How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the...

19
1 How to make maximum use of the available pK a data in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg, Ivari Kaljurand, Sofja Tshepelevitsh, Agnes Heering, Astrid Darnell, Karl Kaupmees, Mare Piirsalu [email protected] analytical.chem.ut.ee tera.chem.ut.ee/~ivo/HA_UT/ University of Tartu 26 HSKIKI Šibenik Apr 11, 2019 2 Overview Brønsted acidity and basicity in solution pK a values Influence of solvent Polarity, acidity, basicity What non-aqueous pK a data are available How to estimate pK a of X on solvent S?

Transcript of How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the...

Page 1: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

1

How to make maximum use of the available pKa data in non‐aqueous 

solvents?

Ivo Leito, Agnes Kütt, Sigrid Selberg, Ivari Kaljurand, Sofja Tshepelevitsh, Agnes Heering, Astrid Darnell, Karl Kaupmees, Mare Piirsalu

[email protected]

analytical.chem.ut.ee

tera.chem.ut.ee/~ivo/HA_UT/

University of Tartu

26 HSKIKI Šibenik Apr 11, 2019

2

Overview

• Brønsted acidity and basicity in solution• pKa values

• Influence of solvent• Polarity, acidity, basicity

• What non-aqueous pKa data are available• How to estimate pKa of X on solvent S?

Page 2: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

2

3

Why do we need non-aqueous pKa data?

• Most reactions and processes runheterolytically• Very often involving acid-base interactions• Very often in non-aqueous solutions• For understanding them pKa values are necessary

• Design of novel acids and bases

• Development of theoretical calculation methods

4

Acidity of molecules

• Brønsted acidity of a molecule refers to its ability to donate proton to other molecules• Usually defined in terms of equilibrium constants

(Ka, pKa) or deprotonation energies (GA or Gacid)

This is the main topic of this talk

Page 3: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

3

5

Acidity of media

• Brønsted acidity of a medium refers to its ability to donate proton to molecules in the medium• In aqueous solution: pH• Strongly acidic solutions: H0• “Unified pH Scale”

(pHabs) D. Himmel et al, Angew. Chem. Int. Ed. 2010, 49, 6885

A. Suu et al, Anal. Chem. 2015, 87, 2623

6

• Acidity of molecules in solution is definedin the framework of the Brønsted theoryvia the pKa values

HA + S A¯ + SH+

Acidity of molecules in solution

Ka

HA)(

)SH()A(loglogp aa a

aaKK

pKa: the lower the value, the more acidic

Acidity of an acid is very different in different solvents!

Page 4: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

4

7

• Basicity of a molecule B in solution isdefined as the acidity of its conjugate acid(its pKa value)

BH+ + S B + SH+

Basicity of molecules in solution

Ka

)BH(

)SH()B(loglogp aa

a

aaKK

pKa: the higher the value, the more basic

Basicity of a base is very different in different solvents!

8

• Acidity/basicity of molecules in the gas phase is expressed via deprotnation Gibbs' free energy

HA A¯ + H+

BH+ B + H+

Acidity and basicity of molecules in the gas phase

Ka

aobase lnGB KRTG

Ka

aoacid lnGA KRTG

Page 5: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

5

9

pKa

H2O AN DCE GP

<-1 8.9

240.5 (328.1)

11.61

11.0

23.90

219.2 (299.0)219.6 (299.5)

238.2 (324.9)

10.00

4.76

9.5

29.1

251.0 (342.3)

23.51

250.1 (341.1)

229.0 (312.4)10

30

0 0.4

20

20.55

237.5 (324.0)

5.4

5 5

233.4 (318.3)

2.3

OH

CF3

CF3

F3C

OH

NO2

NO2

O2N

CN

CNO2N

8.19

231.6 (315.9)

14.57

1.8

SNH

O

O O

HCl

HBr

17.75

229.8 (313.5)

5.89

CN

COOEtH

FF

F

F F

OH

CH3COOH

18.88

220.4 (300.6)

10.121.10

CNFF

FF

FF

F

FF

F

216.1 (294.8)HNC

CN

CN

11.08

F F

F

SO2NH2CH3244.9 (334.0)

26.87

10.21

0.0

-0.4

-4.9

-3.7

226.7 (309.2) HI

-2.0

221.5 (302.1)

4.4

16.13

CNFF

F3CF

FF

CF3

FF

F16.66

226.2 (308.6)

4.09

OH

NO2

NO2

<-2

0.3

5.5

6.0

15.5

9.2

4.7

7.6

10.3

19.6

3.8

15.6

12.5

Acids indifferent media

Raamat et al J. Phys. Org. Chem. 2013, 26, 162

http://tera.chem.ut.ee/~ivo/HA_UT/

10

~-7

<-1 8.9

11.61

11.0

23.90

219.2 (299.0)219.6 (299.5)

213.4 (291.1)

10.00

4.76

9.5

23.51

229.0 (312.4)

-10

10

0 0.4

20.55

5.4

~-9

5.5

233.4 (318.3)

0.7

214.8 (293.0)

-12

2.3

OH

NO2

NO2

O2N

CN

CNO2N

8.19

231.6 (315.9)

14.57

1.8

SNH

O OHBr

17.75

229.8 (313.5)

5.89

CN

COOEtH

FF

F

F F

18.88

220.4 (300.6)

10.121.10

CNFF

FF

FF

F

FF

F

CF3SO2OH

216.1 (294.8)

-5.1

HNCCN

CN

195.9 (267.2)

-20

H

NC

NC

CN

CN

CN

5.1

11.08

-2.8

SO2NHSO2 NO2O2N

F F

F

10.21

0.0

-0.4

-4.9

-3.7

-6.5

-15.3

-11.4

~-9.5

2.8 -7.7

226.7 (309.2) HI

OH

SO2CF3

SO2CF3

F3CO2S

4.48

208.4 (284.2)

-2.0

-6.4

221.5 (302.1)

4.4

16.13

CNFF

F3CF

FF

CF3

FF

F16.66

226.2 (308.6)

4.09

OH

NO2

NO2

<-2

208.0 (283.7)-0.1

-12.3

C2F5SO2

NHC2F5SO2

-9

0.3

5.5

6.0

15.5

9.2

4.7

7.6

10.3

3.8

12.5

Acids indifferent media

http://tera.chem.ut.ee/~ivo/HA_UT/

Raamat et al J. Phys. Org. Chem. 2013, 26, 162

Page 6: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

6

HAS

S

S

HA

Desolva-tion

Gds(HA) > 0

A-H+

Dissociation in the gas phaseGa(HA) >>> 0

Solution

Gas phase

+

SH+

SH+S

Dissociationin solution

Ga(HA,s) A-+

Ga(SH+) << 0

Gs(SH+) << 0

Gs(A-) << 0

S

12

HAS

S

S

HA

desolva-tionGds(HA) =+6.7 kcal/mol

A-H+

H2O

Gas phase: Acetic acid

+

SH+

SH+S

Dissociationin solution

Ga(HA,s) =+6.5 kcal/mol

A-+

Gs(SH+)

-Ga(SH+)= -265.9kcal/mol

Gs(A-) =-77.6

kcal/mol

S

Dissociation in the gas phaseGa(HA) = +341.1 kcal/mol

1 pKa unit ≡ 1.36 kcal/mol

Page 7: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

7

13

Acidity in solution and in the gas phase

• Solvation energias are very different• In water HBr is 1013 times stronger than 2,4-DNP• In the gas phase HBr is 107 times weaker than

2,4-DNP

Acid pKa(water)

pKa(MeOH)

pKa(DMSO)

pKa(MeCN)

Ga (GP)kcal/mol

HBr ~ -9 ~1 ~ -7 5.5 318.3

2,4-Dinitrophenol 4.09 7.9 5.1 16.7 308.6

Acetic acid 4.76 9.6 12.3 23.51 341.1

9.5 8.0 21.1 312.4CNF

F

FF

FF

F

FF

F

1 pKa unit ≡ 1.36 kcal/mol

14

pKa

H2O AN DCE GP

<-1 8.9

240.5 (328.1)

11.61

11.0

23.90

219.2 (299.0)219.6 (299.5)

238.2 (324.9)

10.00

4.76

9.5

29.1

251.0 (342.3)

23.51

250.1 (341.1)

229.0 (312.4)10

30

0 0.4

20

20.55

237.5 (324.0)

5.4

5 5

233.4 (318.3)

2.3

OH

CF3

CF3

F3C

OH

NO2

NO2

O2N

CN

CNO2N

8.19

231.6 (315.9)

14.57

1.8

SNH

O

O O

HCl

HBr

17.75

229.8 (313.5)

5.89

CN

COOEtH

FF

F

F F

OH

CH3COOH

18.88

220.4 (300.6)

10.121.10

CNFF

FF

FF

F

FF

F

216.1 (294.8)HNC

CN

CN

11.08

F F

F

SO2NH2CH3244.9 (334.0)

26.87

10.21

0.0

-0.4

-4.9

-3.7

226.7 (309.2) HI

-2.0

221.5 (302.1)

4.4

16.13

CNFF

F3CF

FF

CF3

FF

F16.66

226.2 (308.6)

4.09

OH

NO2

NO2

<-2

0.3

5.5

6.0

15.5

9.2

4.7

7.6

10.3

19.6

3.8

15.6

12.5

Acids indifferent media

Raamat et al J. Phys. Org. Chem. 2013, 26, 162

http://tera.chem.ut.ee/~ivo/HA_UT/

Page 8: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

8

15

~-7

<-1 8.9

11.61

11.0

23.90

219.2 (299.0)219.6 (299.5)

213.4 (291.1)

10.00

4.76

9.5

23.51

229.0 (312.4)

-10

10

0 0.4

20.55

5.4

~-9

5.5

233.4 (318.3)

0.7

214.8 (293.0)

-12

2.3

OH

NO2

NO2

O2N

CN

CNO2N

8.19

231.6 (315.9)

14.57

1.8

SNH

O OHBr

17.75

229.8 (313.5)

5.89

CN

COOEtH

FF

F

F F

18.88

220.4 (300.6)

10.121.10

CNFF

FF

FF

F

FF

F

CF3SO2OH

216.1 (294.8)

-5.1

HNCCN

CN

195.9 (267.2)

-20

H

NC

NC

CN

CN

CN

5.1

11.08

-2.8

SO2NHSO2 NO2O2N

F F

F

10.21

0.0

-0.4

-4.9

-3.7

-6.5

-15.3

-11.4

~-9.5

2.8 -7.7

226.7 (309.2) HI

OH

SO2CF3

SO2CF3

F3CO2S

4.48

208.4 (284.2)

-2.0

-6.4

221.5 (302.1)

4.4

16.13

CNFF

F3CF

FF

CF3

FF

F16.66

226.2 (308.6)

4.09

OH

NO2

NO2

<-2

208.0 (283.7)-0.1

-12.3

C2F5SO2

NHC2F5SO2

-9

0.3

5.5

6.0

15.5

9.2

4.7

7.6

10.3

3.8

12.5

Acids indifferent media

http://tera.chem.ut.ee/~ivo/HA_UT/

Raamat et al J. Phys. Org. Chem. 2013, 26, 162

Bases indifferent media

16

pKa

H2O MeCN THFa GP

10.79.66

9.21

11.9411.77

13.6

18.82 12.5166.4 (227.0)

17.9518.56

20.84

23.3023.12

11.211.8

14.0

16.6 170.2 (232.1)

176.2 (240.4)

194.0 (264.6) EtP2(dma)

172.1 (234.8)

189.6 (258.7)

15.313.913.3

11.52

27.0120.8

187.0 (255.1)

25.85

19.7

183.0 (249.6)

22.34 15.9

184.8 (252.0)

PN

N

N

N

PP NN

N

N N

N

N

200.9 (274.0)b PhP1(tmg)

31.4 24.3

202.4 (276.1)b HP1(tmg)

28.6

177.9 (242.7)

16.8

24.34

N

N

PN

N

N

NH

P NN

N

N

H

PN

N

N

N

NN

NH

NN

N

NN

N

11.96

21.66

14.3

178.4 (243.4)

9.38

22.7415.4

176.5 (240.8)

N N

N N

N N

NH

NH2

172.5 (235.2)

166.6 (223.3)19.27 13.020.04

15.2

P NNN

NNMe2

NMe2

NMe2Me2N

Me2N

NMe2

H

P NNN

NNMe2

NMe2

NMe2Me2N

Me2N

NMe2

t-BuP1(pyrr)

HP1(pyrr)

HP1(dma)

PhP1(pyrr)

http://tera.chem.ut.ee/~ivo/HA_UT/

Page 9: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

9

Bases indifferent media

17

10.79.66

9.21

11.9411.77

13.6

18.82 12.5166.4 (227.0)

17.9518.56

20.84

23.3023.12

11.211.8

14.0

16.6 170.2 (232.1)

176.2 (240.4)

172.1 (234.8)

189.6 (258.7)

15.313.913.3

11.52

27.0120.8

187.0 (255.1)

25.85

19.7

183.0 (249.6)

22.34 15.9

184.8 (252.0)

4.62

10.625.2

149.0 (203.3) NH2

5.36

11.434.9

159.3 (217.3)N

31.4 24.3

28.6

177.9 (242.7)

16.8

24.34

N

N

5.25 12.535.5

157.4 (214.7)

N

PN

N

N

NH

P NN

N

N

H

PN

N

N

N

NN

NH

NN

N

NN

N

11.96

21.66

14.3

178.4 (243.4)

9.38

22.7415.4

176.5 (240.8)

N N

N N

N N

NH

NH2

172.5 (235.2)

166.6 (223.3)19.27 13.020.04

15.2

t BuP1(pyrr)

HP1(pyrr)

HP1(dma)

PhP1(pyrr)

http://tera.chem.ut.ee/~ivo/HA_UT/

18

Generalised acid-base reaction in a non-aqueous solvent

K1 K2 K3(AH)S + (:B)S (AH:B)S (A¯:HB+)S or (A¯: HB+)S

HB complex HB complex contact ion pair

K3 K4 (A¯: // HB+)S (A¯:)S + (HB+)Ssolvent-separated ion pair free ions

How far the process goes depends on--1-- Acid and base strengths of the compounds

--2-- Solvent

Page 10: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

10

19

How does solvent influence pKa?

• By solvating the species• Ions are much solvated much stronger

• First approximation: neglect neutrals• Especially small ions and/or with localized charge

• HB acceptor properties / basicity• Solvation of H+ , HA, BH+

• HB donor properties / acidity• Solvation of A–, B:

• Dielectric constant• Promotes dissociation

20

Solvent acidity and basicity: pKauto

Kauto(SH)S + (SH)S (SH2

+)S + (S-)S

Kauto = a(AH2+) a(S-) pKauto = -logKauto

• pKauto defines the span of pKa scale• Differentiating ability

• High pKauto is preferable

Page 11: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

11

21

Solvent acidity,basicity and pKauto

Kütt et al. Tetrahedron Letters 2018, 59, 3738–3748

Solventacidity

Solventbasicity

pKauto

Some solvents

* Solubility issues** Ion-pair acidities and basicities

Solvent/medium

εHBA:DN, B’

HBD pKauto Useful for

Gas phase 1 – – – Any acid or base

Heptane 1.94 0.0 0 – (Any acid or base)*

THF 7.47 20, 287 0 Very highWeak acids, strong

bases**

1,2-Dichloro-

Ethane10.7 0.1, 40 Very high

Strong acids, weakbases**

MeCN 35.9 14.1, 160 0.19 ca 39Strong acids, weak

bases

DMSO 46.7 29.8, 362 0 ca 33Weak acids, strong

bases

Methanol 33 High 0.98 18.9Medium acids and

bases

Vesi 81 High 1.17 14.0Medium acids and

bases

Page 12: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

12

23

24

Self-consistent acidityscale (pKa scale) in MeCN

Acid pK a (AN) a Directly measured pK a b

1 9-C6F5-Fluorene 28.11

2 (4-Me-C6F4)(C6H5)CHCN 26.96

3 (4-NC5F4)(C6H5)NH 26.34

4 (C6H5)(C6F5)CHCN 26.14

5 (4-Me2N-C6F4)(C6F5)NH 25.12

6 (4-Me-C6F4)(C6F5)NH 24.94

7 Octafluorofluorene 24.49

8 Fluoradene 23.90

9 9-COOMe-Fluorene 23.53

10 Acetic acid 23.51

11 (C6F5)CH(COOEt)2 22.85

12 2-NO2-Phenol 22.85

13 (4-Me-C6F4)2CHCN 22.80

14 (4-Me-C6F4)(C6F5)CHCN 21.94

15 Benzoic acid 21.51

16 9-CN-Fluorene 21.36

17 (4-H-C6F4)(C6F5)CHCN 21.11

18 (C6F5)2CHCN 21.10

19 (CF3)3COH 20.55

20 (4-Cl-C6F4)(C6F5)CHCN 20.36

21 2,4,6-Br3-Phenol 20.35

22 (2,4,6-Cl3-C6F2)(C6F5)CHCN 20.13

23 2,3,5,6-F4-Phenol 20.12

24 2,3,4,5,6-F5-Phenol 20.11

25 (2-C10F7)(C6F5)CHCN 20.08

26 1-C10F7OH 19.72

27 2,4,6-(SO2F)3-Aniline 19.66

28 (2-C10F7)2CHCN 19.32

29 9-C6F5-Octafluorofluorene 18.88

30 2-C10F7OH 18.50

31 (4-CF3-C6F4)(C6F5)CHCN 18.14

32 4-C6F5-2,3,5,6-F4-Phenol 18.11

33 (4-H-C6F4)CH(CN)COOEt 18.08

34 2,3,4,5,6-Cl5-Phenol 18.02

35 2,3,4,5,6-Br5-Phenol 17.83

36 (C6F5)CH(CN)COOEt 17.75

37 4-Me-C6H4CH(CN)2 17.59

38 (2-C10F7)CH(CN)COOEt 17.50

39 (4-Cl-C6F4)CH(CN)COOEt 17.39

40 2,4-(NO2)2-Phenol 16.66

41 4-CF3-2,3,5,6-F4-Phenol 16.62

42 (4-NC5F4)(C6F5)CHCN 16.40

43 (4-CF3-C6F4)2CHCN 16.13

44 (4-CF3-C6F4)CH(CN)COOEt 16.08

45 (4-NC5F4)(2-C10F7)CHCN 16.02

46 4-NC5F4-OH 15.40

47 (4-NC5F4)CH(CN)COOEt 14.90

1.15

0.63 1.78

0.20 0.82

1.96

1.03

0.17

0.42

0.40

0.96

0.45

1.20

0.34

0.43

0.82 0.81

0.64

0.58

0.48 1.02

1.75 1.21

0.53

0.00 0.03

0.03 0.06

0.01

1.02 1.02

1.03

0.29 0.25

0.26 0.21

1.01

0.60

0.04

0.67

0.76

-0.01

0.75

0.39

0.42

0.26 0.25

1.49

0.92

1.05

0.90

0.68

0.73 0.71

-0.01

0.80

0.59

1.49

1.32

0.06

0.36

0.38

0.44

1.12

0.32

0.06

0.22

0.75

1.19

0 19

0.77

1.35

0.60

1.10

0.08

0.19

0.46

0.79

1.43

0.54

1.15

0.04

0.73

0.85

1.92

0.92

0.41

0.69

0.70

0.05

0.27

0.27

0.10

0.26

1.51

0.37

0.72

0.88

0.28 0.63

1.59

1.46 1.70

47 (4-NC5F4)CH(CN)COOEt 14.90

48 3-CF3-C6H4CH(CN)2 14.72

49 Saccharin 14.57

50 4-Me-C6F4CH(CN)2 13.87

51 (4-NC5F4)2CHCN 13.46

52 C6F5CH(CN)2 13.01

53 4-H-C6F4CH(CN)2 12.98

54 2-C10F7CH(CN)2 12.23

55 Tos2NH c 11.97

56 4-NO2-C6H4CH(CN)2 11.61

57 4-MeO-C6H4C(=O)NHTf d 11.60

58 4-Me-C6H4C(=O)NHTf 11.46

59 (C6H5SO2)2NH 11.34

60 4-Cl-C6H4SO2NHTos 11.10

61 C6H5C(=O)NHTf 11.06

62 Picric acid 11.00

63 4-F-C6H4C(=O)NHTf 10.65

64 4-Cl-C6H4C(=O)NHTf 10.36

65 (4-Cl-C6H4SO2)2NH 10.20

66 4-CF3-C6F4CH(CN)2 10.19

67 4-NO2-C6H4SO2NHTos 10.04

68 4-Cl-3-NO2-C6H3SO2NHTos 9.71

69 4-NO2-C6H4C(=O)NHTf 9.49

70 4-NO2-C6H4SO2NHSO2C6H4-4-Cl 9.17

71 TosOH 8.6

72 (4-NO2-C6H4SO2)2NH 8.32

73 1-C10H7SO3H 8.02

74 C6H5CHTf2 7.85

75 4-Cl-C6H4SO3H 7.3

76 3-NO2-C6H4SO3H 6.78

77 4-NO2-C6H4SO3H 6.73

78 4-MeO-C6H4C(=NTf)NHTf 6.54

79 4-Me-C6H4C(=NTf)NHTf 6.32

80 TosNHTf 6.30

81 C6H5C(=NTf)NHTf 6.17

82 C6H5SO2NHTf 6.02

83 4-F-C6H4C(=NTf)NHTf 5.79

84 4-Cl-C6H4C(=NTf)NHTf 5.69

85 2,4,6-(SO2F)3-Phenol 5.66

86 4-Cl-C6H4SO2NHTf 5.47

87 4-Cl-C6H4SO(=NTf)NHTos 5.27

88 4-NO2-C6H4C(=NTf)NHTf 5.13

89 2,4,6-Tf3-Phenol 4.93

90 4-NO2-C6H4SO2NHTf 4.52

91 4-Cl-C6H4SO(=NTf)NHSO2C6H4-4-Cl 4.47

92 2,3,5-tricyanocyclopentadiene 4.16

93 4-Cl-C6H4SO(=NTf)NHSO2C6H4-4-NO2 3.75

0.15

0.28

0.79

0.52

0.53

-0.01

0.36

0.62

0.74

0.03

0.45

0.40

0.71

0.82

0.60

0.23

1.38

0.89

0.84

1.05

0.26

0.79

0.14

0.87

0.04

0.13

1.21

0.48

1.89

0.46

0.91

1.43

1.06

0.60 0.98

0.10

0.03

0.19 0.14

0.49 0.57

0.07

0.87

0.54

1.15

0.56 0.15

0.73 1.20

1.21

0.51

0.77

0.41

0.05

0.31

0.50

0.38

0.36

0.53

0.54

0.19

0.44

0.83

0.53

1.10

0.51

1.04

0.23

0.56

0.74

0.75

1.25

1.73

0.87

0.50

0.62

2.3

1.1

1.28

1.3 0.25

1.15

1.25

0.71

1.37

1.64

0.64

0.59 0.26

0.47

0.16 0.35 0.5

0.05

0.23 0.23

1.11

0.42

1.20

0.59

1.32

0.19 0.69

A. Kütt et al, J. Org. Chem. 2006, 71, 2829 A. Kütt et al J. Org. Chem. 2011, 76, 391

http://tera.chem.ut.ee/~ivo/HA_UT/

CH3COOH 23.5

TosOH 8.5

Phenol 29.1

HCl 10.3

HBr 5.5

HI 2.82,4-(NO2)2-Phenol 16.7

2,4,6-(NO2)3-Phenol 11.0

Page 13: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

13

http://tera.chem.ut.ee/~ivo/HA_UT/25

1,2-DCE acidityscale

A. Kütt et al J. Org. Chem.2011, 76, 391

• The most acidicequilibrium acidityscale in a constant-compositionmedium

• Relative acidities• Not easy to anchor• Some values

available inliterature, butare very doubtful

No Acid pK a(DCE) Directly measured pK ip values in DCE a

1 Picric acid 0.0

2 HCl -0.4

3 2,3,4,6-(CF3)5-C6H-CH(CN)2 -0.7

4 4-NO2-C6H4SO2NHTos c -1.5

5 HNO3 -1.7

6 4-NO2-C6H4SO2NHSO2C6H4-4-Cl -2.4

7 H2SO4 -2.5

8 C6(CF3)5CH(CN)2 -2.6

9 (4-NO2-C6H4-SO2)2NH -3.7

10 3-NO2-4-Cl-C6H3SO2NHSO2C6H4-4-NO2 -4.1

11 (3-NO2-4-Cl-C6H3SO2)2NH -4.5

12 HBr -4.9

13 4-NO2-C6H4SO2CH(CN)2 -5.1

14 2,4,6-(SO2F)3-Phenol -5.9

15 2,4,6-Tf3-Phenol d -6.4

16 CH(CN)3 -6.5

17 4-Cl-C6H4SO(=NTf)NHTos -6.8

18 NH2-TCNP e -6.8

19 2,3,5-tricyanocyclopentadiene -7.0

20 Pentacyanophenol -7.6

21 4-Cl-C6H4SO(=NTf)NHSO2C6H4-4-Cl -7.6

22 HI -7.7

23 4-NO2-C6H4SO2NHTf -7.8

24 Me-TCNP -8.6

25 3,4-(MeO)2-C6H3-TCNP -8.7

26 4-MeO-C6H4-TCNP -8.7

27 C(CN)2=C(CN)OH -8.8

28 4-Cl-C6H4SO(=NTf)NHSO2C6H4-NO2 -8.9

29 2,4-(NO2)2-C6H3SO2OH -8.9

30 C6F5CH(Tf)2 -9.0

31 HB(CN)(CF3)3 -9.3

32 Ph-TCNP -9.4

33 HBF4 -10.3

34 FSO2OH -10.5

0.20 0.24

0.51

0.42 0.65

1.14 1.12 0.33

0.94

0.64

0.80 1.03

1.33

0.19 0.62

0.39 0.93 1.35

0.36 0.80

0.47 1.48

1.02 1.02 1.05

1.26 0.24

0.12

1.13 1.01

0.08

1.78 2.08

0.28 1.00

0.74 0.77 1.09

1.48 0.73 0.71

0.36

0.05

0.88

0 01

1.06 1.23

0.26 1.34

1.57 1.56 1.62

0.83

0.47 0.44 1.33 0.13

0.52 0.60

0.59 0.67

0.74

1.61 0.59 0.22

0.06

0.28 0.46 0.24

0.12 0.12

0.09

-0.02 0.13 1.42

0.96 1.04

1.13

1.01

1.64

1.10 0.98

0.93

0.90 0.81

1.00 1.56

1.77

0.67 0.84

26

1,2-DCE acidityscale

• Ion pair acidities• Counter-ion:

• Aqueous pKa (H0)values down to-10 .. -15

• In pipeline:• Weaker acids• Weak bases

PN

N

N

NH +

29 2,4-(NO2)2-C6H3SO2OH -8.9

30 C6F5CH(Tf)2 -9.0

31 HB(CN)(CF3)3 -9.3

32 Ph-TCNP -9.4

33 HBF4 -10.3

34 FSO2OH -10.5

35 3-CF3-C6H4-TCNP -10.5

36 H-TCNP -10.7

37 [C6H5SO(=NTf)]2NH -11.1

38 [(C2F5)2PO]2NH -11.3

39 2,4,6-(NO2)3-C6H2SO2OH -11.3

40 [C(CN)2=C(CN)]2CH2 -11.4

41 TfOH -11.4

42 C6H5SO(=NTf)NHTf -11.5

43 TfCH(CN)2 -11.6

44 Br-TCNP -11.8

45 [C(CN)2=C(CN)]2NH -11.8

46 3,5-(CF3)5-C6H3-TCNP -11.8

47 Tf2NH -11.9

48 4-Cl-C6H4SO(=NTf)NHTf -12.1

49 Cl-TCNP -12.1

50 (C3F7SO2)2NH -12.2

51 (C4F9SO2)2NH -12.2

52 CN-CH2-TCNP -12.3

53 (C2F5SO2)2NH -12.3

54 CF3-TCNP -12.7

55 HClO4 -13.0

56 CF2(CF2SO2)2NH -13.1

57 4-NO2-C6H4SO(=NTf)NHTf -13.1

58 HB(CN)4 -13.3

59 (FSO2)3CH -13.6

60 Tf2CH(CN) -14.9

61 2,3,4,5-tetracyanocyclopentadiene -15.1

62 CN-TCNP -15.3

63 Tf3CH f -16.4

64 CF3SO(=NTf)NHTf f -18

0.23 0.21 0.40

1.73

2.16

0.22 1.46

1.76 1.92

0.44 0.19

0.89 0.86

0.36

0.19

0.12

1.06

1.29

1.05

0.01

0.31

0.21

0.73 0.75 0.06

0.40

0.45

0.10

0.36 0.46

0.96

0.07 0.11

0.80

0.56

0.80

0.40

0.19 0.10

0.02

0.77

0.15

0.13 0.10

1.04

0.27

0.21

1.04

0.69

0.72

0.93

0.30

0.44

0.42

1.06

0.40

0.47

0.29

0.43

0.19

0.20 0.25

0.32

0.10

0.09 0.07 0.04

0.63 0.67

0.44 0.21

0.49 0.47

0.47

0.84 0.73 0.78

0.58 0.60

0.01

0.22

0.46

0.21

1.06 1.23

0.26 1.34

1.57 1.56 1.62

0.83

0.47 0.44 1.33 0.13

0.52 0.60

0.59 0.67 0.06

0.29

0.84 0.89 0.91

0.93 0.28

t-BuP1(pyrr)H+

A. Kütt et al J. Org. Chem.2011, 76, 391

Page 14: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

14

Self-consis-tent basicityscale inMeCN (1)

27

I. Kaljurand et al J. Org. Chem. 2005, 70, 1019

A. Kütt, PhD thesis

… and other works

• Anchor: Pyridine• Free ions• Titrants:

• TfOH• t-BuP1(pyrr)

http://tera.chem.ut.ee/~ivo/HA_UT/

DBU 24.3

t-BuP1(pyrr) 28.4

PN

N

N

N

28

Self-consis-tent basicityscale inMeCN (2)

I. Kaljurand et al J. Org. Chem. 2005, 70, 1019

A. Kütt, PhD thesis

… and other works

http://tera.chem.ut.ee/~ivo/HA_UT/

Triethylamine 18.8

Pyrrolidine 19.6

4-Me2N-Pyridine 18.0

1,3-Propanediamine 19.7

Benzylamine 16.9

Page 15: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

15

29

Self-consis-tent basicityscale inMeCN (3)

I. Kaljurand et al J. Org. Chem. 2005, 70, 1019

A. Kütt, PhD thesis

… and other works

http://tera.chem.ut.ee/~ivo/HA_UT/

Pyridine 12.5

Aniline 10.6

Triphenylphosphine 7.6

Diphenylamine 6.0

2-NO2-Aniline 4.8

2-NH2-Pyridine 14.5

Self-consistentbasicity scalein THF

30

• Anchor: Triethylamine• Ion pairs

• Counterion MeSO3–

• Titrants:• MeSO3H• t-BuP4(pyrr)• Liberation of bases: KH

J. Saame et al J. Org. Chem. 2016, 81, 7349

t-BuP4(dma) 43

P NNN

NP

P

PNMe2

NMe2

NMe2Me2N

Me2N

NMe2

NMe2

NMe2

NMe2

HP1(tmg) 37

PN

N

N

NH

N

N

N

N

N

N

Page 16: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

16

31http://ibond.nankai.edu.cn/pka/

Typical issue: no pKa data for X in solvent S

• Possible solutions:• Measure• Compute

• Usually correlations are needed for corrections• Correlate between solvents

• Reliable data of similar compounds are needed in bothsolvents

• Best if large span• Works best within a homogeneous compound series• Not between any solvents

• Cross-use between solvents• Only suitable for „stronger-weaker“ statements

32Kütt et al. Tetrahedron Letters 2018, 59, 3738–3748

Page 17: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

17

Sometimes correlations are good …

33

pKaH(THF) = 0.86ꞏpKaH(MeCN) - 3.4R² = 0.967

0

10

20

30

40

0 10 20 30 40 50

pK

aH(T

HF

)

pKaH(MeCN)

MeCN vs THF, cationic acids

… Sometimes tricky

34

pKa(Pyridine) = 1.12ꞏpKa(MeCN) - 15.0R² = 0.968

0

4

8

12

16

20

0 5 10 15 20 25 30

pK

a(P

yrid

ine

)

pKa(MeCN)

MeCN vs Pyridine, neutral acids

Sulfonamides

Fluorocarboxylicacids

Sulfonimides

Other acids

Oxazolones

Page 18: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

18

pKa

Correlationpossibilities

Legend:

ReliableLower reliabilityNot reliable„+“: real dataavailable

35

MeCN PCAce-tone DMSO DMF THF DME Py

DCE/ DCM

MeOH/EtOH H2O

MeCN + + + + +

PC +

Acetone + + +

DMSO + + + + + B

DMF + + + + + A

THF + S

DME + E

Py + + + + + S

DCE/ DCM + +

MeOH/ EtOH

H2O + + + +

A C I D S

Kütt et al. Tetrahedron Letters 2018, 59, 3738–3748

36Kütt et al. Tetrahedron Letters 2018, 59, 3738–3748

Absolute valuesvs differences

Page 19: How to make maximum use of the available pK data in non ... · 1 How to make maximum use of the available pKadata in non‐aqueous solvents? Ivo Leito, Agnes Kütt, Sigrid Selberg,

19

37

Thanksto all these

people!

38

Slides: https://analytical.chem.ut.eeOverview: http://tera.chem.ut.ee/~ivo/HA_UT/

Funding: IUT20-14, SF0180061s08, SF0180061s08, ETF Grants No 7374, 8162

Thank you foryour attention!