Hi g Energy gy Applications - Istituto Nazionale di Fisica...

57
01-11 3D Silicon Detectors for High Energy ns, Bergen 25-0 Physics and Medical Applications edical Applicatio Ci i D Viá Th Ui i f M h UK etectors and Me Cinzia Da Viá, The University of Manchester, UK nchester-UK. De !3D silicon technology !Applications to HEP: ATLASFP and ATLAS Upgrades niversity of Man and Insertable B-Layer !Applications to Medicine and Biology and more a Da Viá , the U !Applications to Medicine and Biology and more !Summary and Perspectives Cinzia

Transcript of Hi g Energy gy Applications - Istituto Nazionale di Fisica...

01-1

1

3D Silicon Detectors for High Energyns

, Ber

gen

25-0g gy

Physics and Medical Applicationsed

ical

App

licat

io

Ci i D Viá Th U i i f M h UK

etec

tors

and

Me Cinzia Da Viá, The University of Manchester, UK

nche

ster

-UK

. De

!3D silicon technology

!Applications to HEP: ATLASFP and ATLAS Upgrades

nive

rsity

of M

an

pp pgand Insertable B-Layer

!Applications to Medicine and Biology and more

aD

aV

iá, t

he U

!Applications to Medicine and Biology and more

!Summary and Perspectives

Cin

zia

01-1

1 3D 3D Silicon detectors detectors

ns, B

erge

n 25

-0ed

ical

App

licat

ioet

ecto

rs a

nd M

e

3D silicon detectors were proposed in 1995

nche

ster

-UK

. De 3D silicon detectors were proposed in 1995

by S. Parker, and active edges in 1997 by C. Kenney.

nive

rsity

of M

an Combine traditional VLSI processing andMEMS (Micro Electro Mechanical Systems)technology.

1. NIMA 395 (1997) 328 2. IEEE Trans Nucl Sci 46 (1999) 12243. IEEE Trans Nucl Sci 48 (2001) 189

aD

aV

iá, t

he U

Electrodes are processed inside the detectorbulk instead of being implanted on the Wafer's surface.

( )4. IEEE Trans Nucl Sci 48 (2001) 1629 5. IEEE Trans Nucl Sci 48 (2001) 2405 6. Proc. SPIE 4784 (2002)3657. CERN Courier, Vol 43, Jan 2003, pp 23-268. NIM A 509 (2003) 86-919 NIMA 524 (2004) 236-244

Cin

zia

The edge is an electrode! Dead volume at the Edge < 5 microns! Essential for

9. NIMA 524 (2004) 236-24410. NIM A 549 (2005) 12211. NIM A 560 (2006) 12712. NIM A 565 (2006) 27213. IEEE TNS 53 (2006) 1676

01-1

1 3D versus planar detectors (not to scale)3D versus planar detectors (not to scale)

ns, B

erge

n 25

-0

p+

particle

n+p+

3D PLANAR

n+

~ 0.5-1 mmActive edge

edic

al A

pplic

atio

p

--------

0 !m

np

50 !m

----

---- i

n

50 !m

etec

tors

and

Me

Collectingn+

++++

++++

--

++

300

++++--

++++++

microcracks,

nche

ster

-UK

. De

p n

Collecting electrode

chips induce surfaceleakage current

MEDICI simulation of a 3D structure

nive

rsity

of M

an

!DEPLETION VOLTAGES < 10 V 70 V

3D planarp n of a 3D structure

aD

aV

iá, t

he U !EDGE SENSITIVITY < 5 !m 500 !m

!CHARGE 1 MIP (300 mm) 24000e- 24000e-

!CAPACITANCE 30-50f ~20fF !COLLECTION DISTANCE 50 !m 300 !m

Cin

zia ! !

!SPEED 1-2ns 10-20 nsn nDrift lines parallel to the surface

01-1

1

A t t

Key processing steps (25Key processing steps (25--3232))ns

, Ber

gen

25-0 Aspect ratio:

D:d = 11:111-- etching the etching the 22--filling themfilling themelectrodes with electrodes with dopantsdopants

edic

al A

pplic

atio

Step 1-3 oxidize and

Step 9-13 dope and fill p+

Dd

etec

tors

and

Me

WAFER BONDING (mechanical stability)Si-OH + HO-Si -> Si-O-Si + H2O

oxidize and fusion bond wafer

and fill p+

electrodes LOW PRESSURECHEMICAL VAPOR DEPOSITION(Electrodes filling with conformal doped polysilicon

nche

ster

-UK

. De

Step 4-6 pattern and etch p+ window contacts

Step 14-17 etch n+ window contacts and electrodes

conformal doped polysilicon SiH4 at ~620C)2P2O5 +5 Si-> 4P + 5 SiO22B2O3 +3Si -> 4 B +3 SiO2

Both electrodes appear on both surfaces

nive

rsity

of M

an29

0!m

contacts

Step 18-23 dope and fill n+

p

aD

aV

iá, t

he U

DEEP REACTIVEION ETCHING (STS) (electrodes definition)

Step 7-8 etch p+ electrodes

and fill n+

electrodes

n

Cin

zia (electrodes definition)

Bosh processSiF4 (gas) +C4F8 (teflon)

Step 24-25 deposit and pattern Aluminum

METAL DEPOSITIONShorting electrodes of the same type with Al for strip electronics readoutor deposit metal for bump-bonding

01-1

1 Active edge processing Active edge processing –– the large area the large area

coverage solutioncoverage solutionns

, Ber

gen

25-0 coverage solutioncoverage solution

A TRENCH IS ETCHED AND DOPED TO TERMINATE THE E-FIELD LINES

edic

al A

pplic

atio

AFTER THE FULL PROCESS IS COMPLETED THE MATERIAL SURROUNDING

etec

tors

and

Me MATERIAL SURROUNDING

THE DETECTORS IS ETCHED AWAY AND THE SUPPORTWAFER REMOVED : NO SAWING NEEDED!!! (NO CHIPS NO CRACKS)

nche

ster

-UK

. De (NO CHIPS, NO CRACKS)

Natural developement " PLANAR+3D = planar/3D

nive

rsity

of M

an

3D ti d

atu a de e ope e t 3 p a a /3PLANAR DETECTOR + DOPANT DIFFUSED IN FROM DEEP ETCHED EDGE THEN FILLED WITH POLYSILICON (C. Kenney 1997)

aD

aV

iá, t

he U

E-fieldp + + Al

3D active edge TOTEM detectors3x4cm2 512 !strips

Cin

zia

n ++ Al

n ++ Al

01-1

1 Active edge and electrode response of 3D sensors

ns, B

erge

n 25

-0

X

Fabricated at Stanford, J. Hasi (Manchester PhD thesis)

edic

al A

pplic

atio

etec

tors

and

Me

nche

ster

-UK

. De

nive

rsity

of M

an

5 !m

aD

aV

iá, t

he U

Electrodes ~ 1.8% of total area

Cin

zia

X-ray micro-beam scan, in 2 µm steps, of a 3D, n bulk and edges, 181 µm thick sensor. The left electrodes are p-type Electrode response

01-1

1 Improving the aspect ratio (D/d) in thick wafersImproving the aspect ratio (D/d) in thick wafers

""improving ximproving x ray detection efficiency ray detection efficiency ns

, Ber

gen

25-0 ""improving ximproving x--ray detection efficiency ray detection efficiency

>Original production D/d=12:1 etching time = 5!m/min D=121 !m>Present production D/d=19:1 etching time = 5 m/min

edic

al A

pplic

atio >Present production D/d=19:1 etching time = 5!m/min

D=180 mm – 240 mm>Double side etching D/d=25:1 etching time = 1.5!m/min

D=525 mm inter electrode spacing = 25 !m J H P D T 2004

etec

tors

and

Me

LOW ASPECT RATIO CAN HAVE OTHER USES FOR MEDICINE AND MORE... laterScintillatorOr neutron converter

nche

ster

-UK

. De

nive

rsity

of M

an

Optimised aspect ratio forGamma detection

Si

aD

aV

iá, t

he U Si

Cin

zia

25 !mC

trench Optimised aspect ration for gamma detection

01-1

1 Other structures already fabricated at STANFORD

(C. Kenney, J. Hasi) to improve speed and detection propertiesns

, Ber

gen

25-0

( y, ) p p p ped

ical

App

licat

ioet

ecto

rs a

nd M

enc

hest

er-U

K. D

e

3D Parallel trenches 3D coaxial layout

nive

rsity

of M

an C. Da Via et al., “Dual readout – strip/pixel systems”,NIM A594, pp. 7-12 (2008).

aD

aV

iá, t

he U Dual readout:

Improved spatial resolutionWith the same material budget

Cin

zia

01-1

1 3D for IBL : 2 designs with equivalent

El t i l f ns

, Ber

gen

25-0 Electrical performance

3DC

edic

al A

pplic

atio 3DConsortium

etec

tors

and

Me

nche

ster

-UK

. De

Double Column DesignAgreed

Full 3D with active edges

nive

rsity

of M

an baseline

aD

aV

iá, t

he U

Cin

zia

01-1

1

Performance of the considered ns

, Ber

gen

25-0

3D designsed

ical

App

licat

io Simulations and data shows thatThe response of full 3D and 3D-DDTC is very close if theelectrode penetration

h

etec

tors

and

Me stops 25 mm from the surface

Before and after irradiation

nche

ster

-UK

. De

nive

rsity

of M

ana

Da

Viá

, the

UC

inzi

a

Simulations (from A. ZoboliPhD thesis, Trento, March 2009)D. Pennicard, Glasgow IEEE/NSS 08

01-1

1

Where could 3D Si be applied?ns

, Ber

gen

25-0

pped

ical

App

licat

io

3D features:

Active edges

Medical

!Micro structures: endoscopy, dosimetry

etec

tors

and

Me

gLow voltageHigh speedShape adaptation

py, y!Large area imagers (mammography, synchrotron)!Focal planes (diffracted x-rays)

nche

ster

-UK

. De

!Spectroscopy!Edge-on scanned imaging (synchrotron mammography)

nive

rsity

of M

an HEP

!Forward Physics!IBL

!PET (embedded crystals) – photo-multiplication

aD

aV

iá, t

he U !IBL

!Pixel Upgrades !TOF-PET (above + speed)

Cin

zia

01-1

1 THE DISCOVERY POTENTIAL OF THE LHC CAN BE ENHANCED

BY INCREASING ITS LUMINOSITYLint=3000 fb -1

ns, B

erge

n 25

-0

Phase-0 : 15 months: 2013 to spring 2014Ph 1 12 th ti 2017?

intBy 2030

2x1016ncm-2

edic

al A

pplic

atio

Phase 2

Phase-1 : 12 months: entire 2017?Phase-2 : 18 months: end of 2020-early 2021?

L~5×1034cm-2s-1

etec

tors

and

Me

L 1 2×1034cm-2s-1

Lint=300 fb -1

5x1015ncm-2

nche

ster

-UK

. De

min

osity

Phase 1

L~1-2×1034cm-2s-1

FLUENCES

nive

rsity

of M

an

tegr

ated

lum Phase 1

L~1×1032 cm-2s-1

Lint=1fb -1 EXPECTED ATINNERMOST LAYER

aD

aV

iá, t

he U In

t

Phase 0 1x1015ncm-2

C. Da Vià Nov. 2010

Cin

zia

Data from Steve MyersCERN sLHC 23rd June 2010.

2010 2015 2020

01-1

1 Atlas IBL – timescale 2013!!!!!

ns, B

erge

n 25

-0ed

ical

App

licat

io • Baseline layout decided– 14 Staves, “reverse turbine”

• Beam pipe red ction:

etec

tors

and

Me • Beam-pipe reduction:

– Inner R: 29 " 25 mm

Very tight clearance:

nche

ster

-UK

. De Very tight clearance:

– “Hermetic” to straight tracks in ! (1.8º overlap)

– No overlap in Z: minimize gap

nive

rsity

of M

an between sensor active area.

Layout parameters:IBL l 9 i R

aD

aV

iá, t

he U – IBL envelope: 9 mm in R

– 14 staves.– <R> = 33 mm.– Z = 60 cm (active length)

Cin

zia Z 60 cm (active length).– " = 2.5 coverage.

01-1

1 IBL Detectors Specifications

ns, B

erge

n 25

-0

• FE-I4 compatible layout x1 x2 MultiChip18FE-I3

edic

al A

pplic

atio

•<450 !m inactive edge•< 200 mW/cm2 at 5 . 1015 neq/cm2

(after annealing)

FE-I4160

etec

tors

and

Me (after annealing)

•1000 V of bias voltage (safely) •applicable after 5 . 1015 neq/cm2

S/T > 2 after 5 1015 neq/cm2

FE-I4A

nche

ster

-UK

. De S/T 2 after 5 . 10 neq/cm

FE I3 FE I4

nive

rsity

of M

an FE-I3 FE-I4Pixel Size [!m2] 50×400 50×250Pixel Array 18×160 80×336

Chip Size [mm2] 7.6×10.8 20.2×19.0TDAC

250 !m

aD

aV

iá, t

he U Active Fraction 74 % 89 %

Analog Current [!A/pix] 26 10

Digital Current [!A/pix] 17 10A l V lt [V] 6

Am

p2

discri

50 !msynthezised digital region (1/4th )

Cin

zia Analog Voltage [V] 1.6 1.4

Digital Voltage [V] 2 1.2pseudo-LVDS out [Mb/s] 40 160

Preamp FDAC Config Logic

01-1

1 Vertex detectors challenges

ns, B

erge

n 25

-0

Precise vertex determination

Important role in pattern recognition/ track

edic

al A

pplic

atio

p p greconstruction 200 pileup events/bc at 5x1034cm-2s-1

K I400 collisions in the inner trackerAbdel Abdesselam June 2010

etec

tors

and

Me Key Issues:

#Material budget –less multiple scattering, better primary vertex resolution

Thin/small beam-pipe

Abdel Abdesselam, June 2010

nche

ster

-UK

. De p p

Ultra-light detectorsMany channels to reduce occupancyHigh data rates IBL 1.5%X0

nive

rsity

of M

an High data rates –

•High-precision detectors very close to IP# Ultra radiation hard detectors

0

aD

aV

iá, t

he U Radiation hardness up to

2X1016 1MeV neutron/cm2 at innermostlayers at 3000 fb-1 5X1015ncm-2 at 300 fb-1

Cin

zia

Signal/threshold

StripsATLAS Radiation Taskforce [ATL-GEN-2005-01]

01-1

1

Radiation Induced Bulk Damage in Siliconns

, Ber

gen

25-0

From RD48/ROSE

Primary Knock on Atom

edic

al A

pplic

atio Primary Knock on Atom

Displacement threshold in Si:Frenkel pair E~25eV

etec

tors

and

Me p

Defect cluster E~5keV

Vacancy

nche

ster

-UK

. De

V,I MIGRATE UNTIL THEY MEETVan Lint 1980

Interstitial

nive

rsity

of M

an

Ec

V,I MIGRATE UNTIL THEY MEETIMPURITIES AND DOPANTS TOFORM STABLE DEFECTS Effect on sensors

aD

aV

iá, t

he U

Ei V2(-/0)+Vn Ec-0.40eVV2(=/-)+Vn Ec-0.22eVVO- Ec - 0.17eVV6

V2O

CHARGED DEFECTS==>NEFF, VBIAS

DEEP TRAPS, RECOMBINATION CENTERS ==>CHARGE LOSS

Cin

zia

EvCIOI

(0/+) EV+0.36eV

V2O

DEEP TRAPS, GENERATION CENTERS==>LEAKAGE CURRENT

01-1

1

Silicon sensors macroscopic parameters changes observed up to 1x1015 n 1MeV/cm2 `

150

200

icro

ns)

Electrons

T = -20 oCns

, Ber

gen

25-0

50

100

150

Fl 1015 t -2fect

ive

Dri

ft L

engt

h (m

i

Holes

STANDARD 300!m n-type SILICON at 1015 n/cm210 years of operation at L=1034 cm-2s-1 at R=4 cm

edic

al A

pplic

atio

e- and h+ TRAPPING SHORT #trap affects signal formation

SPACE CHARGE INCREASE -ve Neff (1013/cm3) ~ VFD (5000V)~$

00 1 2 3 4

Fluence = 1015 protons cm 2

Eff

Electric Field ( Volt/micron )

etec

tors

and

Me eff ( FD ( )

TYPE INVERSION-double OXYGEN HELPS!junction

REVERSE ANNEALING INCREASE OF -ve Neff after irradiationLOW T STORAGE HELPS

6

8

10

[1012

cm-3

]

400

500

600

300 !m

)

Carbon-enriched (P503)Standard (P51)

O-diffusion 24 hours (P52)O-diffusion 48 hours (P54)O-diffusion 72 hours (P56)

Carbonated

Standard

nche

ster

-UK

. De LOW T STORAGE HELPS

LEACKAGE CURRENT prop to $ (I/V ~5x10-17 $) LOW T HELPS

0 1 2 3 4 50

2

4|Nef

f|

100

200

300

Vde

p [V

] (3

Oxygenated

nive

rsity

of M

an 0 1 2 3 4 5$24 GeV/c proton [1014 cm-2]

Needs to tackle all those issues:

!For Neff and Reverse annealing" Oxygen

aD

aV

iá, t

he U

!For Neff and Reverse annealing" Oxygenand operational conditions

!For trapping" device engineering

!New materials for low leakage current andL i

Cin

zia

Time [y]Lots of pioneering work from RD48/RoseNow continued by RD50

Low noise

01-1

1

The effect of trapping

CB

ns, B

erge

n 25

-0 The effect of trapping

The carriers move less " less signal since the signal is formed when charges

VB

edic

al A

pplic

atio

g g gmove

etec

tors

and

Me

nche

ster

-UK

. De

nive

rsity

of M

ana

Da

Viá

, the

UC

inzi

a

Trapping has been measured for electrons and holes by G. Kramberger (Ljiubliana) NIMA 481 (2002) 100

01-1

1 Effective drift length due to trapping

Lns

, Ber

gen

25-0 Leff = vdrift x #trap

edic

al A

pplic

atio

200

) o

etec

tors

and

Me

100

150

engt

h (m

icro

ns)

Electrons

T = -20 oC

e-e- mobility 3 times bigger!

nche

ster

-UK

. De

50

Fluence = 1015 protons cm-2

Eff

ectiv

e D

rift

LHoles

For max signal:

nive

rsity

of M

an 00 1 2 3 4

Electric Field ( Volt/micron )

h+

!Collect e-

!W k t V

aD

aV

iá, t

he U

Ottaviani Canali et al

h+ !Work at VdriftSaturated-> e-field >2V/!m

Cin

zia

Trapping times from Kramberger et al. NIMA 481 (2002) 100 Simulations CDV and S.Watts NIM A 501(2003) 138 (Vertex 2001)

Ottaviani, Canali et al.

01-1

1 3D detectors Radiation hardness 8.81x1015n/cm2

1.73x1016p/cm2ns

, Ber

gen

25-0

80

100

120

ncy

[%]

2E120

1602E NI7.55e142.00e158.81e15

tude

[mV]

2E9000e-

Vb~130V 45%

Irradiation and measurements performed in PragueC. Da Viá, T. Slaviceck, V. Linhart, P. Bem, S. Parker, S. Pospisil, S. Watts (process J. Hasi, C. Kenney)

2E

edic

al A

pplic

atio

0

20

40

60

Sign

al e

ffici

en

C. Da Viá July 070

40

80

Sign

al A

mpl

it

C. Da Viá July 07 threshold

2E

400 !m50 !m

n IR Laser

etec

tors

and

Me 0

0 2 1015 4 1015 6 1015 8 1015 1 1016

Fluence [n/cm2]

100

120

%]

120

140

1603E-NI7.55e142.00e158.81e15[m

V]

00 50 100 150 200

Bias Voltage [V]

51%

p

n

103!mVfd ~20V

Oscilloscope

bias

nche

ster

-UK

. De

IR

20

40

60

80

Sign

al e

ffici

ency

[%

3E

40

60

80

100

120 8.81e15

Sign

al A

mpl

itude

[

3E10200e-

Vb~112V

51%3E

400 !m50 !m

nive

rsity

of M

an

120

0

20

0 2 1015 4 1015 6 1015 8 1015 1 1016

S

Fluence [n/cm2]

C. Da Viá July 07

140

0

20

0 50 100 150 200Bias Voltage [V]

C. Da Viá July 07 thresholdpn

71 !mVfd ~8V

aD

aV

iá, t

he U

60

80

100

120

effic

ienc

y [%

]

4E

60

80

100

120

1404E NI7.55e142.00e15 8.81e15

Am

plitu

de [m

V]

4E13200e-

Vb~94V

66%

4E

400 !m50 !m

Cin

zia

0

20

40

0 2 1015 4 1015 6 1015 8 1015 1 1016

Sign

al e

Fluence [n/cm2]

C. Da Viá et al. July 070

20

40

0 50 100 150 200

Sign

al A

Bias Voltage [V]

C.DaVia July 07

66%

thresholdp

n

Vfd ~5V

01-1

1 Signal efficiency

d i l h[9] C. Da Via et al.”, (NIMA-D-08-00587)[10] G. Kramberger at al., Nucl. Instr. Meths. A 554 (2005) 212-219[11] G. Kramberger, Workshop on Defect Analysis in Silicon Det, Hamburg, August2006 http://wwwiexp desy de/seminare/defect analysis workshop august 2006 html

ns, B

erge

n 25

-0 and signal charge 2006. http://wwwiexp.desy.de/seminare/defect.analysis.workshop.august.2006.html[12] G. Casse et al., Nucl. Instr. Meths. A (2004) 362-365[14] T. Rohe et al. Nucl. Instr. Meths. A 552 (2005) 232-238[16] F. Lemeilleur et al., Nucl. Instr. Meths. A 360 (1995) 438-444

edic

al A

pplic

atio

100 56!m 3D - 4E [9]7%!m 3D - 3E [9]

25000.0103!m 3D - 2E [9]71 3D 3E [9]

Signal Efficiency (prop 1/L) Signal charge (depends on &'

etec

tors

and

Me

60

80

103!m 3D - 2E [9]75!m epi [11]150!m epi [11]285!m n+n pixels [14]285!m n+p strips[12]300!m p+n strips [16]

ency

[%]

15000.0

20000.0

71!m 3D - 3E [9]56!m 3D - 4E [9]50!m epi [10]75!m epi [11]150!m epi [11]285!m n+p strips[12]285!m n+n pixels [14]

ge [e

- ]

71!m 3D

nche

ster

-UK

. De

20

40

Sign

al E

ffici

e

5000 0

10000.0

Sign

al C

harg

75 m

nive

rsity

of M

an

0

20

0 2 1015 4 1015 6 1015 8 1015 1 1016

Fluence [1MeV Equivalent n/cm2]

C.DaVia; S. Watts Aug08 0.0

5000.0

0 2 1015 4 1015 6 1015 8 1015 1 1016

Fluence [1 MeV equivelent n/cm-2]

C. Da Via S. Watts April 08

75!mepi

aD

aV

iá, t

he U

[ q ] Fluence [1 MeV equivelent n/cm ]

Example at 1016 ncm2 3D wins becauseCollection distance and

Cin

zia

SMIP 3D ~ 80()x (&/L) ~ 2400 x 210/(71-22electrode implant) ~ 10290e-

SMIP planar ~ 80 ((/L) x & ~ 80()~ 80x30 ~ 2400e-distance and substrate thickness aredecoupled

01-1

1 DS 3D from CNM irradiated

Uni-Freibugh with Alibava system (M. Kohler)ns

, Ber

gen

25-0

Before irradiation 2x1015ncm-2 2x1016ncm-2

edic

al A

pplic

atio total charge 22000e

2x10 ncm22000e- at 100-150V

2x10 ncm15000e- at 350-380V

etec

tors

and

Me

n-type

nche

ster

-UK

. De

nive

rsity

of M

an

n-type

aD

aV

iá, t

he U

Cin

zia 250 um column overlap, IES= 56 microns

Detectors irradiated at the proton cyclotron Karlsruhe with 25 MeV protonsAnnealing state: ~ 5 days at RT (only p-type detector, 2x1016 neq/cm2: ~30 days)Noise at 2x1016is 1000e- at -45 oC -50 oC

01-1

1

3D silicon sensors strategy For the ATLAS IBL in 2013 Sketch of a

CNM

ns, B

erge

n 25

-0

For Fast-Track IBL 3D chose double-side 3D to reduce complexity . f C f

double side3D sensor

edic

al A

pplic

atio They will be fabricated at FBK and CNM and will have 200 microns guard fences and a

thickness of 230 microns. SINTEF and Stanford will optimise Full3D with active edges. Double sided with deep column proved good radiation hard performance with moderate bias voltage (120-150V at 5x1015ncm-2) and power dissipation of 0 034Wcm-2 at 5x1015ncm-2 at -

etec

tors

and

Me voltage (120 150V at 5x10 ncm and power dissipation of 0.034Wcm at 5x10 ncm at

10oC

nche

ster

-UK

. De

CNM :6 wafers being completed Feb118 wafers 285 !m thickPre-production of 48 wafers ready by October 118 FE-I4 per wafer common floorplan with FBK

CNM FE-I4 wafersTo be sent to IZM By the beginning of March

nive

rsity

of M

an

8 FE I4 per wafer common floorplan with FBK

FBK

aD

aV

iá, t

he U FBK completed

FE-I4 wafer Currently at IZM

FBK:3 Wafers at IZM for bump-bonding ( March11)24 wafers by May 11 wafers Pre-production of 44 wafers by June11Common floor plan

Cin

zia

01-1

1

ATLASFP – technical proposal 2013 and 2017Forward Detectors = use LHC beam-line as a spectrometerP t n n l ss sults in p t n t j ct h i nt l d p tu

ns, B

erge

n 25

-0 Proton energy loss results in proton trajectory horizontal departureed

ical

App

licat

io

IP1

etec

tors

and

Me

y(m

m)

220m

y(m

m)

420m

nche

ster

-UK

. De

x(mm)x(mm)

V. Avati/Totem

V. Avati/Totem

nive

rsity

of M

ana

Da

Viá

, the

UC

inzi

a

01-1

1 X-ray energy of the most common medical and

biological applications ns

, Ber

gen

25-0

Mammography Dental imaging

g pped

ical

App

licat

ioet

ecto

rs a

nd M

e

Angiography Radiology

nche

ster

-UK

. De

Proteincrystallography

PETSPECT

nive

rsity

of M

an

0 10 20 30 40 50 60 70 80 90 100

100 [%]

aD

aV

iá, t

he U

Energy keV50 300 !m Si500 !m Si

Absorbtption efficiency

Cin

zia

0

10101 102

!700 !m Si1000 !m Si L. Tlustos

01-1

1

Detection strategyExample breast cancer:

Micro-calcification ->high contrastHigh spatial resolution

ns, B

erge

n 25

-0gy

Human organ:~water

High spatial resolution

Cysts -> low contrast high detectionEfficiency = low dose

edic

al A

pplic

atio Low energy: Thick silicon or high Z semiconductors

Direct detection: high spatial resolutionX-rays

etec

tors

and

Me g p

S t d d t t

ExampleHybrid detector semiconductor + MEDIPIX

nche

ster

-UK

. De

High energy: crystals +photo detector

Segmented detector

nive

rsity

of M

an High energy: crystals +photo detectoror high Z semiconductors

I di t d t ti hi h d t ti ffi i

X-rays

aD

aV

iá, t

he U Indirect detection : high detection efficiency

but degradation of spatialresolution scattering, diffusion

Precision degradation

Cin

zia g

But high detectionEfficiency " low dose to the patient

01-1

1 Direct detection: MEDIPIX + semiconductor

ns, B

erge

n 25

-0 Hybrid structure sensor and electronics are processed separately. Bump-bonds provide the electrical connection

edic

al A

pplic

atio

!Medipix 2 and Medipix 3 are collaborations between number of European Universities and Research Institutes

etec

tors

and

Me Research Institutes.

!The device consists of a pixellated sensor chip and a read-out chip containing the amplifier, discriminators and counter(s) for each pixel

nche

ster

-UK

. De discriminators and counter(s) for each pixel.

!Applications include Mammography, autoradiography and synchrotron radiation applications

nive

rsity

of M

an

Parameters of Medipix:

applications

aD

aV

iá, t

he U

Parameters of Medipix

Pixels: 256 x 256Pixel size: 55 x 55 mm2Area: 1.5 x 1.5 cm2

Cin

zia Area .5 x .5 cm

01-1

1 Direct detection

Semiconductor Materialsns

, Ber

gen

25-0 Semiconductor Materials

edic

al A

pplic

atio

etec

tors

and

Me

nche

ster

-UK

. De

nive

rsity

of M

ana

Da

Viá

, the

UC

inzi

a

01-1

1 Probability of charge sharing : planar vs 3DProbability of charge sharing : planar vs 3D

3D collects all char e on 1 electrode in most 3D collects all char e on 1 electrode in most ns

, Ber

gen

25-0 3D collects all charge on 1 electrode in most 3D collects all charge on 1 electrode in most

cases cases "" Better Energy resolution Better Energy resolution

edic

al A

pplic

atio

Central electrode

300Fraction of carriers that travel to central Fraction of carriers that travel to central electrode versus start position relative to electrode versus start position relative to

etec

tors

and

Me

1

300

150

[!m]

Y

planarelectrode versus start position relative to electrode versus start position relative to central electrodecentral electrode

3D

nche

ster

-UK

. De

0 8

0.9

ele

ctro

de

0

0-50 -25[!m]

3Dplanar

nive

rsity

of M

an

0.7

0.8

Planar Y=50Planar Y=150Planar Y=250ct

ion

to c

entr

al

0-50 -25[!m]

0

3D

aD

aV

iá, t

he U

0.5

0.6

Planar Y=2503D Y=-12.53D Y=-5Fr

ac

Central electrode

Y

Cin

zia 0.5

-25 -20 -15 -10 -5 0

Distance from central electrode (Microns)

-30

[!m]

Simulations by S. Watts, Brunel

01-1

1

Charge sharing: 241Ans

, Ber

gen

25-0 Charge sharing:

Measurements A. La Rosa/CERN241Am .

edic

al A

pplic

atio planar

etec

tors

and

Me

nche

ster

-UK

. De

nive

rsity

of M

an

3D

aD

aV

iá, t

he U

Cin

zia

01-1

1

Indirect detection needs scintillator+ns

, Ber

gen

25-0

Photomultipliers

edic

al A

pplic

atio

etec

tors

and

Me

nche

ster

-UK

. De

nive

rsity

of M

ana

Da

Viá

, the

U

J ëll B l

Cin

zia Joëlle Barral

Promotion X2001Ecole Polytechnique 1, France

01-1

1

Common Scintillating crystalsns

, Ber

gen

25-0

g yed

ical

App

licat

ioet

ecto

rs a

nd M

enc

hest

er-U

K. D

eni

vers

ity o

f Man

aD

aV

iá, t

he U

Cin

zia

01-1

1 Example PET

ns, B

erge

n 25

-0ed

ical

App

licat

io

Crystals+

etec

tors

and

Me photodetectors

nche

ster

-UK

. De

nive

rsity

of M

ana

Da

Viá

, the

UC

inzi

a

From Del Guerra

01-1

1

ns, B

erge

n 25

-0ed

ical

App

licat

ioet

ecto

rs a

nd M

enc

hest

er-U

K. D

eni

vers

ity o

f Man

aD

aV

iá, t

he U

Cin

zia

01-1

1 Hadron Therapy: in beam PET (TOF-PET)

ns, B

erge

n 25

-0

Need to control during the beam delivery of the energy deposition$Use of ! emitting nuclei from beam projectile reactions in the biologicalmatter

edic

al A

pplic

atio matter

$Use of a dedicated TEP (GSI) to monitor dosimetry and compare withsimulations

Representation of a quality control system for treatment planning. It

etec

tors

and

Me Representation of a quality control system for treatment planning. It

includes a fast beam hodoscope, a PET surrounding the target and anelectromagnetic spectrometer

nche

ster

-UK

. De

From LeDuManchester April

nive

rsity

of M

an Manchester April2008

aD

aV

iá, t

he U

Cin

zia

01-1

1

ns, B

erge

n 25

-0ed

ical

App

licat

ioet

ecto

rs a

nd M

enc

hest

er-U

K. D

eni

vers

ity o

f Man

aD

aV

iá, t

he U

Cin

zia

01-1

1

ns, B

erge

n 25

-0 Promising devices for TOF-PET

Timing resolution for two sintillators in coincidence

~600ps

edic

al A

pplic

atio 600ps

Intrinsic timing measured in FBK SoPm

~60ps Depends on number of photoelectrons

etec

tors

and

Me

TARGET IS 10-20ps!!!!!!

nche

ster

-UK

. De

nive

rsity

of M

ana

Da

Viá

, the

UC

inzi

a

From Del Guerra- April 2009

01-1

1 Full-3D

speed properties 3D Tests with 0.13 3D Tests with 0.13 !!m CMOS Amplifier chipm CMOS Amplifier chip(A Kok, S. Parker, C. Da Viá, P. Jarron, M. Depeisse, G. Anelli), fabricated at StanfordBy J Hasi C Kenney

ns, B

erge

n 25

-0 speed properties By J. Hasi, C. Kenney

edic

al A

pplic

atio

etec

tors

and

Me !Short collection distance

!High average e-field at low Vbias

!Parallel charge collection

nche

ster

-UK

. De

nive

rsity

of M

an Raw oscilloscope trace

t 1

aD

aV

iá, t

he U

3D signal simulation

2ns

T 300K

rt 1.5ns*rt~1ns

Cin

zia

3D Inter-electrodespacing = 50 !m

5

T 300

01-1

1 Pulse height distribution

20

25number vs. pulse height

Constant Fraction Discrimination

50 umIES

ns, B

erge

n 25

-0

! noise

! T

10

15C

ount

s

67 pulsesanalysed

edic

al A

pplic

atio

Expected noise-induced time-error distribution5

10

Analysis from S. Parker

etec

tors

and

Me

analysis

number vs. time resolution from noise

1000

1200time resolution vs. pulse height

Noise time error

0

nche

ster

-UK

. De y

600

800

t (ps

)

(using constant fraction discrimination) vs pulse height

average dtscatter plot:

155 psbottom plot:

nive

rsity

of M

an

200

400

dt vs. pulse height. bottom plot:134 ps

aD

aV

iá, t

he U

0 5 10 15 20Counts

0

100

200

300

dt (p

s)

dt distribution from ~ noise-free signal

Cin

zia

39

0

2 4 6 8 10 12 14 16

pulse height (mV)

dt distribution from noise-free signaladded repeatedly to separate noisesegments.

01-1

1 Neutron detection in Hadrontherapy

U i th 3D f t f i l d t ti i ti

ns, B

erge

n 25

-0 Using the 3D feature for special detection: insertingconverting materials in the electrodes to enhance efficiency2D neutron array modification J Huler, Prague-

edic

al A

pplic

atio

converter

T

Neutron beam“Standard” 2D type

etec

tors

and

Me

sensiti e ol me+

T

n+n

back side contact

nche

ster

-UK

. De sensitive volumep+

EFFICIENCY = 5%!!!

nive

rsity

of M

an EFFICIENCY = 5%!!!

aD

aV

iá, t

he U

“Egg plate” 2D type(with enlarged surface to increasethe detector efficiency)

Cin

zia

01-1

1 Neutron 3D array modification

bi d t ti d ins

, Ber

gen

25-0 combine detection and conversion

Neutron beam

Prague (J. Huler)

edic

al A

pplic

atio

low n+“Channel” 2D type

Neutron beamback sidecontact grid

Neutron or x-ray

etec

tors

and

Me low n+

p+n

Channel 2D type(maximized filling)

nche

ster

-UK

. De

Converting mediumP and n electrodes

nive

rsity

of M

an

“3D inverse” structure(there are pillars instead of pores)

bottom view

silicon

aD

aV

iá, t

he U silicon

Cin

zia

01-1

1 3D geometry arrays

comparison of cylindrical vs square 10B converterns

, Ber

gen

25-0 - comparison of cylindrical vs. square 10B converter

Measurements made in Prague (J. Huler)

edic

al A

pplic

atio Fixed wall thickness – variance in the converter / cell size

CylinderSquare

etec

tors

and

Me

Square pores, 10B (80% enrichment), walls 5 !m40

Cylinder pores, 10B (80% enrichment), walls 5 !m35

nche

ster

-UK

. De

25

30

35

icie

ncy

[%]

20

25

30

cien

cy [%

]

nive

rsity

of M

an

10

15

20

Det

ectio

n ef

fi

density 1.00 g/cm3density 1.40 g/cm3d it 1 80 / 3 5

10

15

Det

ectio

n ef

fi

density 1.00 g/cm3density 1.40 g/cm3d i 1 80 / 3

aD

aV

iá, t

he U

0

5

0 2 4 6 8 10 12 14 16 18

Pore size [!m]

density 1.80 g/cm3density 2.20 g/cm3

0

5

0 2 4 6 8 10 12 14 16 18

Pore size [!m]

density 1.80 g/cm3density 2.20 g/cm3

Cin

zia

Maximal efficiency: ~36% Maximal efficiency: ~31%

01-1

1 Protein Protein folding 3DX project (MBC)folding 3DX project (MBC)

ns, B

erge

n 25

-0

The Diffraction Pattern of Discrete Bragg Spots The Diffraction Pattern of Discrete Bragg Spots is Captured by the Detectoris Captured by the Detector

edic

al A

pplic

atio

etec

tors

and

Me

nche

ster

-UK

. De

nive

rsity

of M

ana

Da

Viá

, the

UC

inzi

a

01-1

1 Example of reconstructed structure:

Enzyme Active Sitens

, Ber

gen

25-0 Enzyme Active Site (from E. Westbrook)

edic

al A

pplic

atio• Pseudomonas diminuta

phosphotriesterase: This enzyme catalyzes the hydrolysis of

etec

tors

and

Me y y

organophosphoruspesticides and nerve agents. Its crystal structure is being studied

nche

ster

-UK

. De g

by Hazel Holden’s research group at the University of Wisconsin, Madison (see PDB file 1DPM).

nive

rsity

of M

an

)• Purple atoms: zinc• Red: bound water• Yellow: side chains• 1 8 Å resolution map

aD

aV

iá, t

he U• 1.8 Å resolution map,

• Present detectors:• CCDs. Time resolution ms

Cin

zia

• Needs faster ASIC for protein folding

01-1

1 3D pixel detectors x3D pixel detectors x--ray setup ray setup (3DX project)(3DX project)

E Westbrook et al (molecular biology consortium) USAE Westbrook et al (molecular biology consortium) USAns

, Ber

gen

25-0 E. Westbrook et al. (molecular biology consortium) USAE. Westbrook et al. (molecular biology consortium) USA

!High signals!Low noise!Moderate cost!High speed – microsecond

Orthogonal to focal pointNO aberration

edic

al A

pplic

atio

support bar(behind plane of sensors)crystal sample

X-rays

X rays

!High speed microsecondGOOD for Protein folding

etec

tors

and

Me X-rays

nche

ster

-UK

. De

to crystal sample(X ray diffraction source)

silicon sensor

nive

rsity

of M

an

cables

alignment blocks

cables

readout chip

printed circuit board

support bar

aD

aV

iá, t

he U

alignment blocks

a: top view of 3 rows

pp

Bump bond to pixel readout

Cin

zia electronics

01-1

1 Reducing the dead volume in medical imaging:

ti dns

, Ber

gen

25-0

GUARD RINGSinks surface leakage current

active edges

1-2mm depending on segmentation

edic

al A

pplic

atio

E-field p + Aldepe d g o seg e a o

etec

tors

and

Me

n + AlMicrocracks, chips etc.. Staggered microstripDead edge

X ray

nche

ster

-UK

. De

X-rays

Edge-on x-ray imagerExample mammographyOn synchrotron beams

X-ray

nive

rsity

of M

ana

Da

Viá

, the

UC

inzi

a

GapOr poor efficiency

ATLAS microstrips guard rings ~1mm

01-1

1 Further application: micro-dosimetry

ns, B

erge

n 25

-0

Dosimetry Microdosimetry

edic

al A

pplic

atio Integrates energy deposition for all particles

together

Is NOT volume or shape dependent. NO cell level effect

Measures the energy deposition events in a small (cell-size) volume

Is volume and size dependent. Cell level effect (radio-biological effect)

etec

tors

and

Me level effect

NO distinction of type of radiation. Example MOSFET dosimeter, SICEL

(radio biological effect)

Distinction amongst particles, particle counts. Example Rossi chamber (TEPC)

Copyright 1999 Oak Ridge Associated Universities

nche

ster

-UK

. De Copyright 1999, Oak Ridge Associated Universities

nive

rsity

of M

ana

Da

Viá

, the

UC

inzi

a

http://www.siceltech.com

01-1

1

Benchmark Microdosimetersns

, Ber

gen

25-0

TEPC: Tissue Equivalent The HAWK2 Tissue

edic

al A

pplic

atio Proportional Counters

•Real Tissue Equivalent medium •Excellent shape (spherical)

Tissue Equivalent Proportional Counter

etec

tors

and

Me •Excellent shape (spherical)

•Average chord length independent from incident field direction Smaller

Size but

nche

ster

-UK

. De

HOWEVERHOWEVER

Size butRequires gas tank

nive

rsity

of M

an

#Unsuitable for QA or IN-VIVO applications as hadrontheraphy

DeNardo et al. Radiation Protection Dosimetry (2004), Vol. 108, No. 4, pp. 345---352

aD

aV

iá, t

he U

pp p y#poor spatial resolution #SV real micrometric scale needs

continuous gas flowNeeds more suitable true cellular size

Cin

zia continuous gas flow

sensitive volume

01-1

1 Si Microdosimetry (c. da via et al. 2010)

ns, B

erge

n 25

-0

Microdosimetry measures the stochastic energy deposition events at cellular level

!R di Bi l i l Eff ti (RBE) d d li t f

edic

al A

pplic

atio !Radio-Biological Effectiveness (RBE) depends on linear energy transfer

(LET or Lineal Energy) which is different for different radiation type. Average chord length <l> Average chord length <l> independenton radiation direction

etec

tors

and

Me

!!Mixed Field Mixed Field detection ina small sized array of

ll lik l t f ll d fi d

~10!m

~10!m

nche

ster

-UK

. De cell-like elements of well defined

Sensitive volume SVSV is required to precisely determine RBE

SVSV Silicon!dosimeter

Dose distribution d(y)

nive

rsity

of M

an

!Silicon Dose Equivalent can be determined From the lineal EnergySpectra and the tissue equivalent dose D Quality factors QQ determined

Dose distribution d(y)

aD

aV

iá, t

he U dose DTE. . Quality factors QQ determinedExperimentally.

Dsi = DTE SSi/STE

Cin

zia si TE Si TE

Dose equivalent H = Q Dsi

Plot from Rosenfeld et al

01-1

1 SOI planar microdosimetry

ns, B

erge

n 25

-0ed

ical

App

licat

io

cylindrical SV obtained by deep implantation of

etec

tors

and

Me dopants on SOI

CCE~80%. Charge funnels into substrate

nche

ster

-UK

. De

E cellent res lts

nive

rsity

of M

an Excellent resultsproving suitabilityof small SV siliconarrays for micro

aD

aV

iá, t

he U

ydosimetry

Cin

zia

Array of SOI -SV

ComparisonSOI with TEPC

01-1

1

Proposal for microdosimetry using 3D sensor technologyns

, Ber

gen

25-0

!We propose the fabrication of a coaxial silicon microdosimeterwhich uses a combination of micromachining (the same used for MEMS) and

p y g gyed

ical

App

licat

io VLSI.

!3D silicon sensors are an establish technology for High Energy Physicsapplications

etec

tors

and

Me applications

!Readout electrodesand ‘active edges’

p+n+ n

n+

Active Edge electrode

nche

ster

-UK

. De are ‘deep etched’

into the silicon substrate

!To enhance signal to noise and

pn n p+E-fieldelectrode

nive

rsity

of M

an

!To enhance signal to noise and!spatial information we plan to useAn array of cell-like sensitive volumes

!R d h

array

aD

aV

iá, t

he U !Readout scheme

Would depend onapplication

Oxide layer

10 !m

Cin

zia

400 umNot to scale..

01-1

1 Thin 3D sensors fabricated at Thin 3D sensors fabricated at

CNM Barcelona SpainCNM Barcelona Spainns

, Ber

gen

25-0

p+ n+ n+p+ p+

5mmSOI

100um3um

CNM Barcelona, SpainCNM Barcelona, Spain(material from of G. Pellegrini, CNM)

Thin 3D silicon sensors for neutron detection

edic

al A

pplic

atio

LowResistivityn-type

n-type HighResistivity

10um300um

Thin 3D silicon sensors for neutron detectionFabricated at CNM-Barcelona-patentedNuclear Instruments and Methods in Physics Research A 607 (2009) 57–60

etec

tors

and

Me

p d t +Aln+

nche

ster

-UK

. De

300um

Thin membrane

nive

rsity

of M

an 300um

Etched backside

•DC coupled

aD

aV

iá, t

he U •128 channels

•80 um pitch•5um holes•10um thick

Cin

zia •Area=1cm2

•p-n or n-p configuration (p-stop isolation)•Oxide thickness (window) to be decided.

01-1

1

Methodologyns

, Ber

gen

25-0

In-vivo measurements of off-field secondary particles duringhadrontherapy sessions. Use of phantoms For Q determination and

Methodologyed

ical

App

licat

io Geant4 for deep energy deposition

#Monitor the risk of secondary cancer

etec

tors

and

Me #Monitor the risk of secondary cancer

induction outside of the primarybeam in a healthy tissue due to neutronsand other particles

Isotope production duringC theraphy calculatedUsing Geant4. (J. Allison)

nche

ster

-UK

. De p

nive

rsity

of M

an

microdosimeter

Phantom to extract the deposited energy

aD

aV

iá, t

he U

p-beam

p gyIn different positions to be confrontedWith Geant4. simulation

Cin

zia

01-1

1 Other Example of 3D processing:

Micro-Machined Micro-Channel Platens

, Ber

gen

25-0 Micro-Machined Micro-Channel Plate

From D.R. Beaulieu IWORID 2008

edic

al A

pplic

atio

etec

tors

and

Me

nche

ster

-UK

. De

!Fast PhotomultiplierWidely used

!Pores normally coated glas

nive

rsity

of M

an

!Various applications

!Aging at high rates is anIssue

aD

aV

iá, t

he U

!Pores dimension 10!m or less

!Speed depends on pore

Cin

zia

Improvements of gain and lifetime due to novel emission and conduction layers

!Speed depends on pore !dimension

01-1

1 Curved semiconductor detectors

ns, B

erge

n 25

-0 Bernard F. Phlips, Member, IEEE, and Marc ChristophersenPresented at IEEE-NSS 2008, Dresden Germany

D Si G N d SiC l d t i d

edic

al A

pplic

atio •Done on Si , GaN and SiC already tried

•Uses Deep reaction Ion Etching

•Key to technology:

etec

tors

and

Me

•Photo Lithography works: pixels and strips madeusing ‘GrayTone Lithography’ (selects photoresistsdifferently at different depths)

nche

ster

-UK

. De

•Wafer thinning uses standard processing

•Indium bump-bonding still works on curved structure

Can be used on all material that allow DRIE

nive

rsity

of M

an •Can be used on all material that allow DRIE

•Resist spray coating

•Alternatives to CMP to improve flatness

Principle of gray-tone technology: The 3-D resist profile, a) andc), is directly transferred into silicon topography, b) and d).

aD

aV

iá, t

he U

Am-241 photon spectrum taken with a fully depleted curved pixel detector, half-pipe (1.73 keV FWHM at 9 4 V)

Cin

zia 59.54 eV).

Top-view optical micrograph of a pixel array on a curved detector(pixel dimensions 150 x 150 !m).

01-1

1 Thin silicon and 3D interconnect

an alternative to bump-bondingns

, Ber

gen

25-0 an alternative to bump-bonding

Solid-Liquid Inter DiffusionConnection -IZM

Courtesy R. Nisius, HG MoserMunich and IZM

Example of detector module

edic

al A

pplic

atio

Cooling pipeSupport/heat spreader

Co ect oExample of detector module

etec

tors

and

Me Thinned sensor/frame

Multilayer chipFlex-busModule control data link

nche

ster

-UK

. De

50!m thick prototypen-type

f Thi ili i

nive

rsity

of M

an Behaviour after irradiation This silicon requiresNew ROC development

aD

aV

iá, t

he U

Cin

zia

01-1

1 Conclusions and perspectives

ns, B

erge

n 25

-0

!3D technology can be used to fabricate sensors for HEP and Medicine

edic

al A

pplic

atio

!Advantages are: flexibility in tailor shapes and optimise detection

etec

tors

and

Me

!Current Applications include:

!ATLASFP, B-Layer

nche

ster

-UK

. De L F , L y

!Structural Molecular Biology 3DX

nive

rsity

of M

an

!Will be bonded to MEDIPIX2 later this year

!MCP (commercial)

aD

aV

iá, t

he U !MCP (commercial)

!Curved structures (proposed for vertex purposes)..

Cin

zia

And more... It is an emerging exciting technology