High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards &...

38
High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO

Transcript of High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards &...

Page 1: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

High Sensitivity Magnetic Field Sensor Technology

David P. Pappas

National Institute of Standards & Technology

Boulder, CO

Page 2: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Market Analysis - Worldwide

2005 Revenue Worldwide - $947M

Growth rate 9.4%

TypeApplicationHT SQUID,

$0.38M

LT SQUID, $5.3M

Magnetometer

$5.5M

Compass, $4.8M

Position sensor, $3.4M

GMR, $40.2M

AMR $121.6M

Hall element, $94.7M

Hall IC, $671.2M

“World Magnetic Sensor Components and Modules/Sub-systems Markets”Frost & Sullivan, (2005)

Medical $24M

Other$11M

AerospaceDefense

$37M

Industrial, $156M

Auto$338M

Computer, $380M

Research, $0.8M

NDT $0.1M

Page 3: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Applications

Health Care

Geophysical

Astronomical

Archeology

Non-destructive

testing

Data storage

North Caroline Department of Cultural Resources“Queen Anne’s Revenge” shipwreck site Beufort, NC

Mars Global Explorer (1998)

Magnetic RAM

Page 4: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Field Ranges & Frequencies

F.L. FagalyMagnetics Business & TechnologySummer 2002

1 fT

1 nT

1 100 10,0000.010.0001Frequency (Hz)

Mag

netic

fiel

d R

ange

1 pT

Geophysical

Industrial

MagneticAnomaly

Magneto-cardiography

Magneto-encephalography

Adapted from “Magnetic Sensors and Magnetometers”, P. Ripka, Artech, (2001)

1 fT

1 100 10,0000.010.0001Frequency (Hz)

Mag

netic

fiel

d R

ange

1 pT

Geophysical Industrial/NDE

MagneticAnomaly

Magneto-cardiography

Magneto-encephalography

1 nT

Page 5: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Magnetic fields… Induce currents in conductors

Change magnetic properties matter

Affect electronic properties of materials

Change phase of currents flowing in

superconductors

Create energy level splittings in atoms

=> Use these effects to build a toolbox for field detection in important applications

Page 6: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Magnetometer technologies Induction

Search Coil

Ferromagnetic Fluxgate Magneto-Resistive, Impedance, Optical, Electric…

Semiconducting Hall Effect, spintronics

Superconducting SQUIDS – DC,RF / Low TC, High TC

Spin Resonance Proton, electron

Page 7: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Important properties State variable

B Measurement – Vector or scalar?

Noise (@ 1 Hz)

Operating Temp.

Power

Form Factor

Commercially available?

Page 8: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

State measurement Low noise excitation source -

Voltage, current, light, …

Sense state with detector

Flux feedback is typical Linearize

Dynamic Range ~ 22 bits

Limits bandwidth & slew rate

Complicated

Bext

Bf

B

M

Page 9: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Noise metrology Shielded container/room Low noise preamplifiers Spectrum analyzer

A-B Cross-correlation reducesamplifier noise

StateMeasurement

A B

Stutzke, Russek, Pappas, and Tondra, J. Appl. Phys. 97, 10Q107 (2005)

Billingsley (2007)

Page 10: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

SQUID Magnetometer

“The SQUID Handbook,” Clarke & Braginski, Wiley-VCH 2004

State variable Voltage (100’s

V)

B-field Vector

Noise @ 1 Hz

sources

5 fT/HzJohnson

Flux trapping

Operating T cryogenic

Power Line

Form Factor m3

2nd DerivativePickup coil

Commercial: 10 – 100’s k$

Page 11: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Noise Spectral distribution Normalized for 1 Hz bandwidth Noise integrates for wider bandwidth

fT/Hz

Hz

SyntheticGradiometer

Unprocessed

10 fT/Hz

Low TC SQUID array

Penne, et al., PHILOSOPHICAL MAGAZINE B, 2000, VOL. 80, NO. 5, 937± 948

1 pT/Hz

Page 12: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

1 10 100 1000

1pT/Hz

e.g. magneto-cardiography

Oh, et. al JKPS (2007)

Low TC SQUID – 10 fT/Hz @ 1 Hz High TC SQUID – 1pT/Hz @ 1 Hz

.01 0.1 1 10 100

Page 13: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Harold Weinstock

“Don’t use a SQUID when a

simpler technology is available”

Page 14: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Resonance magnetometers Nuclear spin resonance

Protons water, methanol, kerosene

He3

Molecules - Tempone

Electron spin resonance He4

Alkali metals – Na, K, Rb

Bext

Page 15: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Proton magnetometerState variable Frequency

B-field Scalar

Noise @ 1 Hz

sources

~10 PT/Hz

depolarization

Operating T -20 => 50 oC

Power Battery

Form Factor cm3

Commercial: 5 k$

mT 0.05 ~ B

MHz/T 42~

kHz 2

2/B f

Earth

otonPr

EarthotonPr

Page 16: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Electron spin magnetometerState variable Frequency

Vapor cell

Photodetector

B

RFCoils

/4 Filter

Laser

• Noble gas – He4

• e = 28 GHz/T => f ~ 1 MHz

• Spin-exchange relaxation free (SERF)

• K metal vapor

• Low field, high density gas

• Optimized for high sensitivity

• Chip scale atomic magnetometer (CSAM)

• Rb metal vapor

• Optimized for low power

• Very small form factor

• Can also implement SERF

Budker, Romalis, Nature Physics, 3(4), 227-234 (2007)

Page 17: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

e--spin magnetometer - He4

Scalar B-field 1 pT/Hz Cell not heated Low power

~ 10’s cm3

JPL SAC-C missionNov. (2000)

Page 18: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

e--spin magnetometer Spin-exchange relaxation free

Vector B-field <1 f T/Hz cell ~ 180 oC Line power

~ m3

Page 19: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

e--spin magnetometer Chip Scale Atomic magnetometer

Scalar B-field 5 pT/Hz Cell 110 oC Very low power

~20 mm3

P. D. D. Schwindt, et al. APL 90, 081102 (2007).

Page 20: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Ferromagnetic magnetometers

Fluxgate

Magneto-resistive AMR – Anisotropic MR

GMR – Giant MR

TMR – Tunneling MR

Giant Magneto-impedance

Magneto-striction

Page 21: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Fluxgate

M

H

Bext

Bext

Hmod(f)

MState variable Inductive 2f

B-field Vector

Noise @ 1 Hz

sources

~5 pT/Hz

MagneticJohnsonPerming

Operating T RT, 30

ppm/oC

Power Battery

Form Factor ~20 mm core

“Magnetic Sensors and Magnetometers” P. Ripka, Artech, 2001Commercial: ~1 k$

Pickup(2f)Drive(f)

Page 22: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Advances in Fluxgate technology

Apply current in core

Single domain rotation

100 f T/Hz @ 1 Hz

Circumferential Magnetization

IM

Planar fabrication

80 pT /Hz @ 1 Hz

Micro-fluxgates

Koch, Rosen, APL 78(13) 1897 (2001) Kawahito S., IEEE J. Solid State Circuits 34(12), 1843 (1999)

Page 23: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Magneto-resistive (MR) sensors

AMR - Anisotropic MR Single ferromagnetic film

2% change in resistance

GMR – Cu spacer Up to 60% change

TMR – Insulator spacer Insulator => 400% change

IMFM

FM

NM

FM

**

*

*“Thin Film Magneto-resistive SensorsS. Tumanski, IOP (2001).

Page 24: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Specs: MR sensors State variable Resistance

B-field Vector

Noise @ 1 Hz

sources

~100 pT/Hz1/f mag noiseTemp fluct. MJohnson/Shot

Perming

Operating T RT, 60 ppm/oC

Power Low

Form Factor m2

AMRHoneywell

Philips

GMRNVE

Commercial: ~ $

Fluxguides

2 Unshielded sensors

2 shielded

TMR

“Low frequency picotesla field detection…”Chavez, et. al, APL 91, 102504 (2007).

Page 25: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

The joy of flux guides:

Bext

M

For small gap:Bg ~ 10 Bext

Bext

Bint~10Bext Bg~Bint

Bound Current

“soft” ferromagnet

Page 26: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Advanced flux guidesBext

a

b

Bext

M Need:

Soft ferromagnet

High M = No hysterisis

=> Gain up to ~50

“a” concentrated“b” shielded

Page 27: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Disruptive technologies?Hybrid superconductor/GMR

State variable GMR

B-field Vector

Noise @ <1 Hz 32 fT/Hz

Operating T cryogenic

Power low

Form Factor Loop ~ 3x3 mmField GainYBCO ~ 100Nb ~ 500

Superconductingflux concentrator

“…An Alternative to SQUIDs”Pannetier, et. al, IEEE Trans SuperCond 15(2), 892 (2005)

Page 28: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

MR sensors - high spatial resolutionHigh Frequency Data storage

HDD read head 100 Gb/in2

0.2 m wide, 1 GHz BW

~ 100 pT/Hz from SNRMgO MTJ

Frietas, Ferreira, Cardoso, CardosoJ. Phys.: Condens Mater 19 165221 (2007)

10 pT/Hz

Page 29: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

MR Sensors – scalability & imaging 256 element AMR linear array

Thermally balanced bridges

Image magnetic tapes real

time – forensics, archival

NDE imaging I+

Cassette Tape – forensic analysisFerrofluid image

V+V-

I-I-

16 m

Page 30: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

MR biomolecular recognition MR arrays with probe DNA

Magnetic labels that attach to target DNA

Labels => Probes, read out MR

Device Applications Using Spin Dependent Tunneling and Nanostructured Materials M. Tondra, D. Wang, Z. Qian, Springer Lecture Notes in Physics, V593, 278-289 (2002)

“BARC”BeadArray Counter

Page 31: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Magneto-electric

Disruptive technology?No power required

Two terminal deviceHigh impedance output

State variable Piezo voltage

B-field Vector

Noise @ <1 Hz

sources

1 nT/Hzpyro/static

Operating T -40 to 150C

Power 0

Form Factor 10’s mm3

Dong, Zhai, Xin, Li, ViehlandAPL V86, 102901 (2005)

Magnetostrictive+

piezo-electricmultilayer

Terfenol-D

H

Page 32: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Giant Magneto-impedance

“Giant magneto-impedance and its applications”Tannous C., Gieraltowski, Jour Mat. Sci: Mater. in Electronics, V15(3) pp 125-133 (2004)

Magnetic amorphous wire

Iac H

MState variable Z @ ~ 1 MHz

B-field Vector

Noise @ 1 Hz

sources

~100 pT/Hz1/f mag noiseTemp fluct. M

JohnsonPerming

Operating T RT

Power Very low

Form Factor mm2

frequencyfrequency

external fieldexternal field

%400~R

Z

DC

Commercial: ~100 $

CoFeSiB

Page 33: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Tried and True - Hall EffectState variable Voltage

B-field Vector

Noise @ 1 Hz

sources

~100 pT/Hze- mobility

Offsets1/f noise

Operating T RT

Power Very low

Form Factor 0.1 mm2 - Si

Commercial: ~0.1 $

Page 34: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Spin Transistors

Page 35: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Magneto-optic

Page 36: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Search Coils

Page 37: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Acknowledgements

Steve Russek

Bill Egelhoff

John Unguris

Mike Donahue

John Kitching

Fabio da Silva

Sean Halloran

Lu Yuan

Page 38: High Sensitivity Magnetic Field Sensor Technology David P. Pappas National Institute of Standards & Technology Boulder, CO.

Comparison of MR & Fluxgates

10-1 100 101 102 103 10410-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

NVE AAH002NIST MTJ

Aichi GMI

Allegro Si Hall

coil 2.5 cm x 5 cm

Fluxgate

HW AMR

NVE SDT

NVE GMR

HW AMR

NVE GMR

Min

mum

Det

ecta

ble

Fiel

d (T

/Hz

1/2 )

Frequency (Hz)

G111J