Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles...

16
Mitglied der Helmholtz-Gemeinschaft Hubbard U parameters from constrained random-phase approximation C. Friedrich Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany

Transcript of Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles...

Page 1: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

Mitg

lied

der H

elm

holtz

-Gem

eins

chaf

t

Hubbard U parameters fromconstrained random-phaseapproximationC. Friedrich

Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany

Page 2: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

GW

Hybrids (PBE0, HSE) OEP (EXX)

RPA total energy

Bethe-Salpeter eq.(magnons)

GT self-energy

COHSEX

GSOCWSOC

QSGW

Hubbard U(LDA+U, DMFT)

Wannier functions (interpolation) Hartree-Fock

Dielectric function

Page 3: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

Correlation strength0.1 1.0 10

Alkali metals Transition metals (TMs) Semiconductors TM-Oxides Rare Earths Li, Na, K … Fe, Co, Ni, FePd, … GaAs, GaN, … MnO, FeO, … Gd, Eu, EuO, …

DFT-LDA Hubbard ModelGW, ………. LDA+U, Hubbard I, LDA+DMFT

U/t<latexit sha1_base64="i4eQe9EiZuHiCdT6lnx8xJ4y0Zg=">AAAB6nicdVDLSgNBEJyNrxhfUY9eBoPgaZ1dozG3oBePEd0kkCxhdjJJhsw+mOkVwpJP8OJBEa9+kTf/xslDUNGChqKqm+6uIJFCAyEfVm5peWV1Lb9e2Njc2t4p7u41dJwqxj0Wy1i1Aqq5FBH3QIDkrURxGgaSN4PR1dRv3nOlRRzdwTjhfkgHkegLRsFIt94JdIslYlfK59UzgontuA6plg0hLnGrFezYZIYSWqDeLb53ejFLQx4Bk1TrtkMS8DOqQDDJJ4VOqnlC2YgOeNvQiIZc+9ns1Ak+MkoP92NlKgI8U79PZDTUehwGpjOkMNS/van4l9dOoX/hZyJKUuARmy/qpxJDjKd/455QnIEcG0KZEuZWzIZUUQYmnYIJ4etT/D9puLZzars35VLtchFHHh2gQ3SMHFRBNXSN6shDDA3QA3pCz5a0Hq0X63XemrMWM/voB6y3T1b1jdg=</latexit>

Page 4: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

Approximation or Downfolding

vext(r)

ApproximateHamiltonian

HF, DFT (LSDA, GGA), GW LDA+U, LDA+DMFT, LDA+Gutzwiller

DownfoldHamiltonian(correlated subspaceand rest)

Page 5: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

DownfoldingFirst quantization

Second quantization

Hubbard U parameter: electron-electron interaction andscreening by the other electrons

2

664�X

RR0

ab,�

tab�RR0 c†Ra� cR0b� +1

2

X

RR0R00R000

abcd,��0

V abcdRR0R00R000 c†Ra� c

†R0b�0 cR000d�0 cR00c�

3

775 n = En n

<latexit sha1_base64="cpjjoqWkfHYsIBJVibI2rwx92l0=">AAADhHiclVJdb9MwFHUTGCN8dfDIi0WFgsSokg40XkATCInHUtFuUp1FjuOk1hwnsp1JlZU/ws/ijX+D04aq6woSV4l1dM+x77lXN6k4UzoIfvUc987dg3uH970HDx89ftI/ejpTZS0JnZKSl/IiwYpyJuhUM83pRSUpLhJOz5Orzy1/fk2lYqX4rpcVjQqcC5YxgrVNxUe9H4jTTM+9N0jVRWzsmSiNyZVBBdaLJDOTid9AhCBOjpFieYGbxtPxDbq5NDjpSA8tsDakuUQpznMqt5QN3tFscX6zeeA1yiQmJmzMyCr/7mrit98fcyTt7K1Pa8qbxfvkK7Mk/S+jezQbw/7edmyh9J98QzY1JMsXOvLQWLFYfPgSC7iGcX8QDINVwNsg7MAAdDGO+z9RWpK6oEITjpWah0GlI4OlZoRTW6lWtLJTxDmdWyhwQVVkVkvUwJc2k8KslPYXGq6y2zcMLpRaFolVtl2oXa5N7uPmtc7eR4aJqtZUkHWhrOZQl7DdSJgySYnmSwswkcx6hWSB7Qpou7eeHUK42/JtMBsNw5Ph6NvbwdmnbhyH4Dl4AV6BEJyCM/AVjMEUEKfn+E7ghO6Be+yeuO/WUqfX3XkGboT78TfITSO5</latexit>

Screening

U

Downfolding → One-band Hubbard model2

4�tX

hR,R0i

c†RcR0 + ✏0X

R

c†RcR + UX

R

nR"nR#

3

5 n = En n

<latexit sha1_base64="SHh1odX0l/slNbqqA8qNJ5VtdZ0=">AAADCXicjVJNb9QwEHXCVwkf3cKRAxErVCRglZRK7aVSBULiuCC2rbQO0cTrZK06TmRPWq2iXHvhr3DhAEJc+Qfc+Dd4s6Ff2wMjWXp6782MZ+yklMJgEPxx3GvXb9y8tXLbu3P33v3V3tqDPVNUmvERK2ShDxIwXArFRyhQ8oNSc8gTyfeTwzdzff+IayMK9RFnJY9yyJRIBQO0VLzmPKaSpzj2XiI1VR7XVILKJKc54DRJ6w/NizO4TnUrNh6dAtas+UQnkGVc27RT06l4nlxvvOce5aUR0nYNulbLOf9d0NYbeW2ZM27hUxd8tCpB6+L4anFSHKt/shbZFCOPDo2I1c7bWC1Q3OsHg6ANfxmEHeiTLoZx77cty6qcK2QSjBmHQYlRDRoFa1dXGV4CO4SMjy1UkHMT1e1LNv5Ty0z8tND2KPRb9nxGDbkxszyxzvkU5rI2J6/SxhWm21EtVFkhV2zRKK2kj4U//xb+RGjOUM4sAKaFvavPpqCBof08nl1CeHnkZbC3MQhfDTbeb/Z3X3frWCGPyBPyjIRki+ySd2RIRoQ5J84X55vz3f3sfnV/uD8XVtfpch6SC+H++gt3pP3X</latexit>

Page 6: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

Combining DFT and many-body methods

Correlated Hilbert space

DFT (LDA) Model Hamiltonian

l space

r space

r space

r space: O2p + V3d (eg) + ...

l space: V3d (t2g)

DFT

DFT

Devide Hilbert space into two parts:• Localized Hilbert space (l space)• Rest Hilbert space (r space)

SrVO3SrVO3

Page 7: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

Hubbard U from first principles

Constrained local-density approximation (cLDA) [Anisimov and Gunnarsson, PRB 43, 7570 (1991); Cococchioni and de Gironcoli, PRB 71, 035105 (2005)]

Constrained random-phase approximation (cRPA) [Springer and Aryasetiawan et al., PRB 57, 4364 (1998); Kotani, J. Phys. Condens. Matter 12, 2413 (2000)]

• Formulation in many-body perturbation theory.• Frequency dependence U(w) accessible.• Individual matrix elements (U, J, off-site U).• BUT: more expensive.

U =@2E

@n2d

� @2EKS

@n2d

<latexit sha1_base64="7dSCYVZxp8afa8yvVcFDwir5v1g=">AAACQ3icbVBNS8MwGE7n16xfU49egkPw4minoBdhKILgZaLdhus20izdwtK0JKkwSv+bF/+AN/+AFw+KeBVMtyG6+UDgyfM+75s3jxcxKpVlPRu5ufmFxaX8srmyura+UdjcqskwFpg4OGShaHhIEkY5cRRVjDQiQVDgMVL3BudZvX5PhKQhv1XDiLQC1OPUpxgpLXUKd86p6foC4cSNkFAUsXYZXqQ/N8g73XY5NQ/+cbXdAKm+CJKrm3S2w+wUilbJGgHOEntCimCCaqfw5HZDHAeEK8yQlE3bilQrycZiRlLTjSWJEB6gHmlqylFAZCsZZZDCPa10oR8KfbiCI/V3R4ICKYeBp53Z1nK6lon/1Zqx8k9aCeVRrAjH44f8mEEVwixQ2KWCYMWGmiAsqN4V4j7SWSkdexaCPf3lWVIrl+zDUvn6qFg5m8SRBztgF+wDGxyDCrgEVeAADB7AC3gD78aj8Wp8GJ9ja86Y9GyDPzC+vgFvTrCd</latexit>

• Easy to implement.• Cheap computation.• BUT: not general.

Page 8: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

Hubbard U parameters fromconstrained random-phase approximation (cRPA)

l space

r space

r spaceSrVO3

P (r, r0;!) =occX

m

unoccX

m0

�m(r)�⇤m0(r)�⇤

m(r0)�m0(r0)

1

! � ✏m0 + ✏m + i⌘� 1

! + ✏m0 � ✏m � i⌘

<latexit sha1_base64="okpF86VZtyuK7/pjJtR+a+ptZG8=">AAADB3icbZJNi9QwGMfT+rbWt9n1KEJxkNl1doZ2XVAQYdGLxxGc3YVJt6SZpzNhk7YkqTCE3rz4Vbx4UMSrX8Gb38a0U9x58YHCv79//k+Tp0kKzpQOgj+Oe+36jZu3dm57d+7eu/+gs7t3qvJSUhjTnOfyPCEKOMtgrJnmcF5IICLhcJZcvq39s48gFcuzD3pRQCTILGMpo0RbFO86j0f7WBA9T1Ijq8Mr2XuFcwEzcvDaw6oUF40jhckprWKxzsqsoUb0Kg8XcxaLlZ4HS1SbF+ZZte2IDdxbSWxgDqmeeDiVhJqw8sxyiwMMhWLcHqeO9P+9iT7DoEnlDbYi/bXIVQMxaCNYstlcR3GnGwyDpvxtEbaii9oaxZ3feJrTUkCmKSdKTcKg0JEhUjPKwfYtFRSEXpIZTKzMiAAVmeY/Vv5TS6Z+mkv7ZNpv6GrCEKHUQiR2ZT0WtenV8H/epNTpy8iwrCg1ZHT5obTkvs79+lL4UyaBar6wglDJ7F59Oid2ZNpeHc8OIdw88rY4PRqGz4dH74+7J2/aceygR+gJ2kcheoFO0Ds0QmNEnU/OF+eb89397H51f7g/l0tdp808RGvl/voLTNz4Bg==</latexit>

P = Pl + Pr

occX

l

unoccX

l0<latexit sha1_base64="QT+20EIjP2yhosYwgJtOiQrZq/E=">AAACFnicbZDLSsNAFIYnXmu8RV26GSyiG0tSBV0W3bisYC/QxDCZTtqhM5MwMxFK6FO48VXcuFDErbjzbUzSLGzrDwM/3zmHOecPYkaVtu0fY2l5ZXVtvbJhbm5t7+xae/ttFSUSkxaOWCS7AVKEUUFammpGurEkiAeMdILRTV7vPBKpaCTu9TgmHkcDQUOKkc6Qb525KuEPLkd6KHkaYTzxmTnDElHQlJ1MTN+q2jW7EFw0TmmqoFTTt77dfoQTToTGDCnVc+xYeymSmmJGJqabKBIjPEID0susQJwoLy3OmsDjjPRhGMnsCQ0L+nciRVypMQ+yznxXNV/L4X+1XqLDKy+lIk40EXj6UZgwqCOYZwT7VBKs2TgzCEua7QrxEEmEdZZkHoIzf/KiaddrznmtfndRbVyXcVTAITgCp8ABl6ABbkETtAAGT+AFvIF349l4NT6Mz2nrklHOHIAZGV+/zOugXw==</latexit>

occX

r

unoccX

r0

+occX

r

unoccX

l0

+occX

l

unoccX

r0<latexit sha1_base64="MxnL8zgvhozJ1ynWskIqDpfv1ak=">AAACdHicjVFNS8MwGE7r16xfVQ8e9BAdQ0Eo7RT0OPTicYL7gHWONMu2sCQtSSqM0l/gv/Pmz/Di2XbrwW0OfCHw8DzPm7x53iBiVGnX/TTMtfWNza3StrWzu7d/YB8eNVUYS0waOGShbAdIEUYFaWiqGWlHkiAeMNIKxo+53nojUtFQvOhJRLocDQUdUIx0RvXsd1/F/NXnSI8kT0KM05605rhYTNlEXqbWtfVvO1thZ6tv79ll13GnBZeBV4AyKKresz/8fohjToTGDCnV8dxIdxMkNcWMpJYfKxIhPEZD0smgQJyobjINLYWVjOnDQSizIzScsr87EsSVmvAgc+azqkUtJ//SOrEe3HcTKqJYE4FnDw1iBnUI8w3APpUEazbJAMKSZrNCPEISYZ3tKQ/BW/zyMmhWHe/GqT7flmsPRRwlcAouwBXwwB2ogSdQBw2AwZdxYkDj3Pg2z8yyWZlZTaPoOQZzZTo/CILBcA==</latexit>

Page 9: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

l space

r space

r spaceSrVO3

P = Pl + Pr<latexit sha1_base64="pd0njhbwQOC8aCSvyUeIuEeVJww=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRZBEMpuFfQiFL14XMF+SLss2TRtQ5PskmSFsvRXePGgiFd/jjf/jWm7B219MPB4b4aZeVHCmTau++0UVlbX1jeKm6Wt7Z3dvfL+QVPHqSK0QWIeq3aENeVM0oZhhtN2oigWEaetaHQ79VtPVGkWywczTmgg8ECyPiPYWOnRv/ZDfuaHKixX3Ko7A1omXk4qkMMPy1/dXkxSQaUhHGvd8dzEBBlWhhFOJ6VuqmmCyQgPaMdSiQXVQTY7eIJOrNJD/VjZkgbN1N8TGRZaj0VkOwU2Q73oTcX/vE5q+ldBxmSSGirJfFE/5cjEaPo96jFFieFjSzBRzN6KyBArTIzNqGRD8BZfXibNWtU7r9buLyr1mzyOIhzBMZyCB5dQhzvwoQEEBDzDK7w5ynlx3p2PeWvByWcO4Q+czx/eMI/M</latexit>

U(!) =v

1� vPr(!)<latexit sha1_base64="tuZoSyd19de/g0GRHPdXv+rfpl4=">AAACC3icbVBNS8NAEN3Ur1q/oh69hBahHixJFfQiFL14rGDaQhPKZrtpl+5mw+6mUELuXvwrXjwo4tU/4M1/47aNoK0PBh7vzTAzL4gpkcq2v4zCyura+kZxs7S1vbO7Z+4ftCRPBMIu4pSLTgAlpiTCriKK4k4sMGQBxe1gdDP122MsJOHRvZrE2GdwEJGQIKi01DPLbtXjDA/gyZUXCojScZY6p+NmT/zoWc+s2DV7BmuZODmpgBzNnvnp9TlKGI4UolDKrmPHyk+hUARRnJW8ROIYohEc4K6mEWRY+unsl8w61krfCrnQFSlrpv6eSCGTcsIC3cmgGspFbyr+53UTFV76KYniROEIzReFCbUUt6bBWH0iMFJ0oglEguhbLTSEOhKl4yvpEJzFl5dJq15zzmr1u/NK4zqPowiOQBlUgQMuQAPcgiZwAQIP4Am8gFfj0Xg23oz3eWvByGcOwR8YH9/l85pU</latexit>

→ projected ontoWannier functions:

wRa(r) =1

N

X

km

TkmRa �km(r)

<latexit sha1_base64="B7mHOw6OIxI7dUoI6J6m/3IYTeA=">AAACX3icbVFbS8MwGE3rZXObs+qT+FIcwnwZ7RT0RRj64pNM2Q3WWtIs3cKStiTpZJT+Sd8EX/wnZhdxFz8InJzznXzJiR9TIqRlfWr6zu7efi5/UCiWDstHxvFJR0QJR7iNIhrxng8FpiTEbUkkxb2YY8h8irv++HGmdyeYCxKFLTmNscvgMCQBQVAqyjMm717qMChHfpC+ZjCr/m54dnXvBByi1M7S58wRCfvrHGcsK7TWnW/rqhOPyLph9WjPqFg1a17mNrCXoAKW1fSMD2cQoYThUCIKhejbVizdFHJJEMVqXCJwDNEYDnFfwRAyLNx0nk9mXipmYAYRVyuU5pxddaSQCTFlvuqcXVFsajPyP62fyODOTUkYJxKHaDEoSKgpI3MWtjkgHCNJpwpAxIm6q4lGUIUq1ZcUVAj25pO3Qades69r9ZebSuNhGUcenIMLUAU2uAUN8ASaoA0Q+NJ0raiVtG89p5d1Y9Gqa0vPKVgr/ewHgxq5sw==</latexit>

transformation matrix Tdefined such that Wannierfunctions are (maximally) localized

Constrained RPA (cRPA)• U is basis independent• U, J, and off-site U easy to calculate• U(w) accessible• subspace screening easy to eliminate if

bands are disentangled (!)

Hubbard U parameters fromconstrained random-phase approximation (cRPA)

Page 10: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

Entangled bands

P (r, r0;!) =occX

m

unoccX

m0

�m(r)�⇤m0(r)�⇤

m(r0)�m0(r0)

1

! � ✏m0 + ✏m + i⌘� 1

! + ✏m0 � ✏m � i⌘

<latexit sha1_base64="okpF86VZtyuK7/pjJtR+a+ptZG8=">AAADB3icbZJNi9QwGMfT+rbWt9n1KEJxkNl1doZ2XVAQYdGLxxGc3YVJt6SZpzNhk7YkqTCE3rz4Vbx4UMSrX8Gb38a0U9x58YHCv79//k+Tp0kKzpQOgj+Oe+36jZu3dm57d+7eu/+gs7t3qvJSUhjTnOfyPCEKOMtgrJnmcF5IICLhcJZcvq39s48gFcuzD3pRQCTILGMpo0RbFO86j0f7WBA9T1Ijq8Mr2XuFcwEzcvDaw6oUF40jhckprWKxzsqsoUb0Kg8XcxaLlZ4HS1SbF+ZZte2IDdxbSWxgDqmeeDiVhJqw8sxyiwMMhWLcHqeO9P+9iT7DoEnlDbYi/bXIVQMxaCNYstlcR3GnGwyDpvxtEbaii9oaxZ3feJrTUkCmKSdKTcKg0JEhUjPKwfYtFRSEXpIZTKzMiAAVmeY/Vv5TS6Z+mkv7ZNpv6GrCEKHUQiR2ZT0WtenV8H/epNTpy8iwrCg1ZHT5obTkvs79+lL4UyaBar6wglDJ7F59Oid2ZNpeHc8OIdw88rY4PRqGz4dH74+7J2/aceygR+gJ2kcheoFO0Ds0QmNEnU/OF+eb89397H51f7g/l0tdp808RGvl/voLTNz4Bg==</latexit>

P (r, r0;!) =occX

m

unoccX

m0

pmpm0�m(r)�⇤m0(r)�⇤

m(r0)�m0(r0)

1

! � ✏m0 + ✏m + i⌘� 1

! + ✏m0 � ✏m � i⌘

<latexit sha1_base64="7lu7twMXDbbYeDcR7gm/kHQ8QDk=">AAADEnicbZLLjtMwFIadcBvCrQNLNhEVaofSKhmQBgkhjWDDskh0ZqQmUznuSWuNnVi2M1Jl5RnY8CpsWIAQW1bseBuci5heOFKkP9/v/8Q+cSIYVToI/jjutes3bt7au+3duXvv/oPO/sMTlReSwITkLJdnCVbAaAYTTTWDMyEB84TBaXLxrvJPL0Eqmmcf9UpAzPEioyklWFs023f6437EsV4mqZHl8yvZex3lHBb44I0XqYKf147kJieknPFNVmQ1NbxXesKaopGRWNIZX2t/0KDKPDfPyl2Hb+HeWmILM0j11ItSiYkJS880ux1GIBRl9mRVZPDvjQ9oBBqX3nAnMtiIXDXgwzYSSbpY6njW6QajoC5/V4St6KK2xrPO72iek4JDpgnDSk3DQOjYYKkpYWD7FgoEJhd4AVMrM8xBxab+paX/1JK5n+bSPpn2a7qeMJgrteKJXVmNRW17FfyfNy10+io2NBOFhow0H0oL5uvcr+6HP6cSiGYrKzCR1O7VJ0tsR6btLfLsEMLtI++Kk8NR+GJ0+OFl9/htO4499Bg9QX0UoiN0jN6jMZog4nxyvjjfnO/uZ/er+8P92Sx1nTbzCG2U++sv1bv8Hw==</latexit>

Projection method[Sasioglu et al., PRB 83, 121101 (2011)]

Disentanglement method[Miyake et al., PRB 80, 155134 (2009)]

Hybridization between subspace and rest switched off.→ Bands are disentangled.→ Equation (*) is applicable.

(*)

Page 11: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

Effective parameters

“Hubbard-Hund“ parameters (full d shell)

Kanamori parameters (t2g or eg Hamiltonian)

Example: Parameters for d states

U��0

m1,m2,m3,m4(!)

<latexit sha1_base64="7CH6cSZCvyiFkNwg3i4tr67PbSE=">AAACFHicbVDLSsNAFJ3UV62vqEs3wSJWlJK0BV0W3bisYNpCE8NkOolDZ5IwMxFKyEe48VfcuFDErQt3/o3TNgttPXCHwzn3cuceP6FESNP81kpLyyura+X1ysbm1vaOvrvXFXHKEbZRTGPe96HAlETYlkRS3E84hsynuOePriZ+7wFzQeLoVo4T7DIYRiQgCEolefqpfZc5goQMzt7j3MuYZ50xr6GqqaqV15yY4RCeeHrVrJtTGIvEKkgVFOh4+pczjFHKcCQRhUIMLDORbga5JIjivOKkAicQjWCIB4pGkGHhZtOjcuNIKUMjiLmqSBpT9fdEBpkQY+arTgblvZj3JuJ/3iCVwYWbkShJJY7QbFGQUkPGxiQhY0g4RpKOFYGIE/VXA91DDpFUOVZUCNb8yYuk26hbzXrjplVtXxZxlMEBOAQ1YIFz0AbXoANsgMAjeAav4E170l60d+1j1lrSipl98Afa5w8ggp2U</latexit>

Output file ”spex.cou”

• 3 different matrix elements• 2 are independent

end of standard output

• 15 different matrix elements (or 8)• 3 are independent

• 625 different matrix elements

Page 12: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

3d transition metals

I ·N(✏F) > 1<latexit sha1_base64="coq2ccslVRZ1wctyIidc3mt74ho=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbkpSBV1JURDdSAX7gCaUyWTSDp1kwsxEKKFLN/6KGxeKuPUT3Pk3TtostPXAhcM593LvPV7MqFSW9W0UFhaXlleKq6W19Y3NLXN7pyV5IjBpYs646HhIEkYj0lRUMdKJBUGhx0jbG15mfvuBCEl5dK9GMXFD1I9oQDFSWuqZ+zcO9rmCtxWHxJIyrTkhUgMRplfjo3O7Z5atqjUBnCd2TsogR6Nnfjk+x0lIIoUZkrJrW7FyUyQUxYyMS04iSYzwEPVJV9MIhUS66eSRMTzUig8DLnRFCk7U3xMpCqUchZ7uzI6Us14m/ud1ExWcuSmN4kSRCE8XBQmDisMsFehTQbBiI00QFlTfCvEACYSVzq6kQ7BnX54nrVrVPq7W7k7K9Ys8jiLYAwegAmxwCurgGjRAE2DwCJ7BK3gznowX4934mLYWjHxmF/yB8fkD2iSZOg==</latexit>

Stoner criterion

(40% reduction due to correlation)I = (U + 6J)/5

<latexit sha1_base64="sdW3TXl3KhOlB7d5KsQZI4vLqhw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQEeJufF6EoBf1FME8MFnC7GQ2GTI7u8zMCmHJX3jxoIhX/8abf+Mk2YNGCxqKqm66u7yIM6Vt+8vKzM0vLC5ll3Mrq2vrG/nNrboKY0lojYQ8lE0PK8qZoDXNNKfNSFIceJw2vMHV2G88UqlYKO71MKJugHuC+YxgbaSHm4ti7eD0dv/wpJMv2CV7AvSXOCkpQIpqJ//Z7oYkDqjQhGOlWo4daTfBUjPC6SjXjhWNMBngHm0ZKnBAlZtMLh6hPaN0kR9KU0KjifpzIsGBUsPAM50B1n01643F/7xWrP1zN2EiijUVZLrIjznSIRq/j7pMUqL50BBMJDO3ItLHEhNtQsqZEJzZl/+SernkHJXKd8eFymUaRxZ2YBeK4MAZVOAaqlADAgKe4AVeLWU9W2/W+7Q1Y6Uz2/AL1sc36jiPHQ==</latexit>

Stollhoff et al., PRB 41, 7028:

J

WJJW

E. Sasioglu, Spring School 2014

Page 13: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

Hubbard U at surfaces

Sasioglu et al., PRL 109, 146401 (2012)

Page 14: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

• FLEUR: Self-consistent field calculationè Density, Exchange-correlation potential

• SPEX: Generate special equidistant k-point setk, k', k+k’, and 0 must be elements

• FLEUR: Diagonalize Hamiltonian on new k points (non iterative)è Kohn-Sham energies and wavefunctions

• SPEX: GW calculationè Quasiparticle energies

Computational procedureOne-Shot GW

k

k'k+k'

spex.inp: JOB GW FULL X:(1-4)

Page 15: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

• FLEUR: Self-consistent field calculationè Density, Exchange-correlation potential

• SPEX: Generate special equidistant k-point setk, k', k+k’, and 0 must be elements

• FLEUR: Diagonalize Hamiltonian on new k points (non iterative)è Kohn-Sham energies and wavefunctions

• SPEX: cRPA calculation� Construction of Wannier orbitals (Wannier90 library used for MLWFs)� Calculation of Pr� Calculation of U and projection onto Wannier basisè Hubbard U parameters

Computational procedureHubbard U (cRPA)

k

k'k+k'

spex.inp: JOB SCREENW {0}

Page 16: Hubbard Uparameters from constrained random-phase ... · Hubbard Ufrom first principles Constrainedlocal-densityapproximation(cLDA) [AnisimovandGunnarsson, PRB 43, 7570 (1991); Cococchioniandde

Summary

● For strongly correlated systems, methods like LDA+U or LDA+DMFT,which are based on the Hubbard Hamiltonian of a correlated subspace, might be more appropriate than DFT (LDA, GGA) or GW.

● These methods require an effective interaction parameter, the HubbardU parameter, which incorporates the screening processes of the electrons that are not included in the correlated subspace.

● The constrained random-phase-approximation (cRPA) is a first-principlesmethod to determine the Hubbard U parameter.

● Spex has an implementation of cRPA. Correlated subspace spanned inWannier basis. Possibility of treating entangled bands.