“High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High...

40
SatCon Applied Technology 27 Drydock Ave, Boston, MA 02210 Page 1 Leo Casey Bogdan Borowy Gregg Davis SatCon Technology Corporation [email protected] EESAT 2005 Stan Atcitty of Sandia National Laboratories “High Power Silicon Carbide Inverter Design -- 100kW Grid Connect Building Blocks ” Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE- AC04-94AL85000.

Transcript of “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High...

Page 1: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 1

Leo Casey Bogdan Borowy Gregg DavisSatCon Technology Corporation

[email protected]

EESAT 2005

Stan Atcitty of Sandia National Laboratories

“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ”

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-

AC04-94AL85000.

Page 2: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 2

ACKNOWLEDGMENTS

• Funded by the Small Business Innovation Research (SBIR) program of the U.S. Department of Energy (DOE/ESS - Dr. Imre Gyuk, Mgr.), and managed by Sandia National Laboratories (SNL).

Page 3: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 3

“High Power Silicon Carbide Inverter Design”

Overview• Company• Application• SiC Technology – Potential, Status• Devices• Roadmap• Design

Acknowledgements

Page 4: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 4

SatCon HighlightsTechnology … Applications … Products

Packaging & Thermal Management

High Bandwidth Controls

Electric Machines & Magnetics

Modular Power Electronics

1985 MIT-DRAPER1985 MIT-DRAPER

TodayToday

Patriot -1992

Patriot -1992

WEC/NG 1999

WEC/NG 1999

2003 Subsidiary

Corporations

2003 Subsidiary

Corporations

FMI & HiComp1998

Magmotor1997

Technology

Applications

• 200 Employees• 3 Divisions

InverPower2001

Improved Displays,Operator Controls

Active BatteryManagement

System

ImprovedTraction Battery

System

Advanced ElectricPower Train

RuggedizedMechanical Speed

Reducer

BEACON 1997

Page 5: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 5

Motivation for Utility Scale Storage

• Increasing electrification, dominant secondary source of energy, Electricity is >1/3 of our 100 Quad Energy Economy

• Grid is a BEAUTIFUL thing– Energy moves at the speed of light– Rugged Electro-mechanical generators– Spinning “reserve”– Excess capacity (>15% is critical) SIZED FOR 20%+– Low Impedance – typically 1% of rating at PCC– Fault clearance– Overload– ac – Simple Impedance Transformation, and Isolation

• Beautiful – but complex, congested– Distributed network with no significant energy storage– Supply must equal demand– Load transients (generator power angle)– System stability problems (minimal local control), tap-changing, relaying, v and f droop– Time constraints of protective devices

• Importance of storage to address– Distribution (remoteness of generation and utilization)– Load leveling (excess capacity), energy arbitrage– Power Quality– Intermittent Renewables

100 Quads = 100 exajoule (100.1018J)

Electricity InfrastructureTransmission SCADA control points

FERC grid monitor/control 12Network Reliability CoordinatingCenters 20Regional Transmission Control Centers 130Utility control centers >300Power plants 10,500Large (>500 MW) 500Small (<500 MW) 10,000Transmission Lines 680,000 milesTransmission substations 7,000Local distribution lines 2.5 million milesLocal distribution substations 100,000

Page 6: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 6

Some Potential SiC (WBG) Impacts on Grid

• Relaying (electromechanical is 6-10 cycle, solid-state for LV, MV, HV)– Isolation (SSR)– Protection– Fault clearing– Fault limiting (SSCL)

• Transmission Electronics (MV, HV)– FACTS– VARS, (SVAR, DVAR)– DVR– STS

• Grid electronics (storage, renewables, PQ)– Volume– Weight– Efficiency– Reliability– Cost– Overload capability– Voltage/Power Application Range

• Solid State Suppression– Spikes

• Solid State Transformers (HF Link)

New Switch Capabilities enables new Applications

Hi-T, Hi Rad, Hi V, Hi f

•;

Page 7: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 7

Application -- Modular SiC Grid Connected Inverter

• modular 100 kW DC-AC inverters (800 VDC/480 Vac 3 phase)

•modern computer controls with both PLC and industrial computer with dual redundant LAN interface

•Expandable to 3MW

•SSIMs are hot swappable (electrical and mechanical)

•Power electronics in each SSIM are cooled by a sealed water-cooled cold plate

•Modular building block volume more cost effective application of SiC

•5.7 kHz PWM hard switched, 1 pu, 100kW, 480V, 120Arms

•Approx 19” W x 8” H x 35” L, 375 lbs. Output LC filter, Input L EMI filter.

•Liquid cooled IGBT power stage, gated drive PWAs, and bulk capacitors.

•DC Input, 800V nominal, 1200V Pk

Used today in DD(X)

AC DC DC

Page 8: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 8

Power Electronic Systems

• Power Circuits• Power Components, active and passive• Signal Electronics• Control• Software• Thermal Management• Mechanical Design & PackagingFull benefit comes from addressing all areasSiC devices are NOT drop in replacements

SiC Materials⇓

Devices⇓

Package⇓

Drive⇓

Sense⇓

Control⇓•••

System

Applications

?

? Is the performance acceptable?Are the devices reliable?

Are they consistent (matched)?What are the next hurdles?

$ $

$ $

Page 9: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 9

Beyond Silicon, Why? (other than temperature or radiation niches)

• Ideally in Power Conversion we use switching elements to move energy in discrete packets between source and load, with reactive elements for the energy storage and filtering, but …

• Voltage Rating• Current Rating• Temperature Rating• Radiation limitation• Parasitics, R, C, switching time, RTH, VON, • Fundamental limitations of Switching speed• $$$ total cost

Si SOAMOSFET 1983, 1.2 μs 2004, 0.1 μs 600V, 20AIGBT 1986, 3 μs 2004, 1.2 μs 6kV, 150A

Page 10: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 10

WBG Materials

Property Si 6H-SiC 4H-SiC GaN Diamond

Bandgap Eg (eV) 1.1 3.0 3.3 3.45

9

2000

1250

250

1.3

5.6

2.2

5.45

Dielectric Constant, εr 11.9 9.7 10.1 5.5

Breakdown Field, Ec (kV/cm) 300 2500 2200 10000

Electron mobility, μn (cm2/V-s) 1500 500 1000 2200-4500

Hole mobility, μp (cm2/V-s) 600 101 115 1600-3000

Thermal Conductivity λ (W/cm-K) 1.5 4.9 4.9 22

Thermal expansion (× 10-6)/ºK 2.6 3.8 4.2 1-2

Saturated e- Drift Velocity, νsat (× 107 cm/s) 1 2 2 2.7

•Wide Band Gap, high-T, high Rad, low leakage•High Ec•Good λ

+ve Impact•Weight•Volume•Efficiency•Ruggedness

Page 11: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 11

Ec – thickness, doping

Si-MOSFET SiC-MOSFET

Ec

W

C

MAX

EVW ⋅

=2

•Order of magnitude higher breakdown field•100 times higher blocking layer dopant density

1/10th blocking layer thickness•100 times faster for minority carrier device•Larger band gap gives high temperature capability•Significant improvement in thermal conductivity

reduced heat sink requiements•Improve failure mechanisms for fault conditions•Higher power with future high temperature packages

Materials BenefitsDN

W 1≈

•Voltage is area under curve•Big EC small W•Small W large ND

Page 12: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 12

Whats in the way?

• Materials Issues– 180+ Xtal structures (polytytpes)

– 6H, 15R, 4H and 3C, main candidates – No liquid phase, growth at 2200ºC+

– Sublimation– CVD

– Negligible Dopant diffusion, dopeepi as it is grown or hi-energy implant at high-T

– Defects– Micro-pipe– Screw dislocation– Basel plane defects

– Oxide quality and reliability– Stability of Ohmic contacts

Page 13: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 13

Optical Market driving SiC Wafer demand

SiC Devices Developing : Example, MOSFETs*Spline fits to data are shown

Reduction In Cree’s Median Micropipe Density vs Time

Year

-

= R&D Best ResultsCurves are for production volumes.

10

100

1997 1998 1999 2000 2001 2002

200

5

50

20

Med

ian

Mic

ropi

pe D

ensi

ty c

m-2

35mm

2-inch

3-inch

100 mm

2003 2004

•4 inch wafers•Substrates for GaN LEDs

•Better thermal conductivity•Good electrical conductor

•Volume has driven quality

Page 14: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 14

SiC Schottky

1200V/50A SiC Schottky Diode

0 50000

100000 150000 200000 250000 300000 350000 400000

0 200 400 600 800 1000 1200 1400Reverse Voltage (volts)

Leakage Current (nA)

25 C

100 C

200 C

1200 V blocking @ 180 μA leakage

0 50000

100000 150000 200000 250000 300000 350000 400000

0 200 400 600 800 1000 1200 1400Reverse Voltage (volts)

Leakage Current (nA)

25 C

100 C

200 C

1200 V blocking @ 180 μA leakage

0 5

10 15 20 25 30 35 40 45 50

0 1 2 3

Forward Voltage (volt)

Forward Current (amp)

25 C100 C200 C

Die size: 5.6 mm x 5.6 mm Die size: 5.6 mm x 5.6 mm •First commercial SiC power device (other than RF)•2 sources, Cree & Infineon•10,20 A 600,1200V

SiC PiN DiodeSiC Schottky vs PiN DiodeSiC Schottky vs PiN Diode

0

1

2

3

4

5

0 1 2 3 4 5

Forward Voltage (volts)

Forw

ard

Cur

rent

(am

ps)

Schottky-25CSchottky-75CSchottky -125CSchottky - 175CSchottky-225CSchottky -275CSchottky - 325CPiN - 25CPiN - 75CPiN - 125CPiN - 175CPN - 225CPiN - 275CPiN - 325C

1200 volt - 5 Amp Forward I-V over Temperature

Junction Temperature

Blo

ckin

g V

olta

ge

PiN Diode

Schottky

Switchin

g Freq

uenc

yJunction Temperature

Blo

ckin

g V

olta

ge

PiN Diode

Schottky

Switchin

g Freq

uenc

y •20kV+ devices have been demonstrated

•20kV devices have been demonstrated

Page 15: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 15

SiC Bipolar

IB = 100mA

IB = 200mA

IB = 300mA

IB = 400mA

IB = 500mA

VCE(sat) = 1.2V @ 5A

1200 V SiC1200 V SiC BJTsBJTs

4mm x 4mm Darlington

3mm x 3mm BJT

1mm x 1mmBJT

N+, 4H-SiC

N, 15 μm, 4.4x1015 cm-3

1 μm, 2x1017 cm-3 0.75 μm

N+

P P+P+

P+ GRsP+ GRs

EB B

C

23 μm

1.5mmx1.5mmBJT

-200

0

200

400

600

800

1000

1200

V Si

C B

JT (v

olts

)

-2

0

2

4

6

8

10

12

I SiC

BJT

(A)

02468

1012

-200 -150 -100 -50 0 50 100 150 200

Time (ns)

Pow

er (k

W)

SiC JFET

Vg = -18volt

Normally-On : 7/2004

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12

Drain Voltage (V)

Drai

n C

urre

nt (A

)

Vgs=0Vgs=0.5Vgs=1.0Vgs=1.5Vgs=2.0

-2.00E-05

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

0 200 400 600 800

Drain Current (A)

Dra

in C

urre

nt (I

)

Vgs=-5Vgs=-10

Cgs=-15

Vgs=-20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12

Drain Voltage (V)

Dra

in C

urre

nt (A

)

Vgs=0.5Vgs=1.0Vgs=1.5Vgs=2.0Vgs=2.5

-1.00E-05

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

0 200 400 600 800

Drain Voltage (V)

Dra

in C

urre

nt (A

) Vgs=0Vgs=-1Vgs=-2Vgs=-3Vgs=-4Vgs=-5

Normally Off –7/2004

00

VGCin

VDS

RD

00

DUT

Cin

VDS

RD

00

VGCin

VDS

RD

00

DUT

Cin

VDS

RD VDS = 300 V

Switching Test Circuit

JEDEC Standard #24

f = 20 MHzSiO2

source contact

drain contact

SiO2

source contact

drain contact

n-type substrate

n- drift

implantedp-type gate

Basic device cross-section Finished JFET in a TO-257

Page 16: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 16

SiC MOSFET

• Native oxide is SiO2

• Only WBG with native oxide• Grow in Silane Environment• IGBT?

SiC MOSFETSiC MOSFET

1.6 mm

1.6

mm

1.6 mm

1.6

mm

Vgs = 5V

Vgs = 10V

Vgs = 15V

Vgs = 20V

Vds = 1.5V @ 5A

Output Characteristics @ Tj = 25°C

3 - Die Connected in Parallel for 5

amp Device

RDS(on) = 0.3 ohmMore than 30 times lower

than 1200 Volt Si MOSFET

1.E-031.E-021.E-011.E+001.E+011.E+021.E+031.E+041.E+051.E+061.E+071.E+081.E+091.E+101.E+11

0 1 2 3 4 5 6 7 8 9 10 11 12

Oxide Field (MV/cm)

Mea

n Ti

me

To F

ailu

re (h

r)

Acceptable MTTF:100 Years

Acceptable MTTF:100 Years

Operating Field

175 oC300 oC

High Reliability of MOS structures on epitaxial surface

NMOS-C 175C

MOSFET 175C

NMOS-C 300C

NMOS-C 175C

MOSFET 175C

NMOS-C 300C

-200

0

200

400

600

800

1000

1200

V Si

C M

OSF

ET (v

olts

)

-2

0

2

4

6

8

10

12

I SiC

MO

SFET

(A)

02468

1012

-200 -150 -100 -50 0 50 100 150 200Time (ns)

Pow

er (k

W)

0 400 800 1200 1600 2000 24000

20

40

60

80

100 100 A

75 A

50 A

40 A

25 A20 A10 A5 A

Cat

hode

cur

rent

(A)

Time(ns)

Turn-on time versus IAK

1 cm x 1 cm 4H-SiC Thyristor

GAA

AA

Forward Blocking - 5.2 kV @ 100 μA

0.E+00

1.E-04

2.E-04

3.E-04

4.E-04

5.E-04

6.E-04

7.E-04

8.E-04

9.E-04

1.E-03

0 1000 2000 3000 4000 5000

Blocking Voltage (Volt)

Leak

age

Cur

rent

(Am

p)

100 μA at 5200 V

SiC GTOs

Forward I-V at 100 mA gate current

-350

-300

-250

-200

-150

-100

-50

0-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Vak -on (volts)

Iak

- on

(am

ps)

300 A @ 5.5 V

Page 17: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 17

Northrop – All SiC Cascode

Page 18: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 18

Ruggedness – Hi T

• Better thermal conductivity• Higher Temperature Material, Dopant Stability

25us Si IGBT test 5ms SiC JFET test

Device Voltage(V)

Current(A)

Demonstrated Switching times

Schottky 600 1200

100 50

~ns

PIN 20,000 20 ∼10ns Bipolar 1200 20 ∼100ns, β ∼30

MOSFET 1200 10 ∼100ns JFET 10,000

1,200 1

20A ∼100ns

“Available”SiC SOA Summary

1% conduction loss at 0.67(VPK)

Page 19: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 19

Critical that Devices Parallel well

• JFETs √• Bipolars √• MOSFETs √

• Static– PTC

• Dynamic– Turn on– Turn off

• Need to be well matched– Over temperature

• Transitions critical

-1

0

1

2

3

4

5

6

7

8

0.00E+00 1.00E-06 2.00E-06 3.00E-06 4.00E-06 5.00E-06 6.00E-06 7.00E-06 8.00E-06 9.00E-06 1.00E-05

Time [sec.]

Ic [A

]

Ic_AIc_BIc_CIc_DAll SiC 7.5 kW,

400V, BJT

Page 20: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 20

Switching Time – Loss -- Frequency

• Generally, (ton + toff) sets fsw, losses go approximately as V.I.(ton + toff)/2

• 1μs 10kHz for 1%• 100ns 100kHz for 1%

• New Technology– Lower conduction and switching– Trade efficiency off vs. L, C

Page 21: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 21

Full SiC Grid Interactive Inverter Design

Silicon SOA Full SiC Design

High Temperature Design Si limits entire system to < 110ºC

Partial High-Temperature design then eventually complete High-Temperature design if needed (analog degradtion)

Size/Density/Efficiency 10 -- 100 W/in3

(16 W/in3 for module)50 -- 500 W/in3

( 80 W/in3 for module)(30% Vol., 20%P)

Cooling 80ºC max. liquid or 25 ºC Air >100ºC liquid or 40-50 ºC Air

Response Time 10 ms for 5.6 kHz with V and I loops

50 µS for 100kHz with dead-beat control

Overload Capability 100-500 ms 10+ seconds

Robustness 10-20,000 hr. MTBF 50-100,000 hr. MTBF

Page 22: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 22

Si Diode - Standard Module (Ultra Fast Si Diode)

SiC SBD - Hybrid Module (Cree 25 amp SiC SBD)

IGBT Current (250 Amps/div)

850 Amps Peak 300 Amps Peak Overshoot in

IGBT Current for all Si Module

Virtually No Overshoot in IGBT Current

for Hybrid Design

Today – losses, on, off, rectifier

•Losses are comparable, on, off, rect•Schottky saves Rectifier•Some associated turn-on•.FRED SiC, ~39% saving in sw. loss •Why are turn-on loss so high?

•Slow transitions•Paralleling?•Due to diode?

•Experiment and Simulate with rapid Turn-off (commercial devices have integrated polysilicon Rs)

Page 23: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 23

Interim ApproachInterim ApproachHybrid Si IGBT/SiC Schottky DiodesHybrid Si IGBT/SiC Schottky Diodes

Si PiN DiodesReplaced with SiC Schottky Diodes

Can be done today

Page 24: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 24

Simulations – System and Device

Time

72.0ms 76.0ms 80.0ms 84.0ms 88.0ms 90.0msI(D1) I(D2) V(ILA)*100

0

100

200

Time

72.0ms 76.0ms 80.0ms 84.0ms 88.0ms 90.0msI(D7) I(D8) V(ILA)*100

0

100

200

Upper Diode Current Upper Transistor Current Load Current

Lower Transistor Current Lower Diode Current Load Current

Amps

Study•System Performance•Transients•Tradeoffs (L, C, fsw)

456us 458usV(Vce)

0V

0.5KV

1.0KV-I(Idiode)

0A

100A

193A

SEL>>

382.00us 384.380.23usV(Vce)

0V

0.5KV

1.0KV-I(Idiode)

100A

-35A

198A

SEL>>

Turn On Turn Off

Load Current 100A/div

Diode Current 100A/div

IGBT Voltage 200V/div

~50%sw. loss

~25% total loss~70% vol, wgt.

Page 25: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 25

Rationale for Packaging IGBT with Forward Diode

• Commutation is normally between the IGBT and forward current diode– Minimizing inductance in

this commutation path reduces switching losses

– Commutation between IGBT and flyback diode does not normally occur

• Packaging the forward diode with its IGBT instead of the flybackdiode therefore can produce a more efficient, faster switching bridge

• Full phase leg also option

switching period

S1 D2

S1

D2

D1

S2

conduction path

current

S2 Cmd

S1 Cmd

Page 26: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 26

Conceptual Layout

5.6 mm square

1 cm square

G

DE

G DE

7.5 square inches (x2) Contrast this with the 25 square inches

AlSiC

La ye r # La ye r Thic k Ma te ria l La mbda The ta Te mp1 5 Silicon 1.092 0.016 117.82 1 Eute ctic (Au-Sn) 1.528 0.002 105.83 10 Coppe r 3.952 0.008 104.14 10 Aluminum Nitrid e 1.521 0.019 98.15 100 AlSiC HOPG 2.250 0.079 84.06 Is othe rm 25.0

Page 27: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 27

Ongoing Cree Developments

2004 2005 2006 2007

6 kV SiC PiN Development20 A 50 A 75 A 100 A 150 A

1200 V SiC Schottky Development20 A 50 A 75 A 100 A 150 A

1200 V Hybrid Si / SiC Power Module

Road Map Road Map -- Hybrid Si/SiCHybrid Si/SiCPower ModulePower Module

2004 2005 2006 2007

6 kV SiC PiN Development20 A 50 A 75 A 100 A 150 A

1200 V SiC Schottky Development20 A 50 A 75 A 100 A 150 A

1200 V Hybrid Si / SiC Power Module

Road Map Road Map -- Hybrid Si/SiCHybrid Si/SiCPower ModulePower Module

Road MapRoad Map--All SiC Power ModuleAll SiC Power Module

2004 2005 2006 2007

1200 V MOSFET Development

1 A 5 A 15 A 50 A 75 A

1200 V BJT Development

15 A 30 A 50 A 100 A 150 A

1200 V SiC Power Module

Road MapRoad Map--All SiC Power ModuleAll SiC Power Module

2004 2005 2006 2007

1200 V MOSFET Development

1 A 5 A 15 A 50 A 75 A

1200 V BJT Development

15 A 30 A 50 A 100 A 150 A

1200 V SiC Power Module

1200 V / 50 A SiC MOSFETsand Schottky Diodes

• 200°C Operation• 100 kHz Operation• Reduction in size of passives• 4x reduction in cooling

1200 V / 50 A SiC BJTsand PiN Diodes

• 300°C Operation• 100 kHz Operation• Reduction in size of passives• 8x reduction in cooling

1200 V / 50 A SiC BJTsand PiN Diodes

• 300°C Operation• 100 kHz Operation• Reduction in size of passives• 8x reduction in cooling

• SiC material improved to allow large area devices to be demonstrated

• 1200 V, 150 A Schottkys, PiNs, and BJTs on pace for 2007

• 1200 V, 75 A MOSFETs on pace for 2007

• 1200 V, 600 A all SiC modules can be built by 2007 for electric drives

Page 28: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 28

Some Cost Considerations

Today’s Si Design

Hybrid Si/SiC-1 Hybrid Si/SiC-2

Semiconductors 4.11 6.81 6.81 Magnetics 9.83 4.91 2.455 Filter Caps 1.7 0.85 1.7

Heatsinks + Hardware 2.4 1.2 1.2 Fans 1 1 1

Sum (% of total parts cost) 19.04 14.77 13.165

Percentage Costs for Si/SiC Inverter

1% increase, 2% improvement round-trip efficiencyFor the 100kW Inverter, feeding a 200kWHr battery, once per day charging cycle 2kWHr saving of off-peak energy, 2KWHr of peak electrical energy.German feed in tariff for PV as an indicator (~55 c€/kWh) we could argue that the 1% of efficiency is worth US $1/day, or with a 20% return on investment approximately $1,800on the order of 10% of the parts cost of the inverter and so the increase in cost of the semiconductors in moving to a hybrid Si/SiC IGBT module is easily justified in savings due to improved efficiencyOr CEC have put a monetary value on KW capability of up to $3.50/watt and so the 1% efficiency improvement would have a direct monetary value in a subsidy situation of up to $3,500. Could be more for roundtrip and with 2 stage

Assume: SiC will reach 3x Si, diode is ½ of active, LC product goes down by 4, choose L or C

Other factors: EMI, Snubbers, metal, MOVs, Electrolytics!, …

Page 29: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 29

Again -- Systems Approach is Critical

APPROACHAPPROACH IMPACTIMPACT

1 SiC power devices Higher frequency, higher temperature, lower loss

6 CSI (Current Sourced Inverter0 More Compatible with Normally-On devices

2 High frequency enables minimization of filter capacitors, Bulk Capacitors, and filter inductors

Reliable and robustLow line harmonics and current rippleReduction of common mode

3 Dead-Beat Control Faster rectifier and inverter response

4 Feed-Forward control from load and line Minimize storage and response times

5 Wide frequency range Non-linear control techniques, faster control

Page 30: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 30

Other Critical Issues for Full SiC System

• Passives• Packaging

– Heat Removal– CTE– Metallization– Electromigration

• Gate Drives– Bipolar– Adaptive

• Controls– Nonlinear

• Signal Electronics– High Temperature

Page 31: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 31

T, ΔT, dT/dt --Dominant Causes of Power Module Failure

• Die attach to DBC Ceramic (bimorph failure due to CTE mismatch fatigue)

• Wirebonds (delaminate)• Interface between Ceramic and Baseplate

The cycles to failure (Nf) has a relationship to T and ΔT that is approximately

Exponential function of ΔT and dimensionslimits die size need to parallel

( )( ) 696.4

24 9354.010

abs

T

f TN

abs

Δ⋅

=

Page 32: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 32

Conventional Packaging• Insulated Metal Substrates (IMS)

– Good Thermal performance – Low Cost $3/in2

– Large CTE Mismatch

• Direct Bonded Copper (DBC)– Better CTE matching– Good Thermal performance– Medium Cost $10/in2

Heat – T– ΔT– dT/dt

Electrical – Interconnect– Parasitics

Mechanical – Strength, durability– Thermal Cycling

Major Package Limitations (Device Stresses)•Thermal Impedance (T)•Thermal Expansion Mismatch (ΔT)•Inductance (Ldi/dt)

1) Silicon Failure

2) Wirebond Failure

3) Solder/Attachment Failure

4) Encapsulant Failure

5) Substrate Failure

Most Failure Mechanisms are Thermally Activated or Enhanced

Primary Failure Modes in Si-IGBT Power Modules

ISSUES•Devices, physics and characteristics •Circuits, power and control

•Metallization •Electro-migration

•Inter-Metallics •Solid State Diffusion

•Creep •Composites

•Thermal Design •Thermal Mechanics

•Mechanical Design •Materials

Page 33: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 33

DBC/CuMo vs MMC(AlSiC) vs Cu IMS

Layer # Laye r T hick Mate ria l La mbda T heta T e mp1 5 Silicon 1.129 0.016 107.92 2 Lead-tin (Sn62) 0.524 0.013 96.23 10 Copper 3.965 0.008 86.64 3 Alumina 0.317 0.028 80.75 100 Copper 4.010 0.047 59.96 Isotherm 25.0

MMC(AlSiC)

Copper IMS

MMC (AlSiC) retains 5 layer High Conductivity stackup but adds high rel TCE matching

Layer # Laye r T hick Mate ria l La mbda T heta T emp1 5 Silicon 1.006 0.017 143.82 2 Eutectic (Au-Sn) 0.772 0.009 130.73 10 Copper 3.935 0.008 124.24 20 Aluminum Nitride 1.497 0.036 118.25 10 Copper 3.960 0.006 91.46 2 Eutectic (Au-Sn) 0.772 0.006 87.07 100 CuMo 15-20% Mo 1.900 0.077 82.88 Isotherm 25.0

Layer # Laye r T hick Mate ria l La mbda T heta T emp1 5 Silicon 1.092 0.016 117.82 1 Eutectic (Au-Sn) 1.528 0.002 105.83 10 Copper 3.952 0.008 104.14 10 Aluminum Nitride 1.521 0.019 98.15 100 AlSiC HOPG 2.250 0.079 84.06 Isotherm 25.0

HiT

HiRel

Page 34: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 34

ΔT -- CTE Matching

•High Power Reliability demands good λ

•High Thermal Conductivity is not the only concern….

•Also need to optimize/match CTEs

•Metal alloys involve compromise (Kovar, Cu-Moly, )

•MMCs emerging, AlSiC, (Graphite, -veCTE)

Si IGBT

Coolant Flow

Cold Plate Assembly

Photo chemically etched copper layer provides final device electric circuit.

Dielectric layer provides electrical isolation for electronic components & circuitry.

High thermal conductivity graphite provides CTE matching to the dielectric material.High thermal conductivity graphite fin

structure for device heat dissipation.

SiC Schottky DiodesSi IGBT

Coolant Flow

Cold Plate Assembly

Photo chemically etched copper layer provides final device electric circuit.

Dielectric layer provides electrical isolation for electronic components & circuitry.

High thermal conductivity graphite provides CTE matching to the dielectric material.High thermal conductivity graphite fin

structure for device heat dissipation.

SiC Schottky Diodes

Graphite Fiber

Al

a) SEM of SAMPLE Al-1: Graphite & Al

Graphite Fiber

Cu

b) SEM of SAMPLE Cu-1: Graphite & Cu

Graphite Fiber

Al

a) SEM of SAMPLE Al-1: Graphite & Al

Graphite Fiber

Al

Graphite Fiber

Al

a) SEM of SAMPLE Al-1: Graphite & Al

Graphite Fiber

Cu

b) SEM of SAMPLE Cu-1: Graphite & Cu

Graphite Fiber

Cu

Graphite Fiber

Cu

b) SEM of SAMPLE Cu-1: Graphite & Cu

Page 35: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 35

Summary of Hi-T Packaging Approaches

• Minimization of number/types of materials• Use of materials stable at high temperatures• Near-perfect matching of thermal expansions, including

metal conductor layers• Use of multiple parallel die to minimize interface

stresses, relative to single large die• Complete elimination of bond wires through use of

bump-bonding (flip-chip), compression packaging and other advanced techniques.

Page 36: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 36

Is Heat Transfer Technology Adequate for SiC ?

SiC

SiC Technology•Smaller areas•Comparable (?) Power Dissipation•Overall higher heat flux density•Want to take advantage of hi-T

•Typically•100A/cm2 500A/cm2

•100W/cm2 500W/cm2

Page 37: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 37

Power Conversion System Envelope

Air-Cooled Condenser Pump

IGBT Modules

Cold Plate

Refrigerant Reservoir

High Power Electronic Die Heat Removal

Heat Rejection to Ambient

2 Stage Cooling/2φ

•Heat must go to ambient•Power buys Reliability (ΔT)•Vol, Wgt, determines Rejection (7X for passive vs active)•CoP of 50+ for liquid (2φ)

Copper cold plate assembly

Copper fin geometry

Refrigerant liquid supply from condenser

Refrigerant liquid-vapor discharge to condenser

Copper cold plate assembly

Copper fin geometry

Refrigerant liquid supply from condenser

Refrigerant liquid-vapor discharge to condenser

0 .8

0 .9

1 .0

1 .1

1 .2

0 5 1 0 1 5A fin / A ba s e

T jun

ctio

n / T

junc

tion

targ

et

C opper B as e w ith C opper F ins

G raphite-C opper B as e w ith G raphite F ins

vR 134a,g p h3 .25 .07 .0

vR 134a,g p h3 .25 .07 .0

0 .8

0 .9

1 .0

1 .1

1 .2

0 5 1 0 1 5A fin / A ba s e

T jun

ctio

n / T

junc

tion

targ

et

C opper B as e w ith C opper F ins

G raphite-C opper B as e w ith G raphite F ins

vR 134a,g p h3 .25 .07 .0

vR 134a,g p h3 .25 .07 .0

•500—1000W/cm2 CuC design

Page 38: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 38

High T Electronics

•No SSD in Si (500°C+)•Leakage is problem•Exponential, hard limit•Thermal Runaway in bulk devices•PD and FD SOI proven at High T

•Commercial•Deeptrek program

•Other problems•Electromigration

•Low density•Cu

Page 39: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 39

High T,f Components

Component Manufacturer Operating VoltageOperating TemperatureAvailable/DevelopmentDigital

8351 - Microcontroller Honeywell 5 Volt 225ºC (300ºC) AvailableMicrocontroller Companion ASIC Honeywell 5 Volt 225ºC (300ºC) Available32k x 8 SRAM Honeywell 5 Volt 225ºC (300ºC) AvailableEEPROM Honeywell 225ºC (300ºC) DevelopmentPrecission A/D Honeywell 225ºC (300ºC) DevelopmentFPGA Honeywell 225ºC (300ºC) DevelopmentLow Power, 8051 - Microcontroller Cissoid 5 Volt 225ºC DevelopmentSystem-On-Chip Cissoid, Honeywell 5 Volt 225ºC Development

AnalogClock Generator Honeywell, Cissoid 5 Volt 225ºC (300ºC) AvailableOperational Amplifier (Quad) Honeywell 10 Volt 225ºC (300ºC) AvailableAnalog Switch (Quad) Honeywell 5/10 Volt 225ºC (300ºC) Available8/16 Channel Analog Multiplexor Honeywell 5/10 Volt 225ºC (300ºC) Available A/D Converter (8/12 bit) Cissoid 10 Volt 225ºC (300ºC) Development555 Timer * Cissoid 5-10 Volt 225ºC (250ºC) DevelopmentVoltage Regulator (5,10,12,15) Honeywell 225ºC (250ºC) AvailableVoltage Regulator (±2.5,±3.3,±5,±5.5,±9,±10,±12,±13,±15) Cissoid 30V 225ºC (300ºC) AvailableP & N MOS Power Silicon Cissoid 80V 225ºC Development

Voltage Reference (2.5,3.3,5,9,10,12,15) * Cissoid ? 225ºC (300ºC) Development

N Channel Power FET Honeywell 60 Volt (1 amp) 225ºC (300ºC) AvailableSiC JFET SemiSouth 600 Volt (6.5 amp) 250ºC AvailableSiC JFET GTI 200 & 1200 Volt 250ºC AvailableDiode (Schottky) SSDI 600 Volt (4 amp) 250ºC Available

PassivesCeramic Capacitors Presidio, Kemit Low Voltage 200ºC (250ºC) AvailableBatteries GA, EEM, and ESI 10-20V 250ºC DevelopmentResistors Dale/Vishay Low Voltage 250ºC Available

SensorsPressure Transducer Paine Electronics 10 Volt 250ºC (300ºC) AvailablePressure Transducer Kulite 10 Volt 250ºC AvailablePressure Transducer Quartzdyne 5 Volt 225ºC AvailablePressure Transducer Sienna Tech. 10V 600C DevelopmentResistive Temperature Devices (RTD) Weed, Rdf 400ºC AvailableAccelerometer (charge output) Endevco 260ºC AvailableMicrophone (charge output) Endevco 260ºC AvailableMagnetometer Diamond Research ± 5 Volts 225ºC AvailableMagnetic Sensor Honeywell 5 Volts 225ºC (250ºC) AvailableLinear Variable Differential Transformer (LVD RDP Electronics 5 Volts (5 kHz) 300ºC AvailableStrain Gage MicroMeasurements 5 Volt 225ºC Available

* very near commercially availablity

HT Component List

Passives•Magnetics

•100kHz limit for ferrites•Powdered iron•nanocrystalline

•Caps•FPE•Biaxial-oriented polypropylene•Metalized teflon•Antiferroelectric ceramic

Sandia List

Page 40: “High Power Silicon Carbide Inverter Design -- 100kW Grid ... · PDF file“High Power Silicon Carbide Inverter Design-- 100kW Grid Connect Building Blocks ... “High Power Silicon

SatCon Applied Technology27 Drydock Ave, Boston, MA 02210 Page 40

Summary/Conclusions

• Silicon Carbide technology is rapidly maturing• Will impact all Power Conversion applications including grid connect

electronics for energy storage• Design and analysis of 100kW Inverter application

– full SiC system at 30% of the volume and weight of today’s systems or alternatively could save 80% of the conduction and switching loss in the same volume.

– Similarly, hybrid Si/SiC technology available today can save approximately 30% of either the volume or weight or of the switching energy being dissipated (25%+ lower losses).

• This provides the designer with choices and trade-offs.• The economics look reasonable once Silicon Carbide costs come down to

some reasonable multiplier of Silicon.• Inverter costing very interesting, all energy intensive raw materials are

rising significantly in cost (have been).• There are many further tasks and challenges to be addressed before full

SiC power conversion systems become a reality.