Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡...

50
Hidden semantics in text Khoat Than Hanoi University of Science and Technology Summer school on Data Mining, Hanoi, 8/2016

Transcript of Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡...

Page 1: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Hidden semantics in text

Khoat Than

Hanoi University of Science and Technology

Summer school on Data Mining, Hanoi, 8/2016

Page 2: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Contents

¡ Open-ended questions

¡ Hidden semantics: what and why?

¡ Semantic representation

¡  Introduction to topic modeling

¡ Some challenges and lessons learnt

2

Page 3: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Open-ended question 1

¡ Can we help a computer to automatically understand documents and natural languages?

3

Page 4: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

4

http://www.forbes.com/sites/rachelarthur/2016/03/30/sephora-launches-chatbot-on-messaging-app-kik/

Intelligent services

Page 5: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Open-ended question 2

¡ How to organize, understand, uncover useful knowledge from a huge amount of texts?

5

Page 6: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

A huge amount of texts 6

Page 7: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

A huge amount of SMS 7

http://www.openuniversity.edu/news/news/2014-text-messaging-usage-statistics

Page 8: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

One way to answer

¡ Help your computer to understand from the very basics

¨  Word meanings

¨  Word collocation/interaction

¨  Sentences, paragraphs

¨  …

¡  to complicated things

¨  Themes of paragraphs/documents

¨  Opinions, emotions

¨  …

¡ Those are hidden semantics

8

Page 9: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

9

Hidden semantics What and why?

Page 10: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Hidden semantics: what?

¡ Evolution/trend of interests over time

10

Page 11: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Hidden semantics: what?

¡ Meanings of pictures

11

Page 12: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Hidden semantics: what?

¡ Objects in pictures

12

Page 13: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Hidden semantics: what?

¡ Activities

13

Page 14: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Hidden semantics: what?

¡ Contents of medical images

14

Page 15: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Hidden semantics: what?

¡  Interactions of entities

15

Page 16: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Hidden semantics: what?

¡ Communities in social networks

16

Page 17: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Hidden semantics: why hard?

¡ Help your computer understand what is “hard”?

¨  Not easy? But what is “easy”?

¨  Firm, Solid?

¨  Enthusiastic?

àAmbiguity problem (a word has many different senses)

¡ Usage styles of languages

¨  Slangs, teenage languages

¨  Evolvement over time

¡ Hidden themes are intricately mixed with other structures such as syntax

17

Page 18: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

18

Semantics Representation & learning

Page 19: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Semantic representation

¡ Need a computational form to represent knowledge to help a computer to

¨  Store knowledge

¨  Learn knowledge

¨  Make inference

19

Page 20: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Some representation approaches

¡ Classical approaches [Schubert, AAAI 2015]

¨  First order logics, Description logics

¨  Semantic networks, frames

¨  Ontology

¨  …

20

A semantic network (source: wikipedia)

We have to build manually L

Page 21: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Some representation approaches

¡ Machine-learning approaches

¨  Topic models [Blei, CACM 2012; Blei et al., JMLR 2003]

¨  Deep neural networks [LeCun et al., Nature 2015; Collobert et al., JMLR 2011]

¡ They tries to learn representation for very basic units, such as words, phrases,…

¡ Then more complicated forms of semantics can be learned from text collections.

21

Semantics can be learned automatically

from data J

Page 22: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Learnable representations (1)

¡ Different algebraic forms have been used:

¨  Vector [Salton et al., CACM 1975]

¨  Matrix

¨  Tensor

¡ Finer and finer levels of text are considered

¨  A document is represented as a vector [Salton et al., CACM 1975]

¨  A paragraph is represented as a vector [Le & Mikolov, ICML 2014]

¨  A sentence is represented as a vector [Le & Mikolov, ICML 2014]

¨  A phrase is represented as a vector [Mikolov et al., NIPS 2013]

¨  A word is represented as a vector [Schütze, NIPS 1993]

22

.

.

. . . . . . . . . .

Vector Matrix Tensor

Page 23: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Learnable representations (2)

¡ More and more complicated tools are used:

¨  A document:

¨  A word:

23

.

.

. . . . . . . . . .

Vector Matrix Tensor

(Vector space model)

(Matrix space model)

(Tensor space model)

. . .

. . .

. . .

Vector Matrix Tensor

.

.

. .

Scalar

? ? (1993) (<1975)

Page 24: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Word representation

¡  Input: sequences of words (or text collection, or corpus)

¨  E.g.: The weather in Tokyo today is nice

¡ Output: k-dimensional vectors, each for a word

24

x Chiba x Yokohama

x Tokyo

x Forecast x Weather

x TV x Love

x Nice x Like

Learning

• 

• 

• 

Weather

• 

• 

• 

Tokyo

• 

• 

• 

nice

(Neural networks, topic models, matrix factorization)

Vector representation of words

output

input Semantic space

Page 25: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

After learning

¡ Many semantic tasks can be done using algebraic operations.

¡ Semantic similarity

¨  Between words, e.g.,

¨  Between documents, e.g.,

¡ Classification, prediction, inference can be done efficiently

25

Similarity(Vlike

,Vlove

) = cos(Vlike

,Vlove

) = Vlike

·Vlove

||Vlike

||·||Vlove

||

Similarity(d1,d2) = cos(d1,d2) = d1·d2||d1||·||d2||

VQueen

⇡ VKing

� VMan

+ VWoman

x Chiba x Yokohama

x Tokyo

x Forecast x Weather

x TV x Love

x Nice x Like

Semantic space

Page 26: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

26

Fundamental

of

Topic Modeling

Page 27: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Topic modeling (1)

¡ One of the main ways to automatically understand the meanings of text.

¡ Efficient tools to organize, understand, uncover useful knowledge from a huge amount of data.

¡ Efficient tools to discover the hidden semantics/structures in data.

27

Page 28: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Topic modeling (2)

¡ Provides efficient tools for text analysis [DiMaggio et al., Poetics, 2013]

¨  Explicit (enable interpretations & exploration of a large text collection, and test hypotheses)

¨  Automated (the algorithms can do with a minimum human intervention)

¨  Inductive (enable researchers to discover the hidden structures of data before imposing their priors on the analysis)

¨  Recognize the rationality of meaning (the meaning of a term might vary across different domains)

28

Page 29: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Topic models: some concepts (1)

¡ Topic: is a set of semantically related words

¡ Document: is a mixture of few topics [Blei et al., JMLR 2003]

¡ Topic mixture: shows proportions of topics in a document

29

Page 30: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Topic models: some concepts (2)

¡  In reality, we only observe the documents.

¡ The other structures (topics, mixtures, ...) are hidden.

¡ Those structures compose a Topic Model.

30

Page 31: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Topic models: LDA

¡ Latent Dirichlet allocation (LDA) [Blei et al., JMLR 2003] is the most famous topic model.

¨  LDA assumes a corpus to be composed from K topics

¡ Each document is generated by

¨  First choose a topic mixture

¨  For the nth word in the document

v  Choose topic index

v  Generate word

31

�1, ...,�K

✓ ⇠ Dirichlet(↵)

zn ⇠Multinomial(✓)

wn ⇠Multinomial(�zn)

Page 32: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

LDA 32

Page 33: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Topic models: learning

¡ Given a corpus, our aim is to infer the hidden variables,

¡ e.g., topics, relations, interactions, ...

33

P (�, ✓, z|corpus)?

Page 34: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Topic models: posterior inference

¡  Infer the hidden variables for a given document, e.g.,

¨  What topics/objects appear in?

¨  What are their contributions?

34

2 10 18 31 38 40 42 50police sinhalese contra fire shuttle gorbachev index beirut

students tamil sandinistas winds nasa soviet stock hezbollahpalestinians iranian chamorro firefighters space republics yen lebanon

curfew dam ortega mph launch politburo points aounsikh khomeini rebels blaze magellan yeltsin market syriangaza sri sandinista brush mars moscow shares militia

rangoon cemetery aid homes spacecraft tass trading lebanesemoslem accord nicaragua acres telescope party dow amalisraeli wppss managua water venus treaty unchanged troops

militants guerrillas ceasefire weather astronauts grigoryants volume wounded

Some topics previously learned from a collection of newsHow much topics contribute to the news?

Rockets strike Kabul -- AP, August 8, 1990.More than a dozen rockets slammed into Afghanistan's capital of Kabul today, killing 14 people and injuring 10, Afghan state radio reported. No one immediately claimed repsonsibility for the attack. But the Radio Kabul broadcast, monitored in Islamabad, blamed ``extremists,'' presumably referring to U.S.-backed guerrillas headquartered in Pakistan. Moslem insurgents have been fighting for more than a decade to topple Afghanistan's Communist-style government. In the past year, hundreds of people have died and thousands more injured in rocket assaults on the Afghan capital.

2

10

17

18

28

3135

38

50

P (✓, z|w,�)?P (✓|w,�)? P (z|w,�)?

Page 35: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Recent trends in topic modeling

¡  Large scale learning: learn models from huge corpora (e.g., 100 millions of documents).

¡  Sparse modeling: respect the sparseness nature of texts.

¡ Nonparametric models: automatically grow the model size.

¡  Theoretical foundation: provide guarantees for learning and posterior inference.

¡  Incorporating meta-data: encode meta-data into a model.

35

Page 36: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Recent applications (1)

¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST 2014]

36

Peacock: Learning Long-Tail Topic Features for Industrial Applications 39:19

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

MA

P

102

103

104

105

# Topics

(A)

(B)

MA

P

0.18

0.185

0.22

0.215

0.21

0.205

0.2

0.195

0.225

0.19

0.91 0.8 0.10.20.30.40.50.60.7

L1 Distance Threshold

Fig. 10. (A) Topic features improve retrieval in search engine. (B) Performance improvement in retrievalafter topic de-duplication by topic clustering based on L1 distance.

MAP becomes less salient when the number of topics changes from 104 to 105. Thisis mainly attributed to the problem of topic duplication. Figure 10B shows that topicde-duplication method can further improve the relevance of information retrieval. TheMAP value of retrieval grows when we prune more duplicated topics (lower L1 distancecan prune more similar topics in Subsection 3.4). Usually, the MAP stops increasingwhen we prune duplicates from the initial 106 to around 105 topics. This result impliesthat 105 is a critical number of topics to describe subtle word senses in big query datawith 2.1 × 105 vocabulary words. If the L1 distance is too small such as 0.1, it willdegrade the MAP performance by removing more non-duplicate topics.

The online advertising experiment is conducted on a real contextual advertising sys-tem, https://tg.qq.com/. This system logs every ad shown to a particular user in a par-ticular page view as an ad impression. It also logs every click of an ad. By taking eachimpression as a training instance, and labeling it by whether it was clicked, we obtain9.9 billion training samples and 1.1 billion test samples. We train 5 hypothetical mod-els, whose topic features are extracted using 5 different LDA models with 102, 5 × 102,103, 104 and 105 topics, respectively. Following the judgment rule of Task 2 in KDD Cup2012, a competition of ad pCTR, we compare our hypothetical models with the baselineby their prediction performance measured in area under the curve (AUC). Figure 11

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: December 2014.

Page 37: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Recent applications (2)

¡ Boosting performance of Online advertisement over the baseline [Wang et al., ACM TIST 2014]

37

39:20 Y. Wang et al.

102

103

104

105

0

0.5

1

1.5

2

AU

C im

pro

vem

en

t (%

)

# Topics

Fig. 11. Topic features improve the pCTR performance in online advertising systems.

shows that all hypothetical models gain relative AUC improvement (%) than the base-line (AUC = 0.7439). Variance is too small to be shown. This verifies the value of bigLDA models. Also, the AUC improvement grows with the increase of the number oftopics learned by Peacock. The reason that the performance of 104 is lower than thatof 103 is because of many topic duplicates in 104 topics. After using automatic topic de-duplication by asymmetric Dirchlet prior learning (Subsection 3.4), the performance of105 becomes better than that of 104. This result is consistent with those in Figure 10.

6. CONCLUSIONSTopic modeling techniques for big data are needed in many real-world applications. Inthis paper, we confirm that a big LDA model with at least 105 topics inferred from 109

search queries can achieve a significant improvement in industrial applications likesearch engine and online advertising systems. We propose a unified solution Peacockto do topic modeling for big data. Peacock uses a hierarchical distributed architectureto handle large-scale data as well as LDA parameters. In addition, Peacock addressessome novel problems in big topic modeling, including real-time prediction and topicde-duplication. We show that Peacock is scalable to more topics than the current state-of-the-art industrial solution Yahoo!LDA. Through two online applications, we alsoobtain the following experiences:

— The good performance is often achieved when the number of topics is approximatelyequal to or more than the number of vocabulary words. In our experiments, thevocabulary size is 2.1× 105 so that the number of topics K ≥ 105. In other industrialapplications, the vocabulary size may reach a few millions or even a billion. ThePeacock system can do topic feature learning when K ≥ 107 is needed.

— The topic de-duplication method is a key technical component to ensure that K ≥ 105

topics can provide high-quality topic features. Better topic de-duplication techniquesremain to be an open research issue.

— The real-time topic prediction method for a large number of topics is also importantin industrial applications. If K ≥ 107, faster prediction methods are needed andremain to be a future research issue.

In our future work, we will study how to deploy online LDA algorithms in Peacock, andhow to implement inference algorithms to learn other topic models such as HDP [Tehet al. 2004] and author-topic models [Steyvers et al. 2004].

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: December 2014.

Page 38: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

38

Some challenges Lessons learnt and Our solutions

Page 39: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Challenges: first

¡ Can we develop a fast inference method that has provably theoretical guarantees on quality?

¡  Inference on each data instance:

¨  What topics appear in a document?

¨  What are they talking about?

¨  What animals appear in a picture?

¡ Vital role in many probabilistic models:

¨  Enable us to design fast algorithms for massive/stream data.

¨  Ensure high confidence and reliability when using topic models in practices

¡ But: inference is often intractable (NP-hard) [Sontag & Roy, NIPS 2011]

39

Page 40: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Challenges: second

¡ How can we learn a big topic model from big data?

¡ Big model:

¨  billions of variables/parameters

¨  Which might not fit in the memory of a supercomputer

¡ Many applications lead to this problem:

¨  Exploration of a century of literature

¨  Exploration of online forums/networks

¨  Analyzing political opinions

¨  Tracking objects in videos

¡ But largely unexplored in the literature.

40

Page 41: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Challenges: third

¡ Can we develop methods with provable guarantees on quality for handling streaming/dynamic text collections?

¡ Many practical applications:

¨  Analyzing political opinions in online forums

¨  Analyzing behaviors & interests of online users

¨  Identifying entities and temporal structures from news.

¡ But: existing methods often lack a theoretical guarantee on quality.

41

Page 42: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Lessons: learnability

¡  In theory:

¨  A model can be recovered exactly if the number of documents is sufficiently large J [Anandkumar et al., NIPS 2012; Arora et al., FOCS 2012; Tang et al., ICML 2014]

¨  It is impossible to guarantee learnability of a model when having few documents L

¨  A model cannot be learned from very short texts L [Arora et al., ICML 2016; Tang et al., ICML 2014]

¡  In practice: [Tang et al., ICML 2014]

¨  Once there are sufficently many documents, further increasing the number may not significantly improve the performance.

¨  The document length should be long, but need not too long.

¨  A model performs well when the topics are well separated.

42

Page 43: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Lessons: practical effectiveness

¡ Collapsed Gibbs sampling (CGS):

¨  Most efficient

¨  Better than VB and BP in large-scale applications [Wang et al., TIST 2014]

¡ Belief propagation (BP):

¨  Memory-intensive

¡ Variational Bayes (VB): [Jiang et al., PAKDD 2015]

¨  Often slow

¨  And inaccurate

¡ Collapsed variational Bayes (CVB0): [Foulds et al., KDD 2013]

¨  Most efficient and accurate

43

Page 44: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Lessons: posterior inference

¡  Inference for individual texts:

¨  Variational method (VB) [Blei et al., JMLR 2003]

¨  Collapsed VB (CVB) [Teh et al., NIPS 2007]

¨  CVB0 [Asuncion et al., UAI 2009]

¨  Gibbs sampling [Griffiths & Steyver, PNAS 2004]

¨  OPE [Than & Doan, 2015]

¡  It is often intractable in theory [Sontag & Roy, NIPS 2011].

¡ But it might be tractable in practice [Than & Doan, ACML 2014; Arora et al., ICML 2016]

¡ OPE is a fast algorithm that has provable guarantees on quality.

44

Page 45: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

Our works

¡ Develop models & methods that help us to infer hidden structures from big/streaming data

¡ Many applications

¡ Our related projects: NAFOSTED (VN), AFOSR (US)

45

Social network analysis

recently deceased—also have spikes corresponding to national holidays, unforseen trag-edies, and the death of Senator Craig Thomas (R-WY).

8 Assessing Validity of Estimated Priorities

To validate the estimated expressed agendas from Senate press releases, I use a set of well-established facts about legislative behavior that also have intuitive appeal. If the expressed

010

2030

4050

Immigration Press Releases

Date

Cou

nts

3Feb2007 14May2007 22Aug2007 30Nov2007

Cloture Vote1

Cloture Vote2

DREAM Act

05

1015

2025

30

Honorary Press Releases

Date

Cou

nts

3Feb2007 14May2007 22Aug2007 30Nov2007

MLK

Pres.Day

Tuskegee

Va. TechMem.Day

Thomas Death

June. Indep

Sep. 11th

Attorney General Press Releases

Date

Cou

nts

3Feb2007 14May2007 22Aug2007 30Nov2007

Preserving US Atty. Indep. ActNo Conf. Vote

Gonzales Resigns

Mukasey Confirmed0

1020

30

Fig. 3 Senate debates and external events explain spikes in the daily press releases from each topic.

19A Bayesian Hierarchical Topic Model for Political Texts

at (D) H

okuriku Sentan U on M

ay 7, 2013http://pan.oxfordjournals.org/

Dow

nloaded from

Politicial analysis

Computer vision

Hidden structures

Medicine

Page 46: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

¡ Some achievements

¡  Inference for individual texts with a theoretical guarantee of fast convergence à 5-100 times faster

¡  Stochastic learning for streams with far less training documents, yet much better performance à better predictiveness, 20-1000 times faster

Some recent results 46

−5 0 5−11

−10

−9

−8Lo

g Pr

edic

tive

Prob

abilit

yNew York Times

−5 0 5−11

−10

−9

−8

Learning hours (log scale)

Log

Pred

ictiv

e Pr

obab

ility

−5 0 5−11

−10

−9

−8

Log

Pred

ictiv

e Pr

obab

ility

Pubmed

−5 0 5−11

−10

−9

−8

Learning hours (log scale)

Log

Pred

ictiv

e Pr

obab

ility

ML−FWOnline−FWStreaming−FWOnline−CGS (α=1)Online−CVB0 (α=1)Online−VB (α=1)Streaming−VB (α=1)

Online−CGS (α=0.01)Online−CVB0 (α=0.01)Online−VB (α=0.01)Streaming−VB (α=0.01)

State-of-the-art

Learning hours 10-3 103 1

10-3

3

Learning stage 0 10 20 30 40−6

−4

−2

0

2

Minibatch

Infe

renc

e tim

e (s

) (lo

g sc

ale)

New York Times

0 100 200 300 400−8

−6

−4

−2

0

2

Minibatch

Infe

renc

e tim

e (s

) (lo

g sc

ale)

Pubmed

FWCGSVBCVB0State-of-the-art

Infe

renc

e tim

e (s

)

Orders of magnitude

faster

Pred

ictiv

e po

wer

Orders of magnitude

faster

Page 47: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

¡ Application to Word Embedding

Some recent results 47

90

92

94

96

Ac

cur

ac

y

Word dimension

SVM

Ours

x Hải_Phòng x Hà_Nam

x Hà_Nội

x Dự_báo x Thời_tiết

x TV x Yêu

x Đẹp x Thích

Learning

• 

• 

• 

Thời tiết

• 

• 

• 

Hà Nội

• 

• 

• 

Rất đẹp

(Neural networks, topic models, matrix factorization)

Vector representation of words

output

input

¡  5-15% improvement in classification accuracy, by combination of

¡  Manifold learning

¡  Sparse codings

¡  Topic models

Semantic space

Page 48: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

References

¡  Anandkumar, Anima, et al. "A spectral algorithm for latent dirichlet allocation." In NIPS. 2012.

¡  Arora, Sanjeev, Rong Ge, and Ankur Moitra. "Learning topic models--going beyond SVD.” In FOCS, 2012.

¡  Asuncion A., P. Smyth, and Max Welling. Asynchronous distributed estimation of topic models for document analysis. Statistical Methodology, 8(1):3–17, 2011.

¡  Blei D., Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. JMLR, 3(3):993–1022, 2003.

¡  Broderick T., Nicholas Boyd, Andre Wibisono, Ashia C Wilson, and Michael Jordan. Streaming variational bayes. In NIPS, pages 1727–1735, 2013.

¡  J. Foulds, L. Boyles, C. DuBois, P. Smyth, and Max Welling. Stochastic collapsed variational bayesian inference for latent dirichlet allocation. In KDD, pages 446–454. ACM, 2013.

¡  Griffiths T.L. and M. Steyvers. Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl 1):5228, 2004.

¡  Hoffman M., David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. The Journal of Machine Learning Research, 14(1):1303–1347, 2013.

¡  Mimno D. Computational historiography: Data mining in a century of classics journals. Journal on Computing and Cultural Heritage, 5(1):3, 2012.

¡  Smola A. and Shravan Narayanamurthy. An architecture for parallel topic models. Proceedings of the VLDB Endowment, 3(1-2):703–710, 2010.

¡  Sontag D. and Daniel M. Roy. Complexity of inference in latent dirichlet allocation. In NIPS, 2011.

¡  Tang J., Zhaoshi Meng, Xuanlong Nguyen, Qiaozhu Mei, and Ming Zhang. Understanding the limiting factors of topic modeling via posterior contraction analysis. In ICML, pages 190–198, 2014.

¡  Teh Y.W., D. Newman, and M. Welling. A collapsed variational bayesian inference algorithm for latent dirichlet allocation. In NIPS, volume 19, page 1353, 2007.

¡  WANG, Y., ZHAO, X., SUN, Z., YAN, H., WANG, L., JIN, Z., ... & ZENG, J. Peacock: Learning Long-Tail Topic Features for Industrial Applications. ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, 2014.

48

Page 49: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

References

¡  Arora, Sanjeev, et al. ”Provable algorithms for inference in topic models." ICML (2016).

¡  Bengio, Yoshua, et al. "A neural probabilistic language model." Journal of Machine Learning Research 3.Feb (2003): 1137-1155.

¡  Blei, David M. "Probabilistic topic models." Communications of the ACM 55.4 (2012): 77-84.

¡  Collobert, Ronan, et al. "Natural language processing (almost) from scratch." Journal of Machine Learning Research 12.Aug (2011): 2493-2537.

¡  Deerwester, Scott, et al. "Indexing by latent semantic analysis." Journal of the American Society for Information Science 41.6 (1990): 391.

¡  DiMaggio et al., “Exploiting affinities between topic modeling and the sociological perspective on culture: Application to newspaper coverage of U.S. government arts funding”, Poetics 41 (2013): 570-606.

¡  Harris, Z. "Distributional structure". Word 10 (1954): 146–162.

¡  LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521.7553 (2015): 436-444.

¡  Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 2013.

¡  Salton, Gerard, Anita Wong, and Chung-Shu Yang. "A vector space model for automatic indexing." Communications of the ACM 18.11 (1975): 613-620.

¡  Than, Khoat, and Tung Doan. "Guaranteed algorithms for inference in topic models." arXiv preprint arXiv:1512.03308 (2015).

¡  Than, Khoat, and Tung Doan. "Dual online inference for latent Dirichlet allocation." ACML. 2014.

¡  Schubert, Lenhart K. "Semantic Representation." AAAI. 2015.

¡  Schütze, Hinrich. "Word Space". Advances in Neural Information Processing Systems 5 (1993). pp. 895–902

¡  Zeng et al. “A Comparative Study on Parallel LDA Algorithms in MapReduce Framework”. In PAKDD, 2015.

49

Page 50: Hidden semantics in textfit.uet.vnu.edu.vn/dmss2016/files/lecture/ThanQuangKhoat-Lecture.pdf · ¡ Boosting performance of Search engines over the baseline [Wang et al., ACM TIST

50

Thank you