Ho Kuni 120412

62
Fuzzy techniques in image processing Sami Hokuni April 12, 2012 1/ 62 Sami Hokuni  Fuzzy techniques in image processing

Transcript of Ho Kuni 120412

Page 1: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 1/62

Fuzzy techniques in image processing

Sami Hokuni

April 12, 2012

1/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 2: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 2/62

In a traditional set theory an element has only two options: iteither belongs totally to some set or it doesn’t belong there atall.

If we have set  A  such that [0, 1] ∈ A, then

− x  = 1 belongs totally to the set  A

− y  = 2 doesn’t belong at all to the set  A

This method is not very flexible if we have some imprecision

2/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 3: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 3/62

Let us assume that we have set  Z  of all people.From this set we would want to define a subset  A called”young people”.

To define this subset we need to decide some threshold age,

for example 20 years.If you are exactly 20 years old, you belong to the subset”young people”.

However, if you are 20 years and one second old, you dontbelong to this subset at all.

3/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 4: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 4/62

In this case we would need more flexible system, which wouldhave some kind of gradual transition

Young  → relatively young  → somehow young → not so young

→  not at all young.Fuzzy logic offers us a way to do this kind of transitions.

4/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 5: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 5/62

Fuzzy set is characterized by its membership function   µ.

Let us assume that we have fuzzy set  A in set  Z , and  z   issome element in  Z .

Then value   µA(z ) represents  degree of membership  of element

z   in  A.Degree of membership is some real number from range [0, 1].

Degree of membership tells us, how strongly an elementbelongs to the subset.

5/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 6: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 6/62

If   µA(z )=1, then  z  belongs totally to the fuzzy set  A.

If   µA(z )=0, then  z  doesn’t belong at all to the fuzzy set  A.

If   µA(z ) ∈  (0, 1), then  z  belongs partially to the fuzzy set  A.

6/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 7: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 7/62

Fuzzy set  A is an ordered pair consisting of values  z  ∈ Z   anda membership function that gives the degree of membershipto each  z  ∈ Z 

A =  {z , µA(z )|z  ∈ Z }

Previous subset of ”young people” can then be expressed as

A = {(1, 1), · · ·   , (20, 1), (21, 0.9), · · ·   , (29, 0.1), (30, 0), · · · }

In this example people who are 30 or older do not belong tothe subset ”young people” at all.

7/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 8: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 8/628/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 9: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 9/62

Membership value is not the same as probability.

For example, in the figure on the last slide we saw that themembership value for  z  = 25 was 0.5.

Probablilistic statement: There is 50% chance that thisperson is young.

Here person is considered to either be in the set of youngpeople or not in that set.

Fuzzy statement: Person is young to some degree, and herethis degree is 0.5.

Fuzzy logic is characterized by imprecision, not byrandomness.

9/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 10: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 10/62

Fuzzy set  A ∈ Z   is empty if and only if   µA(z ) = 0 for all

z  ∈ Z .Two fuzzy sets  A ∈ Z   and  B  ∈ Z  are equal (A = B ) if andonly if   µA(z ) =   µB (z ) for all  z  ∈ Z .

Fuzzy set  A is a subset of fuzzy set  B   if and only if µA(

z ) ≤

  µB (

z ) for all

 z  ∈

 Z .

Complement of a fuzzy set(NOT)  A, denoted by  A, is the setwhose membership function is

µA(z ) = 1 − µA(z )

for all  z  ∈ Z .

10/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 11: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 11/62

The union(OR) of two fuzzy sets  A  and  B , denoted  A ∪ B , is

a fuzzy set  U  with the membership function

µU (z ) = max {µA(z ), µB (z )}

for all  z  ∈ Z .

The intersection(AND) of two fuzzy sets  A and  B , denotedA ∩ B , is a fuzzy set   I  with the membership function

µI (z ) = min {µA(z ), µB (z )}

for all  z  ∈ Z .

11/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 12: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 12/62

Membership function can be defined in many different ways

A few next slides will present some of the most common types

of membership functions

12/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 13: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 13/62

Triangular

13/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 14: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 14/62

Trapezoidal

14/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 15: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 15/62

Sigmoidal

15/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 16: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 16/62

Let us suppose that we have an electric motor, whose health

we would like to measure.To simplify the case we can assume that it is enough tomeasure average vibration frequency.

Three are three ranges of average frequency:

−   In low range motor is performing normally

−   In mid range motor is performing marginally

−  In high range motor is in the near-failure mode

Because these ranges sound imprecise, using fuzzy logic onthem might be a good idea.

16/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 17: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 17/62

0 10 20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

Average vibration frequency : z

   D  e  g  r  e  e  o   f  m

  e  m   b  e  r  s   h   i  p  :     µ   (  z   )

µ low

(z)

µ mid

(z)

µ high

(z)

17/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 18: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 18/62

Based on previous definitions we can come up with followingfuzzy IF-THEN rules:

IF the frequency is   low , THEN motor operation is  normal (R 1)

OR

IF the frequency is  mid , THEN motor operation is  marginal (R 2)

OR

IF the frequency is  high, THEN motor operation is  near failure (R 3)

18/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 19: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 19/62

Page 20: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 20/62

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Abnormality in percents : v

   D  e  g  r  e  e  o   f  m  e  m   b  e  r  s   h   i  p

µ norm

(v)   µ marg

(v)   µ fail

(v)

20/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 21: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 21/62

IF the frequency is   low , THEN motor operation is  normal 

(R 1).

This rule relates   low  AND  normal .

There is nothing more than intersection operation AND,which we defined earlier.

As a result we get following membership function

µ1(z , v ) =   µlow (z ) AND   µnorm(v ) = min {µlow (z ), µnorm(v )}

This function is a general result.

21/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 22: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 22/62

However, we are interested in outputs due to some specificinput  z 0.

The degree of membership of  z 0   in terms of the lowmembership function is   µlow (z 0).

To obtain the output corresponding to the rule  R 1  and inputz 0, we use AND operator to the specific value   µlow (z 0) andµ1(z 0, v ) (general solution evaluated at  z 0).

22/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 23: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 23/62

Page 24: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 24/62

Page 25: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 25/62

Now we need to obtain the overall response in this fuzzysystem.

In other words we need to combine  Q 1, Q 2  and  Q 3   into one  Q .

Originally:   R 1  OR  R 2  OR  R 3.

Therefore complete fuzzy output is given by

Q (v ) = Q 1(v ) OR  Q 2(v ) OR  Q 3(v )

25/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 26: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 26/62

OR was previously defines as a max operation

Therefore

Q (v ) = max {Q 1(v ), Q 2(v ), Q 3(v )}

= maxr 

mins ,t 

{µs (z 0), µt (v )}

where  r  = {1, 2, 3},s  = {low , mid , high}  andt  = {norm, marg , fail }. Here  s   and  t  are paired combinations.

Although  Q (v ) was developed specifically for this example, itwould be generalized to  n   rules.

Then  r  = {1, 2, · · ·   , n}.

26/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 27: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 27/62

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Abnormality in percents : v

   D  e  g  r  e  e  o   f

  m  e  m   b  e  r  s   h   i  p

z0 is some specific input value

µ norm

(v)   µ marg

(v)   µ fail

(v)

µlow

(z0)

µmid

(z0)

µhigh

(z0)

27/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 28: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 28/62

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Abnormality in percents : v

   D  e  g  r  e  e

  o   f  m  e  m   b  e  r  s   h   i  p

Q1(v)

Q2(v)

Q3(v)

28/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 29: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 29/62

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Abnormality in percents : v

   D  e  g  r  e  e

  o   f  m  e  m   b  e  r  s   h   i  p

Q(v)

29/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 30: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 30/62

Page 31: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 31/62

For example, let us assume that  z 0 = 0.7.

By counting center of gravity for this  z 0 we obtain  v 0 = 0.76.

If an engine has frequency value of 0.7 it is operating with a76% degree of abnormality.

31/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 32: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 32/62

In this example rules were rather simple and had only onepart(IF...THEN)

If rules have more than one part, all parts have to be taken

into account in fuzzification.

32/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 33: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 33/62

For example, let us assume that we have another variablecalled  temperature .

Now we would have to define a membership function also fortemperature.

First rule could then go in a following way

IF frequency is low AND temperature is moderate

THEN motor is normal

33/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 34: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 34/62

Membership function for the first rule would then be

µ1(z , t , v ) =   µlow (z ) AND   µmod (t ) AND   µnorm(v )

= min {µlow (z ), µmod (t ), µnorm(v )}

Next we would select some specific frequency  z 0  andtemperature t 0.

34/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 35: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 35/62

What phases we just did?1. Fuzzify the inputs (µlow , µmid , µhigh)

2. Perform all required fuzzy logical operations (µ1, µ2, µ3).

3. Apply an implication method (Q 1, Q 2, Q 3).

4. Apply an aggregation method for fuzzy sets acquired inphase 3 (Q ).

5. Defuzzify the final output set (center of gravity).

35/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 36: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 36/62

Nested functions are defined inside another function.

Nested functions are a relatively new feature and therefore

older versions of MATLAB dont support this.

36/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 37: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 37/62

function y = tax(income)

adjusted income = income - 6000;

y = compute tax

function y = compute taxy = 0.28*adjusted income;

end

end

37/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 38: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 38/62

Page 39: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 39/62

ulow=@(z)1-sigmamf(z,0.27,0.47);umid=@(z)triangmf(z,0.24,0.50,0.74);

uhigh=@(z)sigmamf(z,0.53,0.73);

unorm=@(z)1-sigmamf(z,0.18,0.33);

umarg=@(z)trapezmf(z,0.23,0.35,0.53,0.69);ufail=@(z)sigmamf(z,0.59,0.78);

rules =   {ulow; umid; uhigh; }

L=lambdafcns(rules);

39/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 40: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 40/62

Page 41: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 41/62

Page 42: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 42/62

udark=@(z)1-sigmamf(z,0.35,0.5);

ugray=@(z)triangmf(z,0.35,0.5,0.65);

ubright=@(z)sigmamf(z,0.5,0.65);

udarker=@(z)bellmf(z,0.0,0.1);

umidgray=@(z)bellmf(z,0.4,0.5);

ubrighter=@(z)bellmf(z,0.8,0.9);

42/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 43: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 43/62

Output membership functions(darker, midgray, brighter)

Page 44: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 44/62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

Intensity of output figure(v)

   D  e  g  r  e  e  o   f  m

  e  m   b  e  r  s   h   i  p

 

µdarker

(v)

µgrayer(v)µ

brighter(v)

44/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 45: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 45/62

% System response functions

rules={udark;ugray;ubright};

outmf={udarker,umidgray,ubrighter};

F=fuzzysysfcn(rules,outmf,[0 1]);

% Read image(will be of class uint8)

f image=imread(’saturnus.JPG’);

z=linspace(0,1,256);

% Construct the intensity transformation function

T=F(z);

% Transform the intensities of f image by using T

g image=intrans(f image,’specified’,T);

figure;

imshow(g image);

45/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 46: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 46/62

46/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 47: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 47/62

Page 48: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 48/62

In the following tables  z i  are marked as intensity values of a

pixel and  d i  = z i  − z 5  are marked as the intensity differencebetween center pixel  z 5.

z 1   z 2   z 3z 4   z 5   z 6z 

7  z 

8  z 

9

d 1   d 2   d 3d 4   0   d 6d 7   d 8   d 9

48/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 49: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 49/62

From the previous tables we can form following rules forboundary recognition

IF  d 2  is zero AND  d 6   is zero THEN make  z 5  white

IF  d 6  is zero AND  d 8   is zero THEN make  z 5  white

IF  d 8  is zero AND  d 4   is zero THEN make  z 5  white

IF  d 4  is zero AND  d 2   is zero THEN make  z 5  white

ELSE make  z 5  black

To simplify the case only four of the neighbor pixels are used.

49/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 50: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 50/62

We have four rules(+else) and four inputs.

Each row in the following matrix corresponds to one rule.

Next we need to define the membership functions for

zero(input), white(output) and black(output).

50/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 51: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 51/62

Let us assume that our image has  L  different intensity levels.Then the intensity differences can range between  −(L − 1)and  L − 1.

It is clear that our output picture also has  L  different intensity

levels.In this example we fix  L = 256

In other words we are using an image of class  uint8

51/ 62 Sami Hokuni   Fuzzy techniques in image processing

Input membership function(zero)

Page 52: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 52/62

−255 0 255

0

0.2

0.4

0.6

0.8

1

Intensity differences(z)

   D  e  g  r  e  e  o   f  m

  e  m   b  e  r  s   h   i  p

 

µzero

(z)

52/ 62 Sami Hokuni   Fuzzy techniques in image processing

Output membership functions(black and white)

Page 53: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 53/62

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

Intensity of the output image(v)

   D  e  g  r  e  e  o   f  m

  e  m   b  e  r  s   h   i  p

 

µblack

(v)

µwhite(v)

53/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 54: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 54/62

% MAKEFUZZYEDGES Script

% Input membership functions

zero=@(z)bellmf(z,-0.3,0);

not used=@(z)onemf(z);

% Output membership functions

black=@(z)triangmf(z,0,0,0.75);

white=@(z)triangmf(z,0.25,1,1);

% There are four rules and four inputs

inmf={zero, not used, zero, not used

not used, not used, zero, zeronot used, zero, not used, zero

zero, zero, not used, not used}

54/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 55: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 55/62

Page 56: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 56/62

function g=fuzzyfilt(f)

% Cast f onto floating point

[f,revertclass]=tofloat(f)

% Count the intensity differences

z1=imfilter(f,[0 -1 1],’conv’,’replicate’);

z2=imfilter(f,[0; -1; 1],’conv’,’replicate’);

z3=imfilter(f,[1;-1;0],’conv’,’replicate’);

z4=imfilter(f,[1 -1 0], ’conv’,’replicate’);

% Load the previously made script and use it

s=load(’fuzzyedgesys’);

g=s.G(z1,z2,z3,z4);

g=revertclass(g);

56/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 57: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 57/62

57/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 58: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 58/62

58/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 59: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 59/62

59/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 60: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 60/62

In the previous pictures we saw that constant regions of theimage appeared gray.

When intensity differences are close to zero we apply theTHEN rules.

Output is then some constant between  L−1

2   and  L − 1, whatproduces the grayish tone to the image

This can be ”fixed” by using function  mat2gray.

60/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 61: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 61/62

61/ 62 Sami Hokuni   Fuzzy techniques in image processing

Page 62: Ho Kuni 120412

8/13/2019 Ho Kuni 120412

http://slidepdf.com/reader/full/ho-kuni-120412 62/62