High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D....

22
High-Contrast Ultrabroadband High-Contrast Ultrabroadband Frontend Source for High Intensity Frontend Source for High Intensity Few-Cycle Lasers Few-Cycle Lasers P. Ramirez 1 , D. Papadopoulos 1,2 , A. Pellegrina 1,2 , F. Druon 1 , P. Georges 1 , 2 Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), Palaiseau, France 3 Institut de la Lumière Extrême (ILE), Palaiseau, France A. Jullien, X. Chen, A. Ricci, J. P. Rousseau, R. Lopez- Martens Laboratoire d'Optique Appliquée (LOA), ENSTA ParisTech, Ecole Polytechnique, Palaiseau, France [email protected] ICUIL, Watkins Glen, 26 th September-1 st October 2010

Transcript of High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D....

Page 1: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

High-Contrast Ultrabroadband High-Contrast Ultrabroadband

Frontend Source for High Intensity Frontend Source for High Intensity

Few-Cycle LasersFew-Cycle LasersP. Ramirez1, D. Papadopoulos1,2, A. Pellegrina1,2, F. Druon1, P.

Georges1,2 Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), Palaiseau, France

3 Institut de la Lumière Extrême (ILE), Palaiseau, France

A. Jullien, X. Chen, A. Ricci, J. P. Rousseau, R. Lopez-Martens Laboratoire d'Optique Appliquée (LOA), ENSTA ParisTech, Ecole

Polytechnique, Palaiseau, France

[email protected]

ICUIL, Watkins Glen, 26th September-1st October 2010

Page 2: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

2

OutlineOutline

•MotivationUltrashort seed for the OPCPA based Front End of the ILE 10 PW Apollon

•Experimental setup/results-HCF spectral broadening/pulse compression-Crossed polarized wave (XPW)-Spectral/Efficiency (dispersion)-FROG/CEP/CR measurements-Reliability

•Summary/next steps

ICUIL 2010 1

Page 3: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

3

•The Apollon 10 PW Front End systemThe Apollon 10 PW Front End system

OpticalSynchronisation

NOPCPA (BBO, LBO or

BIBO…)

Ti:Sapphire based High CR, CEP stable, sub-10 fs

~100 μJ, 1 kHz @ 800 nm

HEC-DPSSL Yb:KGW/YAG/CaF2

High rep. rate Amplifiers 2 J @ 1030 nm

10-100Hz

SHGps-ns

1 J @ 515 nm10-100 Hz

<“10fs”, 100mJ, @ 800nm 10-100Hz

Ultrashort seed source @ 800 nm

Pump source @ 515 nm

Non-collinear Optical Parametric Chirped Pulse Amplification stages

The front end of a… front endThe front end of a… front end

ICUIL 2010 2

Page 4: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

4

The front end of a… front endThe front end of a… front end

ICUIL 2010 3

•The High CR, CEP stable, sub-10 fs, ~100 μJ, 1 kHz seed @ 800 nm

•Challenging combination of the sub-systems capacity towards ~5 fs high energy pulses, reliable seed source

Ti:Sa system (Femtopower)CEP stable, CR~10^825 fs, 1.5 mJ, 1 kHz

•Commercial system, turn key operation•Three CEP stabilization loops•Active pointing stabilization (3x)

Pulse compressionHollow core fiber (HCF), Ne

CEP preserving5-10 fs, >50%, >700 μJ

•Well established/flexible technique•Optimized CM compressorNonlinear stage/stability issues

Crossed polarized waves (XPW)

CEP preserving5-10 fs, CR>1010, ~100 μJ

•Proved CR enhancement capacity ~105 (ext. pol.)

•Temporal & Spectral cleaning: I(t)XPW∝I3(t) FW

Nonlinear stage/stability issues

Page 5: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

5

-40 -30 -20 -10 0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

a.u

.)

Time (fs)

4.3 fs

HCF pulse compression:Strehl ratio:81%, Main peak energy:79%

Spectral broadening in the HCF:Typical input/output spectrum at full input power (1.4 mJ,

1.3 bar Neon, ~60% efficiency)

500 600 700 800 900 1000

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity

(a.

u.)

Wavelength (nm)

HCF 250µm diam, 1m long, 1.3bar Ne: ----E

in=1.3 mJ (~48nm)

----Eout

=0.8mJ (~250nm)

250 nm

>750 µJ

1.4mJ, 25fs>850 µJ

60nm

Hollow core fiber pulse compressionHollow core fiber pulse compression

Ne 0.5-1.5 bar

ICUIL 2010 4

Page 6: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

6

High energy XPWHigh energy XPW

Energy/Spectrum FROG/3ω/f-2f

~80 μJ, <5fs

~600μJ, ~5fs

~100 μJ, ~220 nm

Ne 0.5-1.5 bar

~1012 W/cm2 on the XPW crystal: Vacuum, long focal distance

1 mm BaF2, [011]-cut: max XPW efficiency ~15%

Polarization extinction ratio ~5.10-3: estimated CR improvement ~102

ICUIL 2010 5

A. Jullien et.al. “High fidelity ultra-broadband frontend for high-power, high-contrast few-cycle lasers,” accepted Appl. Phys. B (08/2010)

Page 7: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

7

XPW Spectrum/Efficiency vs dispersionXPW Spectrum/Efficiency vs dispersion

Optimum pulse compression (phi0+6)=> Best efficiency 15% (~20% corrected)=> ~100 μJ

XPW spectrum/Dispersion XPW efficiency/Dispersion

Compression tolerance <5fs2

ICUIL 2010 6

~220nm

Page 8: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

8

Spatial characterizationSpatial characterization

2mm 2mm

Incident beam on the crystal (1.8-2mm diameter)

After the XPW (near field)

ICUIL 2010 7

Page 9: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

9

-30 -20 -10 0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

Time (fs)

Inte

nsity

(a.u

.)

10

15

20

25

Pha

se (r

ad)

4.9 fs4.4fs (compr)

500 600 700 800 900 1000

0.0

0.2

0.4

0.6

0.8

1.0

Wavelength (nm)In

tens

ity (a

.u.)

0

1

2

3

4

5

6

7

Pha

se (r

ad)

FROG retrieved

Hamamatsu calibrated

Strehl:79%Main Peak:83%

•HCF: 4.4 fs, 0.7 mJ

FROG measurements HCF->XPWFROG measurements HCF->XPW

-30 -20 -10 0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

Time (fs)

Inte

nsity

(a.

u.)

0

10

20

30

40

50

60

Pha

se (

rad)

5.8 fs4.5fs (compr)

Strehl:82%Main Peak:95%

500 600 700 800 900 1000

0.0

0.2

0.4

0.6

0.8

1.0

Wavelength (nm)

Inte

nsity

(a.

u.)

FROG retrievedHamamatsu calibrated

4

6

8

10

12

14

16

Pha

se (

rad)

•XPW: <5fs, ~100 µJ (80 µJ)

ICUIL 2010 8

Page 10: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

10

HCFXPW

CR measurementsCR measurements

•3ωcorrelator, full dynamic range ~1011 (1mJ), reduced spectral acceptance (~100 fs pulses)

•CR improvement by at least 102 =>HCF CR~108 -> XPW CR~1010-1011 (estimated)

•No compression for the seed=>Glan polar. (ext.105)=> XPW CR ~1012 (expected)

ICUIL 2010 9

Page 11: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

11

Int. time : 100 ms (10 shots)

Int. time : 1 ms (single shot)

•Home made f-2f=> feedback to the slow loop of Femtopower (Menlo APS800)

•CEP ~300 mrad=>CEP preservation: (Femtopower alone->~200 mrad)

•Three feedback loops, covered setup, reduced propagation path

CEP stability measurementsCEP stability measurements

ICUIL 2010 10

Page 12: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

12

ReliabilityReliability•Day to day reproducibility

HCF XPW

•XPW changes mainly due to variation of the HCF output spectrum almost without effecting the efficiency

•Easy readjustment (gas pressure, HCF coupling, HCF compressor)

•Pulse to pulse rms stability: Femtopower: 0.7%HCF:1.1%(active pointing stab.)

XPW:2.5% (more compact, double XPW)

ICUIL 2010 11

Page 13: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

13

Summary/next stepsSummary/next steps

•Spectro-temporal cleaning of high-energy few-cycle pulses by an optimized vacuum XPW filter

•Generation of high CR, CEP stable, sub-5fs, ~100 μJ (80 μJ) pulses

•Ideal ultra-broadband seed source for high energy/intensity systems

…double crystal XPW configuration=> Improved efficiency/stability

…preliminary low energy NOPCPA experiments=> CEP stability, max amplified bandwidth, pulses compressibility

…03/2011→ps-NOPCPA (>10 mJ), 2012→ns-NOPCPA (100 mJ)

ICUIL 2010 12

Page 14: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

14

Thank you!Thank you!

Page 15: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

15

NOPCPA (x200-400)(BBO, LBO or BIBO)

1-2 stages

Ti:Saphir 25 fs @ 800 nm

1.5 mJ/1kHz

Spectral broadening< 10 fs @ 800 nm 100-200 µJ, kHz

Hollow fiber + XPW

Yb:KYW Regen. ~2ns, >2 mJ @ 1030 nm

Regen AmplifierThin Disk Yb:YAG

~1.2ns, >200 mJ @ 1030 nm100Hz (to 300 Hz)

SHG~60%

10-20 mJ <10 fs

@ 800 nm 100Hz (to 300Hz)

DA

ZZ

LE

R

Optical synchronization

CM

co

mp

r.

>90 mJ@515nm, 100Hz

10-20ps

>50 µJ@800nm 5-10 ps

>10-20 mJ@800nm5-10 ps

Co

mp

r. 2

0-30

psStretcher (0.5ns/nm)

10-20 mJ@800nm

Offner stretcher~1ns, ~30%

NOPCPA (x20-30)(BBO, LBO or BIBO)

1 stage>100 mJ

~1ns (<10fs) @ 800 nm 10Hz

Amplifiers (1-2) Yb:CaF2/Yb:YAGDiode-pumped

~2 ns, 2 J @ 1030 nm10 Hz (to100 Hz)

SHG>50%

MP Yb:KGW (x20)~2 ns,~20 mJ

@1030nm

~1 mJ@1030 nm

>20 mJ@1030 nm

>1 J, ~1.5ns@515nm, 10 Hz

3-6 mJ@800nm

Picosecond Stage

Nanosecond Stage

The Front End: ps/ns strategyThe Front End: ps/ns strategy

Page 16: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

16

FEMTOPOWERTi:Sapphire 1.5mJ/25fs

CEP

f=1.5m

1m long 250µm diam

f=1m

Amplitude Systemes

S-pulse Regen 1030nm

XPW (BaF2)

Stretcher 1:4nm/700ps

1030nm4nm

4pJ/80MHz

1030nm12nm

4nJ/80MHz

1030nm3nm/2ns2mJ/1kHz

1030nm2nm/1.3ns

200mJ/100Hz

515nm1.5nm/20ps90mJ/100Hz1030nm

3nm/30ps150mJ/100Hz

800nm>200nm/<6fs0.8mJ/1kHz

800nm>200nm/<6fs200μJ/1kHz

800nm>36nm/<25fs1.5mJ/1kHz

KEOPSYS YFA

Rainbow<7fs, 800nm

~4pJ, 1030nm

DA

ZZ

LE

R

MBI Yb:YAG Thin Disk Regen200-300mJ, >2nm, 2ns

100-300 Hz

1030nm3nm/2ns1mJ/1kHz

The Front End: Table view setupThe Front End: Table view setup

Page 17: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

17

8.4 m

3.3

m

Fiber CompressorXPW

Str

etc

he

r

Offner Stretcher

Compressor

2mJ

KY

W

Reg

en A

mp

10

30n

m

YDFA 1030nm

KGW MP1 Amp

20mJ,1030nm

200mJ, YAG regen Amp 1030nm

Yb:YAG/CaF2 MP2

Thin disk/cryo Amp 1030nm

MP3 Amp 2J, 1030nm

ps-NOPCPA

ns-NOPCPA

SH

G

SHG

Output

DAZZLER

AmplifierFemtopower

Rai

nb

ow

The Front End: Table viewThe Front End: Table view

Page 18: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

18

Low energy XPW (in air)Low energy XPW (in air)

Ne 0.5-1.5 bar

Energy/Spectrum FROG

~16 μJ, ~5fs~20μJ, ~230 nm

~150μJ, ~5fs

•0.5-1 mm BaF2, [011]-cut:max efficiency

•>13% XPW efficiency

•Polarization extinction ration ~5.10^-3

•Estimated CR improvement ~10^2

Page 19: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

19

Low energy XPW: resultsLow energy XPW: results

Compression tolerance <5fs2

•XWP Spectral filtering

-40 -30 -20 -10 0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

-40 -30 -20 -10 0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Time (fs)

Inte

nsi

ty (a.u

)

HCF: 5 fs Strehl:68%

Main Peak:78%

XPW: 5.4 fsStrehl:70%

Main Peak:91%

HCF FROG XPW FROG

•XWP pulse compression/cleaning

Page 20: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

20

~300 µJ>140 nm, <9.6 fs

vacuum chamber

Thick BaF2

crystal

1.5mJ, 25 fs (56 nm, phase optimized)

L

•Direct XPW sub-10 fs seed

““Direct” XPW perspectiveDirect” XPW perspective

Δt=9.5 fsTBP:0.68

Strehl:90%Main peak:95%

Δλ=145nm

•Compact, reliable, single nonlinear stage seed configuration

•Short enough more energetic pulses, High CR, CEP conservative

•Lower coherent CR, rectangular like spectrum

Page 21: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

21

z-cut vs holographic cutz-cut vs holographic cut

L. Canova et.al. “ Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Letters (2008) 92.

Page 22: High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.

22

Input dispersion influenceInput dispersion influence

A. Jullien et.al. “Nonlinear spectral cleaning of few-cycle pulses via cross-polarized wave (XPW) generation,” Appl. Phys. B (2009) 96.