High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal...

26
High Optical Power Cavity with an Internal Sapphire Substrate Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA

Transcript of High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal...

Page 1: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

High Optical Power Cavity with an Internal Sapphire Substrate

—Thermal lensing, thermal compensation & three modes interactions

Chunnong Zhao

for

ACIGA

Page 2: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Contents

• Strong thermal lensing observation• Closed loop thermal lensing control• Observation of beam astigmatism in

high power cavity• Opto-acoustic parametric interactions

Page 3: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Gingin High Power Facility cavity setup

PRM(M1)

100W

ETMITM(M2)

800kW1kW

ETM

ITM

Fused silica compensation plate

1kW

ITM(M2)

ETM(M1)

4W

CCD

Mode matching telescope

Filter

•Substrate of the input mirror inside the cavity !

•Creates a strong thermal lens to simulate PRC in advanced detectors

Page 4: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Strong Thermal Lensing

Observation and compensation (PRL 16 June 2006)

Page 5: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Thermal Lensing and Thermal Compensation

heat

heat

Compensation Plate + Heating ring

Page 6: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Closed Loop Thermal Lensing Control

CCD

LaserITM

1kW

CP

ETM

4W

Heating wire

Power Suppl

y

Controller

Page 7: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.
Page 8: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Thermal lensing control Demonstrated

Page 9: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

The beam distortion due to thermal lensing

• non-quadratic thermal lensing• thermal stress birefringence • inhomogeneous absorption in the test mass

• Sapphire is known to have high inhomogeneity• Gingin test mass

– No detailed absorption map– At centre ~50ppm/cm (Measured in Caltech, agrees with

average thermal lensing measured in Gingin)

• Analysis of several other samples to get “typical absorption” in sapphire samples

Page 10: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Average absorption across sapphire samples

UWA 1 UWA 2

Caltech 1 Caltech 2

Absorption measured at at Laboratoire des Matériaux Avancés (LMA)

Page 11: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Example of absorption along the thickness of a sample (Caltech 1)

0

20

40

60

80

100

120

140

-130.0 -110.0 -90.0 -70.0 -50.0 -30.0 -10.0x (mm)

Ab

s (p

pm

)

Page 12: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

1. UWA1 (at 50mm from centre)

2. UWA2 (at -50mm from centre)

3. UWA2 (at 50mm)

4. UWA2 (at -50mm)

5. Caltech1(at centre)

6. Caltech1 (at 50mm)

7. Caltech1 (at -50mm)

8. Caltech2 (at centr)

9. Caltech2 (at 50mm)

10. Caltech2 (at -50mm)

11. 65ppm/cm (uniform)

12. 30 ppm/cm (uniform)

Ab

sorp

tion

pp

m

Thickness mm

5

7

6

8910

11

12

Integrated absorption along the thickness of test masses

Uniform absorption—∫A(x)dx vs. thickness Should be a straight line

Page 13: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Integrated absorption along the thickness of test masses

(enlarged)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

Abs

orpt

ion

ppm

Thickness mm

1 2345

6

78

3

910

11

12

51ppm/cm, 50mm

30ppm/cm

65ppm/cm

Between 30-65ppm/cm

Page 14: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Beam size vs circulating power at Gingin HOPF

14

15

16

17

18

19

0 200 400 600 800 1000 1200

Circulating power (W)

Bea

m d

iam

eter

(m

m)

0 0.1 0.2 0.3 0.4 0.5 0.6

Absorbed Power@50ppm/cm (W)

Long axis

short axis

Simulated@50ppm/cm

Page 15: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Astigmatism due to birefringence(simulated sapphire with uniform absorption)

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.2 0.4 0.6

Absorbed Power (W)

Wai

st X

/ W

aist

Y

Uniform absorption will still result in power dependent astigmatism due to stress birefringence

Page 16: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0 200 400 600 800 1000 1200

Circulating Power (W)

Wa

ist

X /

Wa

ist

Y E

xp

eri

me

nta

l

0.97

0.98

0.99

1

1.01

1.02

1.03

0 0.1 0.2 0.3 0.4 0.5 0.6

Absorbed Power@50ppm/cm (W)

Wa

ist X

/Wa

ist Y

sim

ula

tion

Experiment

Uniform (50ppm/cm)

• There is an initial systematic astigmatism• The power dependent astigmatism did not differ

much from that due to uniform absorption

Astigmatism vs Circulating Power

Page 17: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Opto-Acoustic Parametric Oscillation

m

0

a =0 +m

m

0

1 =0 -m

Anti Stokes process— absorption of phonons

Stokes process—emission of phonons

• Some test mass ultrasonic acoustic modes heated(amplified)

• OAPO gain must be kept below acoustic oscillation threshold

• Significant number of modes likely to be excited above

threshold in Advanced interferometers.

• OAPO interaction observed at Gingin.

Page 18: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Instability Condition

1)/1

(2

~2

121

112

Q

McL

PQR

m

m

Parametric gain[1]

[1] V. B. Braginsky, S.E. Strigin, S.P. Vyatchanin, Phys. Lett. A, 305, 111, (2002)

m 101

21110 11arccos

R

L

R

Lnpmk

L

c

Changing mirror radius of curvature will change the cavity mode gap

Page 19: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Demonstration of thermal tuning of high order optical frequencies

•Heat the compensation plate•Change the equivalent RoC•Change the cavity mode

spacing

Transmitted beam size Mode spacing between TEM00 and LG01

Page 20: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Three mode interaction at low power level

• Excite the target acoustic mode electrostatically• Observe the high order mode resonance as the

HOM resonance frequency is thermally tuned

0 5 10 15 20 25 30 35

Heating Power

Op

tical

sig

nal

Page 21: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Experimental Setup

CCD

LaserITM

CP

ETM

Heating wire

84.8 kHz oscillator

Capacitor actuator

Spectrum Analyzer

yxQPD

Fundamental mode

High order mode

Lock-in

Page 22: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Mechanical mode and optical mode overlap

50 100 150 200 250 300

50

100

150

200

250

300 20 40 60 80 100 120 140

20

40

60

80

100

120

140

Mechanical mode84.8kHz

Optical mode

Page 23: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Three modes interaction observationat Gingin HOPF

Amplitude of optical modes beating signal at 84.8kHz vs. time of heating (RoC change)

g factor ~ 0.98

Page 24: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

1.4 1.5 1.6 1.7 1.8 1.9 2

x 105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5x 10

-4

Cavity mode spacing (Hz)

Hig

h or

der

mod

e am

plitu

de (

a.u.

)

MeasurementFitted data

Page 25: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

Conclusions

• Feedback control of thermal lensing demonstrated

• Sapphire test mass inhomogeneity effect marginally detectable

• First demonstration of opto-acoustic parametric interactions between the cavity fundamental mode, the cavity high order mode and the test mass acoustic mode (basic physics of parametric instability).

Page 26: High Optical Power Cavity with an Internal Sapphire Substrate — Thermal lensing, thermal compensation & three modes interactions Chunnong Zhao for ACIGA.

UWAChunnong ZhaoLi Ju Jerome DegallaixYaohui FanDavid BlairZewu YanSlawek GrasPablo Barriga

ANUBram Slagmolen David McClelland

U. AdelaidePeter VeitchJesper Munch David HoskenAidan Brook U. FloridaDavid Reitze

CaltechGariLynn Billingsley

Participants