated solutions which exponentially grow in time. [Hint:The answer is

u(x, t) = Ao + > cos nix .

n=1

What is An?

0.7.1 part (a)

This PDE describes how temperature 𝑒 changes in a rod of length 𝐿 as a function of time 𝑑and location π‘₯. The left and right end are insulated, so no heat escapes from these boundaries.Initially at 𝑑 = 0, the temperature distribution in the rod is described by the function 𝑓 (π‘₯).

0.7.2 Part (b)

πœ•π‘’πœ•π‘‘

= π‘˜πœ•2π‘’πœ•π‘₯2

Let 𝑒 (π‘₯, 𝑑) = 𝑇 (𝑑) 𝑋 (π‘₯), then the PDE becomes1π‘˜π‘‡β€²π‘‹ = 𝑋′′𝑇

Dividing by 𝑋𝑇 β‰  01π‘˜π‘‡β€²

𝑇=𝑋′′

𝑋Since each side depends on diοΏ½erent independent variable and both are equal, they mustbe both equal to same constant, say βˆ’πœ†. Where πœ† is assumed real.

1π‘˜π‘‡β€²

𝑇=𝑋′′

𝑋= βˆ’πœ†

The two ODE’s generated are

𝑇′ + π‘˜πœ†π‘‡ = 0 (1)

𝑋′′ + πœ†π‘‹ = 0 (2)

Page 23: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

23

Starting with the space ODE equation (2), with corresponding boundary conditions 𝑑𝑋𝑑π‘₯(0) =

0, 𝑑𝑋𝑑π‘₯ (𝐿) = 0. Assuming the solution is 𝑋 (π‘₯) = π‘’π‘Ÿπ‘₯, Then the characteristic equation is

π‘Ÿ2 + πœ† = 0π‘Ÿ2 = βˆ’πœ†

π‘Ÿ = Β±βˆšβˆ’πœ†

The following cases are considered.

case πœ† < 0 In this case, βˆ’πœ† and also βˆšβˆ’πœ† are positive. Hence the roots Β±βˆšβˆ’πœ† are both real.Let

βˆšβˆ’πœ† = 𝑠

Where 𝑠 > 0. This gives the solution

𝑋 (π‘₯) = 𝐴 cosh (𝑠π‘₯) + 𝐡 sinh (𝑠π‘₯)𝑑𝑋𝑑π‘₯

= 𝐴 sinh (𝑠π‘₯) + 𝐡 cosh (𝑠π‘₯)

Applying the left B.C. gives

0 =𝑑𝑋𝑑π‘₯

(0)

= 𝐡 cosh (0)= 𝐡

The solution becomes 𝑋 (π‘₯) = 𝐴 cosh (𝑠π‘₯) and hence𝑑𝑋𝑑π‘₯ = 𝐴 sinh (𝑠π‘₯). Applying the right B.C.gives

0 =𝑑𝑋𝑑π‘₯

(𝐿)

= 𝐴 sinh (𝑠𝐿)𝐴 = 0 result in trivial solution. Therefore assuming sinh (𝑠𝐿) = 0 implies 𝑠𝐿 = 0 whichis not valid since 𝑠 > 0 and 𝐿 β‰  0. Hence only trivial solution results from this case.πœ† < 0 is not an eigenvalue.

case πœ† = 0

The ODE becomes𝑑2𝑋𝑑π‘₯2

= 0

The solution is

𝑋 (π‘₯) = 𝑐1π‘₯ + 𝑐2𝑑𝑋𝑑π‘₯

= 𝑐1

Page 24: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

24

Applying left boundary conditions gives

0 =𝑑𝑋𝑑π‘₯

(0)

= 𝑐1

Hence the solution becomes 𝑋 (π‘₯) = 𝑐2. Therefore𝑑𝑋𝑑π‘₯ = 0. Applying the right B.C. provides

no information.

Therefore this case leads to the solution 𝑋 (π‘₯) = 𝑐2. Associated with this one eigenvalue,the time equation becomes 𝑑𝑇0

𝑑𝑑 = 0 hence 𝑇0 is constant, say 𝛼. Hence the solution 𝑒0 (π‘₯, 𝑑)associated with this πœ† = 0 is

𝑒0 (π‘₯, 𝑑) = 𝑋0𝑇0= 𝑐2𝛼= 𝐴0

where constant 𝑐2𝛼was renamed to𝐴0 to indicate it is associated with πœ† = 0. πœ† = 0 is an eigenvalue.

case πœ† > 0

Hence βˆ’πœ† is negative, and the roots are both complex.

π‘Ÿ = Β±π‘–βˆšπœ†

The solution is

𝑋 (π‘₯) = 𝐴 cos οΏ½βˆšπœ†π‘₯οΏ½ + 𝐡 sin οΏ½βˆšπœ†π‘₯οΏ½

𝑑𝑋𝑑π‘₯

= βˆ’π΄βˆšπœ† sin οΏ½βˆšπœ†π‘₯οΏ½ + π΅βˆšπœ† cos οΏ½βˆšπœ†π‘₯οΏ½

Applying the left B.C. gives

0 =𝑑𝑋𝑑π‘₯

(0)

= π΅βˆšπœ† cos (0)

= π΅βˆšπœ†

Therefore 𝐡 = 0 as πœ† > 0. The solution becomes 𝑋 (π‘₯) = 𝐴 cos οΏ½βˆšπœ†π‘₯οΏ½ and 𝑑𝑋𝑑π‘₯ = βˆ’π΄βˆšπœ† sin οΏ½βˆšπœ†π‘₯οΏ½.

Applying the right B.C. gives

0 =𝑑𝑋𝑑π‘₯

(𝐿)

= βˆ’π΄βˆšπœ† sin οΏ½βˆšπœ†πΏοΏ½

𝐴 = 0 gives a trivial solution. Selecting sin οΏ½βˆšπœ†πΏοΏ½ = 0 gives

βˆšπœ†πΏ = π‘›πœ‹ 𝑛 = 1, 2, 3,β‹―

Or

πœ†π‘› = οΏ½π‘›πœ‹πΏοΏ½2

𝑛 = 1, 2, 3,β‹―

Page 25: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

25

Therefore the space solution is

𝑋𝑛 (π‘₯) = 𝐴𝑛 cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½ 𝑛 = 1, 2, 3,β‹―

The time solution is found by solving𝑑𝑇𝑛𝑑𝑑

+ π‘˜πœ†π‘›π‘‡π‘› = 0

This has the solution

𝑇𝑛 (𝑑) = π‘’βˆ’π‘˜πœ†π‘›π‘‘

= π‘’βˆ’π‘˜οΏ½π‘›πœ‹πΏ οΏ½

2𝑑 𝑛 = 1, 2, 3,β‹―

For the same set of eigenvalues. Notice that no need to add a constant here, since it willbe absorbed in the 𝐴𝑛 when combined in the following step below. Since for πœ† = 0 the

time solution was found to be constant, and for πœ† > 0 the time solution is π‘’βˆ’π‘˜οΏ½π‘›πœ‹πΏ οΏ½

2𝑑, then

no time solution will grow with time. Time solutions always decay with time as the exponent

βˆ’π‘˜ οΏ½π‘›πœ‹πΏ οΏ½2𝑑 is negative quantity. The solution to the PDE for πœ† > 0 is

𝑒𝑛 (π‘₯, 𝑑) = 𝑇𝑛 (𝑑) 𝑋𝑛 (π‘₯) 𝑛 = 0, 1, 2, 3,β‹―

But for linear system sum of eigenfunctions is also a solution. Hence

𝑒 (π‘₯, 𝑑) = π‘’πœ†=0 (π‘₯, 𝑑) +βˆžοΏ½π‘›=1

𝑒𝑛 (π‘₯, 𝑑)

= 𝐴0 +βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½ π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑

0.7.3 Part c

From the solution found above, setting 𝑑 = 0 gives

𝑒 (π‘₯, 0) = 𝐴0 +βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Therefore, 𝑓 (π‘₯) must satisfy the above

𝑓 (π‘₯) = 𝐴0 +βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Page 26: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

26

0.7.4 Part d

Multiplying both sides with cos οΏ½π‘šπœ‹πΏ π‘₯οΏ½ where in this problem π‘š = 0, 1, 2,β‹― (since there wasan eigenvalue associated with πœ† = 0), and integrating over the domain gives

�𝐿

0𝑓 (π‘₯) cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ = οΏ½

𝐿

0cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ �𝐴0 +

βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½οΏ½ 𝑑π‘₯

= �𝐿

0𝐴0 cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ +οΏ½ cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½

βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½ 𝑑π‘₯

= �𝐿

0𝐴0 cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ +οΏ½

𝐿

0

βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½π‘šπœ‹πΏπ‘₯οΏ½ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

Interchanging the order of summation and integration

�𝐿

0𝑓 (π‘₯) cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ = οΏ½

𝐿

0𝐴0 cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ +

βˆžοΏ½π‘›=1

𝐴𝑛�𝐿

0cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ (1)

case π‘š = 0

When π‘š = 0 then cos οΏ½π‘šπœ‹πΏ π‘₯οΏ½ = 1 and the above simplifies to

�𝐿

0𝑓 (π‘₯) 𝑑π‘₯ = οΏ½

𝐿

0𝐴0𝑑π‘₯ +

βˆžοΏ½π‘›=1

𝐴𝑛�𝐿

0cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

But ∫𝐿

0cos οΏ½π‘›πœ‹πΏ π‘₯οΏ½ 𝑑π‘₯ = 0 and the above becomes

�𝐿

0𝑓 (π‘₯) 𝑑π‘₯ = οΏ½

𝐿

0𝐴0𝑑π‘₯

= 𝐴0𝐿

Therefore

𝐴0 =1𝐿∫𝐿0𝑓 (π‘₯) 𝑑π‘₯

case π‘š > 0

From (1), one term survives in the integration when only 𝑛 = π‘š, hence

�𝐿

0𝑓 (π‘₯) cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ = 𝐴0οΏ½

𝐿

0cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ + π΄π‘šοΏ½

𝐿

0cos2 οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

But ∫𝐿

0cos οΏ½π‘šπœ‹πΏ π‘₯οΏ½ 𝑑π‘₯ = 0 and the above becomes

�𝐿

0𝑓 (π‘₯) cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ = π΄π‘š

𝐿2

Therefore

𝐴𝑛 =2𝐿∫𝐿0𝑓 (π‘₯) cos οΏ½π‘›πœ‹πΏ π‘₯οΏ½ 𝑑π‘₯

For 𝑛 = 1, 2, 3,β‹―

Page 27: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

27

0.7.5 Part (e)

The solution was found to be

𝑒 (π‘₯, 𝑑) = 𝐴0 +βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½ π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑

In the limit as 𝑑 β†’ ∞ the term π‘’βˆ’π‘˜οΏ½π‘›πœ‹πΏ οΏ½

2𝑑 β†’ 0. What is left is 𝐴0. But 𝐴0 =

1𝐿∫𝐿0𝑓 (π‘₯) 𝑑π‘₯ from

above. This quantity is the average of the initial temperature.

0.8 section 2.3.8 (problem 7)

2.3. Heat Equation With Zero Temperature Ends 57

(c) Show that the initial condition, u(x, 0) = f (x), is satisfied if

f (x) = Ao + E A. cos00

n=1

(d) Using Exercise 2.3.6, solve for AO and An(n > 1).(e) What happens to the temperature distribution as t -+ oo? Show that

it approaches the steady-state temperature distribution (see Sec. 1.4).

*2.3.8. Consider8u 02u& = kax2 - au.

This corresponds to a one-dimensional rod either with heat loss through thelateral sides with outside temperature 0Β° (a > 0, see Exercise 1.2.4) or withinsulated lateral sides with a heat sink proportional to the temperature.Suppose that the boundary conditions are

u(0,t) = 0 and u(L,t) = 0.

(a) What are the possible equilibrium temperature distributions if a > 0?(b) Solve the time-dependent problem [u(x, 0) = f (x)] if a > 0. Analyze

the temperature for large time (t --+ oo) and compare to part (a).

*2.3.9. Redo Exercise 2.3.8 if a < 0. [Be especially careful if -a/k = (n7r/L)2.]

2.3.10. For two- and three-dimensional vectors, the fundamental property of dotproducts, A B = IAI[BI cos9, implies that

IA - BI < IAIIBI. (2.3.44)

In this exercise we generalize this to n-dimensional vectors and functions,in which case (2.3.44) is known as Schwarz's inequality. [The names ofCauchy and Buniakovsky are also associated with (2.3.44).]

(a) Show that IA - -yBi2 > 0 implies (2.3.44), where ry = A B/B B.(b) Express the inequality using both

00 00 b

n.n=1 n=1 Cn

*(c) Generalize (2.3.44) to functions. [Hint: Let A A. B mean the integralJ L A(x)B(x) dx.]

2.3.11. Solve Laplace's equation inside a rectangle:

2=

02u 02uV U

axe+ 8y2 = 0

subject to the boundary conditions

u(0,y) = g(y) u(x,0) = 0u(L, y) = 0 u(x, H) = 0.

(Hint: If necessary, see Sec. 2.5.1.)

0.8.1 part (a)

Equilibrium is at steady state, which implies πœ•π‘’πœ•π‘‘ = 0 and the PDE becomes an ODE, since

𝑒 ≑ 𝑒 (π‘₯) at steady state. Hence

𝑑2𝑒𝑑π‘₯2

βˆ’π›Όπ‘˜π‘’ = 0

The characteristic equation is π‘Ÿ2 = π›Όπ‘˜ or π‘Ÿ = Β±οΏ½

π›Όπ‘˜ . Since 𝛼 > 0 and π‘˜ > 0 then the roots are

real, and the solution is

𝑒 = 𝐴0π‘’οΏ½π›Όπ‘˜ π‘₯ + 𝐡0𝑒

βˆ’οΏ½π›Όπ‘˜ π‘₯

This can be rewritten as

𝑒 (π‘₯) = 𝐴 cosh οΏ½οΏ½π›Όπ‘˜π‘₯οΏ½ + 𝐡 sinh οΏ½

οΏ½π›Όπ‘˜π‘₯οΏ½

Applying left B.C. gives

0 = 𝑒 (0)= 𝐴 cosh (0)= 𝐴

Page 28: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

28

The solution becomes 𝑒 (π‘₯) = 𝐡 sinh οΏ½οΏ½π›Όπ‘˜ π‘₯οΏ½. Applying the right boundary condition gives

0 = 𝑒 (𝐿)

= 𝐡 sinh οΏ½οΏ½π›Όπ‘˜πΏοΏ½

𝐡 = 0 leads to trivial solution. Setting sinh οΏ½οΏ½π›Όπ‘˜πΏοΏ½ = 0 implies οΏ½

π›Όπ‘˜πΏ = 0. But this is not

possible since 𝐿 β‰  0. Hence the only solution possible is

𝑒 (π‘₯) = 0

0.8.2 Part (b)

πœ•π‘’πœ•π‘‘

= π‘˜πœ•2π‘’πœ•π‘₯2

βˆ’ 𝛼𝑒

πœ•π‘’πœ•π‘‘

+ 𝛼𝑒 = π‘˜πœ•2π‘’πœ•π‘₯2

Assuming 𝑒 (π‘₯, 𝑑) = 𝑋 (π‘₯) 𝑇 (𝑑) and substituting in the above gives

𝑋𝑇′ + 𝛼𝑋𝑇 = π‘˜π‘‡π‘‹β€²β€²

Dividing by π‘˜π‘‹π‘‡ β‰  0𝑇′

π‘˜π‘‡+π›Όπ‘˜=𝑋′′

𝑋Since each side depends on diοΏ½erent independent variable and both are equal, they mustbe both equal to same constant, say βˆ’πœ†. Where πœ† is assumed real.

1π‘˜π‘‡β€²

𝑇+π›Όπ‘˜=𝑋′′

𝑋= βˆ’πœ†

The two ODE’s are1π‘˜π‘‡β€²

𝑇+π›Όπ‘˜= βˆ’πœ†

𝑋′′

𝑋= βˆ’πœ†

Or

𝑇′ + (𝛼 + πœ†π‘˜) 𝑇 = 0𝑋′′ + πœ†π‘‹ = 0

The solution to the space ODE is the familiar (where πœ† > 0 is only possible case, As foundin problem 2.3.3, part d. Since it has the same B.C.)

𝑋𝑛 = 𝐡𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ 𝑛 = 1, 2, 3,β‹―

Where πœ†π‘› = οΏ½π‘›πœ‹πΏοΏ½2. The time ODE is now solved.

𝑑𝑇𝑛𝑑𝑑

+ (𝛼 + πœ†π‘›π‘˜) 𝑇𝑛 = 0

Page 29: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

29

This has the solution

𝑇𝑛 (𝑑) = π‘’βˆ’(𝛼+πœ†π‘›π‘˜)𝑑

= π‘’βˆ’π›Όπ‘‘π‘’βˆ’οΏ½π‘›πœ‹πΏ οΏ½

2π‘˜π‘‘

For the same eigenvalues. Notice that no need to add a constant here, since it will beabsorbed in the 𝐡𝑛 when combined in the following step below. Therefore the solution tothe PDE is

𝑒𝑛 (π‘₯, 𝑑) = 𝑇𝑛 (𝑑) 𝑋𝑛 (π‘₯)

But for linear system sum of eigenfunctions is also a solution. Hence

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

𝑒𝑛 (π‘₯, 𝑑)

=βˆžοΏ½π‘›=1

𝐡𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ π‘’βˆ’π›Όπ‘‘π‘’βˆ’οΏ½

π‘›πœ‹πΏ οΏ½

2π‘˜π‘‘

= π‘’βˆ’π›Όπ‘‘βˆžοΏ½π‘›=1

𝐡𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½ π‘’βˆ’οΏ½

π‘›πœ‹πΏ οΏ½

2π‘˜π‘‘

Where π‘’βˆ’π›Όπ‘‘ was moved outside since it does not depend on 𝑛. From initial condition

𝑒 (π‘₯, 0) = 𝑓 (π‘₯) =βˆžοΏ½π‘›=1

𝐡𝑛 sin οΏ½π‘›πœ‹πΏπ‘₯οΏ½

Applying orthogonality of sin as before to find 𝐡𝑛 results in

𝐡𝑛 =2𝐿 οΏ½

𝐿

0sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑓 (π‘₯) 𝑑π‘₯

Hence the solution becomes

𝑒 (π‘₯, 𝑑) =2πΏπ‘’βˆ’π›Όπ‘‘ οΏ½

βˆžοΏ½π‘›=1

��𝐿

0sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑓 (π‘₯) 𝑑π‘₯οΏ½ sin οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ π‘’βˆ’οΏ½

π‘›πœ‹πΏ οΏ½

2π‘˜π‘‘οΏ½

Hence it is clear that in the limit as 𝑑 becomes large 𝑒 (π‘₯, 𝑑) β†’ 0 since the sum is multipliedby π‘’βˆ’π›Όπ‘‘ and 𝛼 > 0

limπ‘‘β†’βˆž

𝑒 (π‘₯, 𝑑) = 0

This agrees with part (a)

Page 30: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

30

0.9 section 2.3.10 (problem 8)

2.3. Heat Equation With Zero Temperature Ends 57

(c) Show that the initial condition, u(x, 0) = f (x), is satisfied if

f (x) = Ao + E A. cos00

n=1

(d) Using Exercise 2.3.6, solve for AO and An(n > 1).(e) What happens to the temperature distribution as t -+ oo? Show that

it approaches the steady-state temperature distribution (see Sec. 1.4).

*2.3.8. Consider8u 02u& = kax2 - au.

This corresponds to a one-dimensional rod either with heat loss through thelateral sides with outside temperature 0Β° (a > 0, see Exercise 1.2.4) or withinsulated lateral sides with a heat sink proportional to the temperature.Suppose that the boundary conditions are

u(0,t) = 0 and u(L,t) = 0.

(a) What are the possible equilibrium temperature distributions if a > 0?(b) Solve the time-dependent problem [u(x, 0) = f (x)] if a > 0. Analyze

the temperature for large time (t --+ oo) and compare to part (a).

*2.3.9. Redo Exercise 2.3.8 if a < 0. [Be especially careful if -a/k = (n7r/L)2.]

2.3.10. For two- and three-dimensional vectors, the fundamental property of dotproducts, A B = IAI[BI cos9, implies that

IA - BI < IAIIBI. (2.3.44)

In this exercise we generalize this to n-dimensional vectors and functions,in which case (2.3.44) is known as Schwarz's inequality. [The names ofCauchy and Buniakovsky are also associated with (2.3.44).]

(a) Show that IA - -yBi2 > 0 implies (2.3.44), where ry = A B/B B.(b) Express the inequality using both

00 00 b

n.n=1 n=1 Cn

*(c) Generalize (2.3.44) to functions. [Hint: Let A A. B mean the integralJ L A(x)B(x) dx.]

2.3.11. Solve Laplace's equation inside a rectangle:

2=

02u 02uV U

axe+ 8y2 = 0

subject to the boundary conditions

u(0,y) = g(y) u(x,0) = 0u(L, y) = 0 u(x, H) = 0.

(Hint: If necessary, see Sec. 2.5.1.)

οΏ½οΏ½Μ„οΏ½ βˆ’ 𝛾�̄��2 = οΏ½οΏ½Μ„οΏ½ βˆ’ 𝛾�̄�� β‹… οΏ½οΏ½Μ„οΏ½ βˆ’ 𝛾�̄��

Since οΏ½οΏ½Μ„οΏ½ βˆ’ 𝛾�̄��2 β‰₯ 0 then

οΏ½οΏ½Μ„οΏ½ βˆ’ 𝛾�̄�� β‹… οΏ½οΏ½Μ„οΏ½ βˆ’ 𝛾�̄�� β‰₯ 0

Expanding

οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ βˆ’ 𝛾 οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ βˆ’ 𝛾 οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ + 𝛾2 οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ β‰₯ 0

But οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½ = οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½, henceοΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ βˆ’ 2𝛾 οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ + 𝛾2 οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ β‰₯ 0

Using the definition of 𝛾 = οΏ½Μ„οΏ½β‹…οΏ½Μ„οΏ½οΏ½Μ„οΏ½β‹…οΏ½Μ„οΏ½ into the above gives

οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ βˆ’ 2οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½

οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ +οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½

2

οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½2 οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ β‰₯ 0

οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ βˆ’ 2οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½

2

οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½+οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½

2

οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½β‰₯ 0

οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ βˆ’οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½

2

οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½β‰₯ 0

οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ βˆ’ οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½2β‰₯ 0

οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ β‰₯ οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½2

But οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½2= οΏ½οΏ½Μ„οΏ½ β‹… 𝐡�2 since οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½ is just a number. The above becomes

οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ β‰₯ οΏ½οΏ½Μ„οΏ½ β‹… 𝐡�2

Page 31: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

31

And οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½ = οΏ½οΏ½Μ„οΏ½οΏ½2 and οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ = οΏ½οΏ½Μ„οΏ½οΏ½2 by definition as well. Therefore the above becomes

οΏ½οΏ½Μ„οΏ½ β‹… 𝐡�2 ≀ οΏ½οΏ½Μ„οΏ½οΏ½2 οΏ½οΏ½Μ„οΏ½οΏ½2

Taking square root gives

οΏ½οΏ½Μ„οΏ½ β‹… 𝐡� ≀ οΏ½οΏ½Μ„οΏ½οΏ½ οΏ½οΏ½Μ„οΏ½οΏ½

Which is Schwarz’s inequality.

0.9.1 Part b

From the norm definition

οΏ½οΏ½Μ„οΏ½οΏ½ = οΏ½οΏ½π‘₯2 + 𝑦2 + 𝑧2

Then

οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½ = οΏ½οΏ½Μ„οΏ½οΏ½2 =οΏ½π‘₯2 + 𝑦2 + 𝑧2

Hence

οΏ½οΏ½Μ„οΏ½οΏ½2 =βˆžοΏ½π‘›=1

π‘Ž2𝑛

οΏ½οΏ½Μ„οΏ½οΏ½2 =βˆžοΏ½π‘›=1

𝑏2𝑛

And

οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½ =βˆžοΏ½π‘›=1

π‘Žπ‘›π‘π‘›

Therefore the inequality can be written as

οΏ½οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½οΏ½2≀ οΏ½οΏ½Μ„οΏ½οΏ½2 οΏ½οΏ½Μ„οΏ½οΏ½2

οΏ½βˆžοΏ½π‘›=1

π‘Žπ‘›π‘π‘›οΏ½2

≀ οΏ½βˆžοΏ½π‘›=1

π‘Ž2𝑛� οΏ½βˆžοΏ½π‘›=1

𝑏2𝑛�

0.9.2 Part c

Using οΏ½Μ„οΏ½ β‹… οΏ½Μ„οΏ½ for functions to mean ∫𝐿

0𝐴 (π‘₯) 𝐡 (π‘₯) 𝑑π‘₯ then inequality for functions becomes

��𝐿

0𝐴 (π‘₯) 𝐡 (π‘₯) 𝑑π‘₯οΏ½

2

≀ ��𝐿

0𝐴2 (π‘₯) 𝑑π‘₯οΏ½ οΏ½οΏ½

𝐿

0𝐡2 (π‘₯) 𝑑π‘₯οΏ½

Page 32: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

32

0.10 section 2.4.1 (problem 9)

2.4. Worked Examples with the Heat Equation

Table 2.4.1: Boundary Value Problemsford2o

e= -a0

69

(0) = 0 m(-L) _ (L)Boundary 46(0) = 0conditions 46(L) = 0

(L) = 0 dx (-L) = dx (L)

Eigenvaluesnn) a )( (nvr) 2

An( L

n = 1, 2, 3,...

TL

n = 0, 1, 2, 3,...L

n = 0, 1, 2, 3,...

Eigenfunctionsn7rx

sin L naxcos L

naxsin

Land cos L

00x1(x) EΒ°n cos n

Series00

f ( x ) _ E Bn sinnrx f(x) A. cos

Ln=0

n=1 L n=0 L 00 n x6 in s n+E

n=1

1 La0 = 2L /-L'(.) ds

1 L !(:) dxA0 = L ICoefficients

/r`L

Bn = f(z).in n-dx

2

/O

1an - IL f(.)- nrsdzL 0 L

Z nxsLAn J /(z) toy dz

L L I.

L O LEn - 1 /L !(s)sfn nva ds

1L L L

EXERCISES 2.4

*2.4.1. Solve the heat equation 8u/8t = k82u/8x2, 0 < x < L, t > 0, subject to

8x(O,t)0 t>0

(L, t)0 t>0.

(a) u(x,0) =0 x < L/21 x>L/2

(c) u(x, 0) = -2 sin L

(b)u(x,0)=6+4cos31rx

(d) u(x, 0) = -3 cos jLx

The same boundary conditions was encountered in problem 2.3.7, therefore the solutionused here starts from the same general solution already found, which is

πœ†0 = 0

πœ†π‘› = οΏ½π‘›πœ‹πΏοΏ½2

𝑛 = 1, 2, 3,β‹―

𝑒 (π‘₯, 𝑑) = 𝐴0 +βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½ π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑

0.10.1 Part (b)

𝑒 (π‘₯, 0) = 6 + 4 cos 3πœ‹π‘₯𝐿

Comparing terms with the general solution at 𝑑 = 0 which is

𝑒 (π‘₯, 0) = 𝐴0 +βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½

results in

𝐴0 = 6𝐴3 = 4

And all other 𝐴𝑛 = 0. Hence the solution is

𝑒 (π‘₯, 𝑑) = 6 + 4 cos οΏ½3πœ‹πΏπ‘₯οΏ½ 𝑒

βˆ’π‘˜οΏ½ 3πœ‹πΏ οΏ½2𝑑

Page 33: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

33

0.10.2 Part (c)

𝑒 (π‘₯, 0) = βˆ’2 sin πœ‹π‘₯𝐿

Hence

βˆ’2 sin πœ‹π‘₯𝐿= 𝐴0 +

βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½ (1)

Multiplying both sides of (1) by cos οΏ½π‘šπœ‹πΏ π‘₯οΏ½ and integrating gives

�𝐿

0βˆ’2 sin οΏ½πœ‹π‘₯

𝐿� cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ = οΏ½

𝐿

0�𝐴0 cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ + cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½

βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½οΏ½ 𝑑π‘₯

= �𝐿

0𝐴0 cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ +οΏ½

𝐿

0

βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½π‘šπœ‹πΏπ‘₯οΏ½ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

Interchanging the order of integration and summation

�𝐿

0βˆ’2 sin οΏ½πœ‹π‘₯

𝐿� cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ = οΏ½

𝐿

0𝐴0 cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ +

βˆžοΏ½π‘›=1

𝐴𝑛�𝐿

0cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

Case π‘š = 0

The above becomes

�𝐿

0βˆ’2 sin οΏ½πœ‹π‘₯

𝐿� 𝑑π‘₯ = οΏ½

𝐿

0𝐴0𝑑π‘₯ +

βˆžοΏ½π‘›=1

𝐴𝑛�𝐿

0cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

But ∫𝐿

0cos οΏ½π‘›πœ‹πΏ π‘₯οΏ½ 𝑑π‘₯ = 0 hence

�𝐿

0βˆ’2 sin οΏ½πœ‹π‘₯

𝐿� 𝑑π‘₯ = οΏ½

𝐿

0𝐴0𝑑π‘₯

𝐴0𝐿 = βˆ’2�𝐿

0sin οΏ½πœ‹π‘₯

𝐿� 𝑑π‘₯

𝐴0𝐿 = βˆ’2

βŽ›βŽœβŽœβŽœβŽœβŽœβŽβˆ’

cos οΏ½πœ‹π‘₯𝐿 οΏ½πœ‹πΏ

⎞⎟⎟⎟⎟⎟⎠

𝐿

0

= βˆ’2πΏπœ‹ οΏ½βˆ’ cos οΏ½

πœ‹πΏπΏ οΏ½

+ cos οΏ½πœ‹0𝐿 οΏ½οΏ½

= βˆ’2πΏπœ‹(βˆ’ (βˆ’1) + 1)

= βˆ’4πΏπœ‹

Hence

𝐴0 =βˆ’4πœ‹

Case π‘š > 0

Page 34: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

34

�𝐿

0βˆ’2 sin οΏ½πœ‹π‘₯

𝐿� cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ = οΏ½

𝐿

0𝐴0 cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ +

βˆžοΏ½π‘›=1

𝐴𝑛�𝐿

0cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

One term survives the summation resulting in

�𝐿

0βˆ’2 sin οΏ½πœ‹π‘₯

𝐿� cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ =

βˆ’4πœ‹ οΏ½

𝐿

0cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ + π΄π‘šοΏ½

𝐿

0cos2 οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

But ∫𝐿

0cos οΏ½π‘šπœ‹πΏ π‘₯οΏ½ 𝑑π‘₯ = 0 and ∫

𝐿

0cos2 οΏ½π‘šπœ‹πΏ π‘₯οΏ½ 𝑑π‘₯ =

𝐿2 , therefore

�𝐿

0βˆ’2 sin οΏ½πœ‹π‘₯

𝐿� cos οΏ½π‘šπœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ = π΄π‘š

𝐿2

𝐴𝑛 =βˆ’4𝐿 οΏ½

𝐿

0sin οΏ½πœ‹π‘₯

𝐿� cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯

But

�𝐿

0sin οΏ½πœ‹π‘₯

𝐿� cos οΏ½π‘›πœ‹

𝐿π‘₯οΏ½ 𝑑π‘₯ =

βˆ’πΏ (1 + cos (π‘›πœ‹))πœ‹ �𝑛2 βˆ’ 1οΏ½

Therefore

𝐴𝑛 = 4(1 + cos (π‘›πœ‹))πœ‹ �𝑛2 βˆ’ 1οΏ½

= 4(βˆ’1)𝑛 + 1πœ‹ �𝑛2 βˆ’ 1οΏ½

𝑛 = 1, 2, 3,β‹―

Hence the solution becomes

𝑒 (π‘₯, 𝑑) =βˆ’4πœ‹+4πœ‹

βˆžοΏ½π‘›=1

(βˆ’1)𝑛 + 1�𝑛2 βˆ’ 1οΏ½

cos οΏ½π‘›πœ‹πΏπ‘₯οΏ½ π‘’βˆ’π‘˜οΏ½

π‘›πœ‹πΏ οΏ½

2𝑑

0.11 section 2.4.2 (problem 10)

70 Chapter 2. Method of Separation of Variables

*2.4.2. Solvez

= k8-z with 8 (0, t) = 0

u(L, t) = 0

u(x,0) = f(x)

For this problem you may assume that no solutions of the heat equationexponentially grow in time. You may also guess appropriate orthogonalityconditions for the eigenfunctions.

*2.4.3. Solve the eigenvalue problem

d2,0

dx2- _AO

subject to

0(0) = 0(27r) and ;jj(O) =

dx

(21r).

2.4.4. Explicitly show that there are no negative eigenvalues for

d2O

x_ -A subject to dz (0) = 0 and (L) = 0.

2.4.5. This problem presents an alternative derivation of the heat equation for athin wire. The equation for a circular wire of finite thickness is the two-dimensional heat equation (in polar coordinates). Show that this reducesto (2.4.25) if the temperature does not depend on r and if the wire is verythin.

2.4.6. Determine the equilibrium temperature distribution for the thin circularring of Section 2.4.2:

(a) Directly from the equilibrium problem (see Sec. 1.4)

(b) By computing the limit as t - oo of the time-dependent problem

2.4.7. Solve Laplace's equation inside a circle of radius a,

I .92UV 2U

r Or (r 8r) + rz 902 = 0,

subject to the boundary condition

u(a,9) = f(9).

(Hint: If necessary, see Sec. 2.5.2.)

πœ•π‘’πœ•π‘‘

= πœ…πœ•2π‘’πœ•π‘₯2

Page 35: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

35

Let 𝑒 (π‘₯, 𝑑) = 𝑇 (𝑑) 𝑋 (π‘₯), then the PDE becomes1πœ…π‘‡β€²π‘‹ = 𝑋′′𝑇

Dividing by 𝑋𝑇1πœ…π‘‡β€²

𝑇=𝑋′′

𝑋Since each side depends on diοΏ½erent independent variable and both are equal, they mustbe both equal to same constant, say βˆ’πœ†. Where πœ† is real.

1πœ…π‘‡β€²

𝑇=𝑋′′

𝑋= βˆ’πœ†

The two ODE’s are

𝑇′ + π‘˜πœ†π‘‡ = 0 (1)

𝑋′′ + πœ†π‘‹ = 0 (2)

Per problem statement, πœ† β‰₯ 0, so only two cases needs to be examined.

Case πœ† = 0

The space equation becomes 𝑋′′ = 0 with the solution

𝑋 = 𝐴π‘₯ + 𝑏

Hence left B.C. implies 𝑋′ (0) = 0 or 𝐴 = 0. Therefore the solution becomes 𝑋 = 𝑏. Theright B.C. implies 𝑋 (𝐿) = 0 or 𝑏 = 0. Therefore this leads to 𝑋 = 0 as the only solution. Thisresults in trivial solution. Therefore πœ† = 0 is not an eigenvalue.

Case πœ† > 0

Starting with the space ODE, the solution is

𝑋 (π‘₯) = 𝐴 cos οΏ½βˆšπœ†π‘₯οΏ½ + 𝐡 sin οΏ½βˆšπœ†π‘₯οΏ½

𝑑𝑋𝑑π‘₯

= βˆ’π΄βˆšπœ† sin οΏ½βˆšπœ†π‘₯οΏ½ + π΅βˆšπœ† cos οΏ½βˆšπœ†π‘₯οΏ½

Left B.C. gives

0 =𝑑𝑋𝑑π‘₯

(0)

= π΅βˆšπœ†

Hence 𝐡 = 0 since it is assumed πœ† β‰  0 and πœ† > 0. Solution becomes

𝑋 (π‘₯) = 𝐴 cos οΏ½βˆšπœ†π‘₯οΏ½

Applying right B.C. gives

0 = 𝑋 (𝐿)

= 𝐴 cos οΏ½βˆšπœ†πΏοΏ½

Page 36: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

36

𝐴 = 0 leads to trivial solution. Therefore cos οΏ½βˆšπœ†πΏοΏ½ = 0 or

βˆšπœ† =π‘›πœ‹2𝐿

𝑛 = 1, 3, 5,β‹―

=(2𝑛 βˆ’ 1) πœ‹

2𝐿𝑛 = 1, 2, 3β‹―

Hence

πœ†π‘› = οΏ½π‘›πœ‹2𝐿�2

𝑛 = 1, 3, 5,β‹―

=(2𝑛 βˆ’ 1)2 πœ‹2

4𝐿2𝑛 = 1, 2, 3β‹―

Therefore

𝑋𝑛 (π‘₯) = 𝐴𝑛 cos οΏ½π‘›πœ‹2𝐿π‘₯οΏ½ 𝑛 = 1, 3, 5,β‹―

And the corresponding time solution

𝑇𝑛 = π‘’βˆ’π‘˜οΏ½ π‘›πœ‹2𝐿 οΏ½

2𝑑 𝑛 = 1, 3, 5,β‹―

Hence

𝑒𝑛 (π‘₯, 𝑑) = 𝑋𝑛𝑇𝑛

𝑒 (π‘₯, 𝑑) =∞�

𝑛=1,3,5,⋯𝐴𝑛 cos οΏ½π‘›πœ‹

2𝐿π‘₯οΏ½ π‘’βˆ’π‘˜οΏ½

π‘›πœ‹2𝐿 οΏ½

2𝑑

=βˆžοΏ½π‘›=1

𝐴𝑛 cos οΏ½(2𝑛 βˆ’ 1) πœ‹

2𝐿π‘₯οΏ½ 𝑒

βˆ’π‘˜οΏ½ (2π‘›βˆ’1)πœ‹2𝐿 οΏ½2𝑑

From initial conditions

𝑓 (π‘₯) =∞�

𝑛=1,3,5,⋯𝐴𝑛 cos οΏ½π‘›πœ‹

2𝐿π‘₯οΏ½

Multiplying both sides by cos οΏ½π‘šπœ‹2𝐿 π‘₯οΏ½ and integrating

�𝐿

0𝑓 (π‘₯) cos οΏ½π‘šπœ‹

2𝐿π‘₯οΏ½ 𝑑π‘₯ = οΏ½

βŽ›βŽœβŽœβŽœβŽ

∞�

𝑛=1,3,5,⋯𝐴𝑛 cos οΏ½π‘šπœ‹

2𝐿π‘₯οΏ½ cos οΏ½π‘›πœ‹

2𝐿π‘₯�⎞⎟⎟⎟⎠ 𝑑π‘₯

Interchanging order of summation and integration and applying orthogonality results in

�𝐿

0𝑓 (π‘₯) cos οΏ½π‘šπœ‹

2𝐿π‘₯οΏ½ 𝑑π‘₯ = π΄π‘š

𝐿2

𝐴𝑛 =2𝐿 οΏ½

𝐿

0𝑓 (π‘₯) cos οΏ½π‘›πœ‹

2𝐿π‘₯οΏ½ 𝑑π‘₯

Therefore the solution is

𝑒 (π‘₯, 𝑑) =2𝐿

∞�

𝑛=1,3,5,β‹―οΏ½οΏ½

𝐿

0𝑓 (π‘₯) cos οΏ½π‘›πœ‹

2𝐿π‘₯οΏ½ 𝑑π‘₯οΏ½ cos οΏ½π‘›πœ‹

2𝐿π‘₯οΏ½ π‘’βˆ’π‘˜οΏ½

π‘›πœ‹2𝐿 οΏ½

2𝑑

or

Page 37: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

37

𝑒 (π‘₯, 𝑑) =2𝐿

βˆžοΏ½π‘›=1

��𝐿

0𝑓 (π‘₯) cos οΏ½

(2𝑛 βˆ’ 1) πœ‹2𝐿

π‘₯οΏ½ 𝑑π‘₯οΏ½ cos οΏ½(2𝑛 βˆ’ 1) πœ‹

2𝐿π‘₯οΏ½ 𝑒

βˆ’π‘˜οΏ½ (2π‘›βˆ’1)πœ‹2𝐿 οΏ½2𝑑

0.12 section 2.4.3 (problem 11)

70 Chapter 2. Method of Separation of Variables

*2.4.2. Solvez

= k8-z with 8 (0, t) = 0

u(L, t) = 0

u(x,0) = f(x)

For this problem you may assume that no solutions of the heat equationexponentially grow in time. You may also guess appropriate orthogonalityconditions for the eigenfunctions.

*2.4.3. Solve the eigenvalue problem

d2,0

dx2- _AO

subject to

0(0) = 0(27r) and ;jj(O) =

dx

(21r).

2.4.4. Explicitly show that there are no negative eigenvalues for

d2O

x_ -A subject to dz (0) = 0 and (L) = 0.

2.4.5. This problem presents an alternative derivation of the heat equation for athin wire. The equation for a circular wire of finite thickness is the two-dimensional heat equation (in polar coordinates). Show that this reducesto (2.4.25) if the temperature does not depend on r and if the wire is verythin.

2.4.6. Determine the equilibrium temperature distribution for the thin circularring of Section 2.4.2:

(a) Directly from the equilibrium problem (see Sec. 1.4)

(b) By computing the limit as t - oo of the time-dependent problem

2.4.7. Solve Laplace's equation inside a circle of radius a,

I .92UV 2U

r Or (r 8r) + rz 902 = 0,

subject to the boundary condition

u(a,9) = f(9).

(Hint: If necessary, see Sec. 2.5.2.)

π‘‘πœ™2

𝑑π‘₯2+ πœ†πœ™ = 0

πœ™ (0) = πœ™ (2πœ‹)π‘‘πœ™π‘‘π‘₯

(0) =π‘‘πœ™π‘‘π‘₯

(2πœ‹)

First solution using transformation

Let 𝜏 = π‘₯ βˆ’ πœ‹, hence the above system becomes

π‘‘πœ™2

π‘‘πœ2+ πœ†πœ™ = 0

πœ™ (βˆ’πœ‹) = πœ™ (πœ‹)π‘‘πœ™π‘‘πœ

(βˆ’πœ‹) =π‘‘πœ™π‘‘πœ

(πœ‹)

The characteristic equation is π‘Ÿ2 + πœ† = 0 or π‘Ÿ = Β±βˆšβˆ’πœ†. Assuming πœ† is real. There are threecases to consider.

Case πœ† < 0

Let 𝑠 = βˆšβˆ’πœ† > 0

πœ™ (𝜏) = 𝑐1 cosh (π‘ πœ) + 𝑐2 sinh (π‘ πœ)πœ™β€² (𝜏) = 𝑠𝑐1 sinh (π‘ πœ) + 𝑠𝑐2 cosh (π‘ πœ)

Page 38: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

38

Applying first B.C. gives

πœ™ (βˆ’πœ‹) = πœ™ (πœ‹)𝑐1 cosh (π‘ πœ‹) βˆ’ 𝑐2 sinh (π‘ πœ‹) = 𝑐1 cosh (π‘ πœ‹) + 𝑐2 sinh (π‘ πœ‹)

2𝑐2 sinh (π‘ πœ‹) = 0𝑐2 sinh (π‘ πœ‹) = 0 (1)

Applying second B.C. gives

πœ™β€² (βˆ’πœ‹) = πœ™β€² (πœ‹)βˆ’π‘ π‘1 sinh (π‘ πœ‹) + 𝑠𝑐2 cosh (π‘ πœ‹) = 𝑠𝑐1 sinh (π‘ πœ‹) + 𝑠𝑐2 cosh (π‘ πœ‹)

2𝑐1 sinh (π‘ πœ‹) = 0𝑐1 sinh (π‘ πœ‹) = 0 (2)

Since sinh (π‘ πœ‹) is zero only for π‘ πœ‹ = 0 and π‘ πœ‹ is not zero because 𝑠 > 0. Then the only otheroption is that both 𝑐1 = 0 and 𝑐2 = 0 in order to satisfy equations (1)(2). Hence trivialsolution. Hence πœ† < 0 is not an eigenvalue.

Case πœ† = 0

The space equation becomesπ‘‘πœ™2

π‘‘πœ2 = 0 with the solution πœ™ (𝜏) = 𝐴𝜏+𝐡. Applying the first B.C.gives

πœ™ (βˆ’πœ‹) = πœ™ (πœ‹)βˆ’π΄πœ‹ + 𝐡 = π΄πœ‹ + 𝐡

0 = 2π΄πœ‹

Hence 𝐴 = 0. The solution becomes πœ™ (𝜏) = 𝐡. And πœ™β€² (𝜏) = 0. The second B.C. just gives0 = 0. Therefore the solution is

πœ™ (𝜏) = 𝐢

Where 𝐢 is any constant. Hence πœ† = 0 is an eigenvalue.

Case πœ† > 0

πœ™ (𝜏) = 𝑐1 cos οΏ½βˆšπœ†πœοΏ½ + 𝑐2 sin οΏ½βˆšπœ†πœοΏ½

πœ™β€² (𝜏) = βˆ’π‘1βˆšπœ† sin οΏ½βˆšπœ†πœοΏ½ + 𝑐2βˆšπœ† cos οΏ½βˆšπœ†πœοΏ½

Applying first B.C. gives

πœ™ (βˆ’πœ‹) = πœ™ (πœ‹)

𝑐1 cos οΏ½βˆšπœ†πœ‹οΏ½ βˆ’ 𝑐2 sin οΏ½βˆšπœ†πœ‹οΏ½ = 𝑐1 cos οΏ½βˆšπœ†πœ‹οΏ½ + 𝑐2 sin οΏ½βˆšπœ†πœ‹οΏ½

2𝑐2 sin οΏ½βˆšπœ†πœ‹οΏ½ = 0

𝑐2 sin οΏ½βˆšπœ†πœ‹οΏ½ = 0 (3)

Page 39: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

39

Applying second B.C. gives

πœ™β€² (βˆ’πœ‹) = πœ™β€² (πœ‹)

𝑐1βˆšπœ† sin οΏ½βˆšπœ†πœ‹οΏ½ + 𝑐2βˆšπœ† cos οΏ½βˆšπœ†πœ‹οΏ½ = βˆ’π‘1βˆšπœ† sin οΏ½βˆšπœ†πœ‹οΏ½ + 𝑐2βˆšπœ† cos οΏ½βˆšπœ†πœ‹οΏ½

2𝑐1βˆšπœ† sin οΏ½βˆšπœ†πœ‹οΏ½ = 0

𝑐1 sin οΏ½βˆšπœ†πœ‹οΏ½ = 0 (2)

Both (3) and (2) can be satisfied for non-zero βˆšπœ†πœ‹. The trivial solution is avoided. Thereforethe eigenvalues are

sin οΏ½βˆšπœ†πœ‹οΏ½ = 0

οΏ½πœ†π‘›πœ‹ = π‘›πœ‹ 𝑛 = 1, 2, 3,β‹―πœ†π‘› = 𝑛2 𝑛 = 1, 2, 3,β‹―

Hence the corresponding eigenfunctions are

οΏ½cos οΏ½οΏ½πœ†π‘›πœοΏ½ , sin οΏ½οΏ½πœ†π‘›πœοΏ½οΏ½ = {cos (π‘›πœ) , sin (π‘›πœ)}

Transforming back to π‘₯ using 𝜏 = π‘₯ βˆ’ πœ‹

{cos (𝑛 (π‘₯ βˆ’ πœ‹)) , sin (𝑛 (π‘₯ βˆ’ πœ‹))} = {cos (𝑛π‘₯ βˆ’ π‘›πœ‹) , sin (𝑛π‘₯ βˆ’ π‘›πœ‹)}

But cos (π‘₯ βˆ’ πœ‹) = βˆ’ cos π‘₯ and sin (π‘₯ βˆ’ πœ‹) = βˆ’ sin π‘₯, hence the eigenfunctions are

{βˆ’ cos (𝑛π‘₯) , βˆ’ sin (𝑛π‘₯)}

The signs of negative on an eigenfunction (or eigenvector) do not aοΏ½ect it being such as thisis just a multiplication by βˆ’1. Hence the above is the same as saying the eigenfunctions are

{cos (𝑛π‘₯) , sin (𝑛π‘₯)}

Summary

eigenfunctions

πœ† = 0 arbitrary constant

πœ† > 0 {cos (𝑛π‘₯) , sin (𝑛π‘₯)} for 𝑛 = 1, 2, 3β‹―

Second solution without transformation

(note: Using transformation as shown above seems to be easier method than this below).

Page 40: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

40

The characteristic equation is π‘Ÿ2 + πœ† = 0 or π‘Ÿ = Β±βˆšβˆ’πœ†. Assuming πœ† is real. There are threecases to consider.

Case πœ† < 0

In this case βˆ’πœ† is positive and the roots are both real. Assuming βˆšβˆ’πœ† = 𝑠 where 𝑠 > 0, thenthe solution is

πœ™ (π‘₯) = 𝐴𝑒𝑠π‘₯ + π΅π‘’βˆ’π‘ π‘₯

πœ™β€² (π‘₯) = 𝐴𝑠𝑒𝑠π‘₯ βˆ’ π΅π‘ π‘’βˆ’π‘ π‘₯

First B.C. gives

πœ™ (0) = πœ™ (2πœ‹)𝐴 + 𝐡 = 𝐴𝑒2π‘ πœ‹ + π΅π‘’βˆ’2π‘ πœ‹

𝐴�1 βˆ’ 𝑒2π‘ πœ‹οΏ½ + 𝐡 οΏ½1 βˆ’ π‘’βˆ’2π‘ πœ‹οΏ½ = 0 (1)

The second B.C. gives

πœ™β€² (0) = πœ™β€² (2πœ‹)𝐴𝑠 βˆ’ 𝐡𝑠 = 𝐴𝑠𝑒2π‘ πœ‹ βˆ’ π΅π‘ π‘’βˆ’2π‘ πœ‹

𝐴�1 βˆ’ 𝑒2π‘ πœ‹οΏ½ + 𝐡 οΏ½βˆ’1 + π‘’βˆ’2π‘ πœ‹οΏ½ = 0 (2)

After dividing by 𝑠 since 𝑠 β‰  0. Now a 2 by 2 system is setup from (1),(2)βŽ›βŽœβŽœβŽœβŽœβŽοΏ½1 βˆ’ 𝑒2π‘ πœ‹οΏ½ οΏ½1 βˆ’ π‘’βˆ’2π‘ πœ‹οΏ½οΏ½1 βˆ’ 𝑒2π‘ πœ‹οΏ½ οΏ½βˆ’1 + π‘’βˆ’2π‘ πœ‹οΏ½

⎞⎟⎟⎟⎟⎠

βŽ›βŽœβŽœβŽœβŽœβŽπ΄π΅

⎞⎟⎟⎟⎟⎠ =

βŽ›βŽœβŽœβŽœβŽœβŽ00

⎞⎟⎟⎟⎟⎠

Since this is 𝑀π‘₯ = 𝑏 with 𝑏 = 0 then for non-trivial solution |𝑀| must be zero. Checking thedeterminant to see if it is zero or not:

οΏ½οΏ½1 βˆ’ 𝑒2π‘ πœ‹οΏ½ οΏ½1 βˆ’ π‘’βˆ’2π‘ πœ‹οΏ½οΏ½1 βˆ’ 𝑠𝑒2π‘ πœ‹οΏ½ οΏ½βˆ’1 + π‘ π‘’βˆ’2π‘ πœ‹οΏ½

οΏ½ = οΏ½1 βˆ’ 𝑒2π‘ πœ‹οΏ½ οΏ½βˆ’1 + π‘’βˆ’2π‘ πœ‹οΏ½ βˆ’ οΏ½1 βˆ’ π‘’βˆ’2π‘ πœ‹οΏ½ οΏ½1 βˆ’ 𝑒2π‘ πœ‹οΏ½

= οΏ½βˆ’1 + π‘’βˆ’2π‘ πœ‹ + 𝑒2π‘ πœ‹ βˆ’ 1οΏ½ βˆ’ οΏ½1 βˆ’ 𝑒2π‘ πœ‹ βˆ’ π‘’βˆ’2π‘ πœ‹ + 1οΏ½

= βˆ’1 + π‘’βˆ’2π‘ πœ‹ + 𝑒2π‘ πœ‹ βˆ’ 1 βˆ’ 1 + 𝑒2π‘ πœ‹ + π‘’βˆ’2π‘ πœ‹ βˆ’ 1= βˆ’4 + 2𝑒2π‘ πœ‹ + 2π‘’βˆ’2π‘ πœ‹

= βˆ’4 + 2 �𝑒2π‘ πœ‹ + π‘’βˆ’2π‘ πœ‹οΏ½

= βˆ’4 + 4 cosh (2π‘ πœ‹)Hence for the determinant to be zero (so that non-trivial solution exist) then βˆ’4+4 cosh (2π‘ πœ‹) =0 or cosh (2π‘ πœ‹) = 1 which has the solution 2π‘ πœ‹ = 0. Which means 𝑠 = 0. But the assumptionwas that 𝑠 > 0. This implies only a trivial solution exist and πœ† < 0 is not an eigenvalue.

case πœ† = 0

The space equation becomesπ‘‘πœ™2

𝑑π‘₯2 = 0 with the solution πœ™ (π‘₯) = 𝐴π‘₯ + 𝐡. Applying the first B.C.

Page 41: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

41

gives

𝐡 = 2π΄πœ‹ + 𝐡0 = 2π΄πœ‹

Hence 𝐴 = 0. The solution becomes πœ™ (π‘₯) = 𝐡. And πœ™β€² (π‘₯) = 0. The second B.C. just gives0 = 0. Therefore the solution is

πœ™ (π‘₯) = 𝐢

Where 𝐢 is any constant. Hence πœ† = 0 is an eigenvalue.

Case πœ† > 0

In this case the solution is

πœ™ (π‘₯) = 𝐴 cos οΏ½βˆšπœ†π‘₯οΏ½ + 𝐡 sin οΏ½βˆšπœ†π‘₯οΏ½

πœ™β€² (π‘₯) = βˆ’π΄βˆšπœ† sin οΏ½βˆšπœ†π‘₯οΏ½ + π΅βˆšπœ† cos οΏ½βˆšπœ†π‘₯οΏ½

Applying first B.C. gives

πœ™ (0) = πœ™ (2πœ‹)

𝐴 = 𝐴 cos οΏ½2πœ‹βˆšπœ†οΏ½ + 𝐡 sin οΏ½2πœ‹βˆšπœ†οΏ½

𝐴 οΏ½1 βˆ’ cos οΏ½2πœ‹βˆšπœ†οΏ½οΏ½ βˆ’ 𝐡 sin οΏ½2πœ‹βˆšπœ†οΏ½ = 0

Applying second B.C. gives

πœ™β€² (0) = πœ™β€² (2πœ‹)

π΅βˆšπœ† = βˆ’π΄βˆšπœ† sin οΏ½2πœ‹βˆšπœ†οΏ½ + π΅βˆšπœ† cos οΏ½2πœ‹βˆšπœ†οΏ½

π΄βˆšπœ† sin οΏ½2πœ‹βˆšπœ†οΏ½ + 𝐡 οΏ½βˆšπœ† βˆ’ βˆšπœ† cos οΏ½2πœ‹βˆšπœ†οΏ½οΏ½ = 0

𝐴 sin οΏ½2πœ‹βˆšπœ†οΏ½ + 𝐡 οΏ½1 βˆ’ cos οΏ½2πœ‹βˆšπœ†οΏ½οΏ½ = 0

Therefore βŽ›βŽœβŽœβŽœβŽœβŽ1 βˆ’ cos οΏ½2πœ‹βˆšπœ†οΏ½ βˆ’ sin οΏ½2πœ‹βˆšπœ†οΏ½

sin οΏ½2πœ‹βˆšπœ†οΏ½ 1 βˆ’ cos οΏ½2πœ‹βˆšπœ†οΏ½

⎞⎟⎟⎟⎟⎠

βŽ›βŽœβŽœβŽœβŽœβŽπ΄π΅

⎞⎟⎟⎟⎟⎠ =

βŽ›βŽœβŽœβŽœβŽœβŽ00

⎞⎟⎟⎟⎟⎠ (3)

Setting |𝑀| = 0 to obtain the eigenvalues gives

οΏ½1 βˆ’ cos οΏ½2πœ‹βˆšπœ†οΏ½οΏ½ οΏ½1 βˆ’ cos οΏ½2πœ‹βˆšπœ†οΏ½οΏ½ + sin οΏ½2πœ‹βˆšπœ†οΏ½ sin οΏ½2πœ‹βˆšπœ†οΏ½ = 0

1 βˆ’ cos οΏ½2πœ‹βˆšπœ†οΏ½ = 0

Page 42: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

42

Hence

cos οΏ½2πœ‹βˆšπœ†οΏ½ = 1

2πœ‹οΏ½πœ†π‘› = π‘›πœ‹ 𝑛 = 2, 4,β‹―

οΏ½πœ†π‘› =𝑛2

𝑛 = 2, 4,β‹―

Or

οΏ½πœ†π‘› = 𝑛 𝑛 = 1, 2, 3,β‹―πœ†π‘› = 𝑛2 𝑛 = 1, 2, 3,β‹―

Therefore the eigenfunctions are

πœ™π‘› (π‘₯) = {cos (𝑛π‘₯) , sin (𝑛π‘₯)}Summary

eigenfunctions

πœ† = 0 arbitrary constant

πœ† > 0 {cos (𝑛π‘₯) , sin (𝑛π‘₯)} for 𝑛 = 1, 2, 3β‹―

0.13 section 2.4.6 (problem 12)

70 Chapter 2. Method of Separation of Variables

*2.4.2. Solvez

= k8-z with 8 (0, t) = 0

u(L, t) = 0

u(x,0) = f(x)

For this problem you may assume that no solutions of the heat equationexponentially grow in time. You may also guess appropriate orthogonalityconditions for the eigenfunctions.

*2.4.3. Solve the eigenvalue problem

d2,0

dx2- _AO

subject to

0(0) = 0(27r) and ;jj(O) =

dx

(21r).

2.4.4. Explicitly show that there are no negative eigenvalues for

d2O

x_ -A subject to dz (0) = 0 and (L) = 0.

2.4.5. This problem presents an alternative derivation of the heat equation for athin wire. The equation for a circular wire of finite thickness is the two-dimensional heat equation (in polar coordinates). Show that this reducesto (2.4.25) if the temperature does not depend on r and if the wire is verythin.

2.4.6. Determine the equilibrium temperature distribution for the thin circularring of Section 2.4.2:

(a) Directly from the equilibrium problem (see Sec. 1.4)

(b) By computing the limit as t - oo of the time-dependent problem

2.4.7. Solve Laplace's equation inside a circle of radius a,

I .92UV 2U

r Or (r 8r) + rz 902 = 0,

subject to the boundary condition

u(a,9) = f(9).

(Hint: If necessary, see Sec. 2.5.2.)

The PDE for the thin circular ring is

πœ•π‘’πœ•π‘‘

= π‘˜πœ•2π‘’πœ•π‘₯2

𝑒 (βˆ’πΏ, 𝑑) = 𝑒 (𝐿, 𝑑)πœ•π‘’ (βˆ’πΏ, 𝑑)

πœ•π‘‘=πœ•π‘’ (𝐿, 𝑑)πœ•π‘‘

𝑒 (π‘₯, 0) = 𝑓 (π‘₯)

0.13.1 Part (a)

At equilibrium πœ•π‘’πœ•π‘‘ = 0 and the PDE becomes

0 =πœ•2π‘’πœ•π‘₯2

Page 43: HW2, Math 322, Fall 20164 0.2 section 2.3.1 (problem 1) 2.3. Heat Equation With Zero Temperature Ends EXERCISES 2.3 55 2.3.1. For the following partial differential equations, what

43

As it now has one independent variable, it becomes the following ODE to solve

𝑑2𝑒 (π‘₯)𝑑π‘₯2

= 0

𝑒 (βˆ’πΏ) = 𝑒 (𝐿)𝑑𝑒𝑑π‘₯(βˆ’πΏ) =

𝑑𝑒𝑑π‘₯(𝐿)

Solution to 𝑑2𝑒𝑑π‘₯2 = 0 is

𝑒 (π‘₯) = 𝑐1π‘₯ + 𝑐2Where 𝑐1, 𝑐2 are arbitrary constants. From the first B.C.

𝑒 (βˆ’πΏ) = 𝑒 (𝐿)βˆ’π‘1𝐿 + 𝑐2 = 𝑐1𝐿 + 𝑐2

2𝑐1𝐿 = 0𝑐1 = 0

Hence the solution becomes

𝑒 (π‘₯) = 𝑐2The second B.C. adds nothing as it results in 0 = 0. Hence the solution at equilibrium is

𝑒 (π‘₯) = 𝑐2

This means at equilibrium the temperature in the ring reaches a constant value.

0.13.2 Part (b)

The time dependent solution was derived in problem 2.4.3 and also in section 2.4, page 62in the book, given by

𝑒 (π‘₯, 𝑑) = π‘Ž0 +βˆžοΏ½π‘›=1

π‘Žπ‘› cos οΏ½π‘›πœ‹π‘₯𝐿� π‘’βˆ’π‘˜οΏ½

π‘›πœ‹π‘₯𝐿 οΏ½

2𝑑 +

βˆžοΏ½π‘›=1

π‘Žπ‘› sin οΏ½π‘›πœ‹π‘₯𝐿� π‘’βˆ’π‘˜οΏ½

π‘›πœ‹π‘₯𝐿 οΏ½

2𝑑

As 𝑑 β†’ ∞ the terms π‘’βˆ’π‘˜οΏ½π‘›πœ‹π‘₯𝐿 οΏ½

2𝑑 β†’ 0 and the above reduces to

𝑒 (π‘₯,∞) = π‘Ž0Since π‘Ž0 is constant, this is the same result found in part (a).