Hervé Douville Météo-France/CNRM [email protected] Acknowledgements: B. Decharme, R. Alkama

27
Hervé Douville Météo-France/CNRM herve. douville @ meteo . fr Acknowledgements: B. Decharme, R. Alkama and Y. Peings sonal Prediction Workshop, Exeter, 1-3 December 2010 Land surface contribution to climate variability and predictability

description

Hervé Douville Météo-France/CNRM [email protected] Acknowledgements: B. Decharme, R. Alkama and Y. Peings. Land surface contribution to climate variability and predictability. WCRP Seasonal Prediction Workshop, Exeter, 1-3 December 2010. Outlines. Background and motivations - PowerPoint PPT Presentation

Transcript of Hervé Douville Météo-France/CNRM [email protected] Acknowledgements: B. Decharme, R. Alkama

Page 1: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

Hervé DouvilleMétéo-France/CNRM

[email protected]

Acknowledgements:

B. Decharme, R. Alkama

and Y. Peings

WCRP Seasonal Prediction Workshop, Exeter, 1-3 December 2010

Land surface contributionto climate variability

and predictability

Page 2: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

2

Outlines

Background and motivations

1. Land surface data and statistical studies• Global land surface products

• Data intercomparison and model evaluation

• Statistical evidence of predictable land surface impacts

2. Numerical sensitivity experiments• Pioneering studies

• Numerical evidence of local land surface impacts

• Numerical evidence of remote land surface impacts

Conclusions, prospects and issues

Page 3: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

3

Seasonal prediction:A question of remote control ?

The forecast

The land surface component

The AOGCM

The anthropogenic radiative component

The stratospheric component

A « slave » component ?

« Need to improve the representation of climate system interactions and their potential to improve forecast quality. » (WCRP position paper, Barcelona 2007)

Page 4: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

4

GLACE: Global Land-Atmosphere Coupling Experiment (a GEWEX & CLIVAR initiative)

?

GLACE-1 multi-model land-atmosphere coupling strength based on the reproductibility of 5-day precipitation (Koster et al. 2006). Not sufficient to evaluate the impact of land state initialization on seasonal forecast skill => GLACE-2

Page 5: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

5

Relevance of land-atmosphere coupling for climate predictability: At least 3 conditions

1. Land surface anomalies must have sizeable (i.e. potential predictability) and realistic (i.e. effective predictability) impacts on atmospheric variability

2. Land surface anomalies must be predictable at the selected timescale (using dynamical and/or statistical tools)

3. Real-time global land surface analyses must be available for initializing the relevant land surface variables (soil moisture, snow mass, …)

NB: focus on monthly to seasonal timescale only.

Page 6: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

6

(lack of) Land surface dataAnd statistical studies

Global (satellite) land surface observationso Snow: visible (since 1967), passive micro. (SMMR since 1978, …)o Soil moisture: passive & active micro. (AMSR since 2002, ASCAT, …)o Total water storage variations: gravimetry (GRACE since 2002)

Off-line land surface model simulationso GSWP-2 (1986-1995): 13 models driven with ISLSCP2 forcing data o GLDAS (1979-present): 4 models driven with bias-corrected reanalyses

or NOAA/GDAS real-time analyses (since 2000)o VIC (Sheffield and Wood 2008) or ISBA (Alkama et al. 2010) driven

with 1950-2006 Princeton Univ. (Sheffield et al. 2006)

On-line LDAS systemso Soil moisture analysis based on the assimilation of screen-level

temperature and humidity (e.g. Météo-France, ECMWF, Met Office, …)o Assimilation of NESDIS snow extent (e.g. ECMWF since 2004)o Assimilation of ASCAT soil moisture (e.g. Met Office since July 2010)

Page 7: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

7

LSM

ISLSCP-2 (1986-1995), Princeton Univ. (1950-2006), …

3-hourly atmospheric forcing Fixed or monthly physiography

Soil moisture & snow mass climatologyEvaporationRunoff

RRM

Discharge In Situ Observ.

AGCM

T2m et P

Off-line land surface simulations

Satellite Data

Page 8: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

8

Land surface data intercomparisonEx: Central Europe

• ISBA driven by Princeton University atm. forcings (1950-2006)

• ERA-Interim (1989-2010)

• ERA40 (1958-2001)

• GSWP multi-model driven by ISLSCP2 atm. forcings (1986-1995)

vs 1989-1995 climatology

Page 9: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

9

Land surface model evaluationISBA-TRIP vs GRACE and GRDC data

ISBA = soil moisture + snow + river

Monthly water storage variation (kg/m²/day) anomalies and mean annual cycle

Alkama et al., J. Hydromet., 2010

Monthly river discharge (kg/m²/day) anomalies and mean annual cycle

7

Page 10: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

10

Statistical evidenceof land surface contribution to predictability

North American summer temperature (e.g. Alfaro et al. 2006) and precipitation (e.g. Quiring and Kluver 2009)

Sahelian summer monsoon precipitation (e.g. Philippon and Fontaine 2002, Douville et al. 2007)

Indian summer monsoon precipitation (e.g. Blanford 1884, Fasullo 2004, Peings and Douville 2009)

Winter North Atlantic Oscillation (e.g. Cohen and Entekhabi 1999, Hardiman et al. 2008, Cohen et al. 2010)

Page 11: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

11

Statistical evidence:North America T2m & P

Maps of JJA Tmax prediction skill (cross-validation over 1950-2001)

using May Pacific SST and/or PDSI (soil moisture proxy) predictors.

Alfaro et al. 2006

Northern Great Plains heavy & light AM snowfall composites (1929-1999) with interquartile range.Quiring and Kluver 2009

T2m (°C)

Cum. P (mm)

Page 12: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

12

Statistical evidence:West African summer monsoon P

• Hypothesis: 2nd rainy season over the Guinean Coast affects subsequent summer monsoon rainfall over the Sahel through a soil moisture memory effect (Landsea et al. 1993, Philippon and Fontaine 2002)• But: Stochastic artefact mediated through tropical SST and partly due to multi-decadal variability ? (Douville et al. 2007)

Page 13: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

13

Statistical evidence:Indian summer monsoon P

• Hypothesis: Winter and spring Eurasian snow cover affects subsequent summer monsoon rainfall over India (Blanford 1884, Fasullo 2004)• But: Such a statistical relationship is neither robust nor stationary in the instrumental record and is not captured by CMIP3 historical simulations (Peings and Douville 2009)

Page 14: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

14

Statistical evidence:Wintertime N.H. extratropical variability

• Hypothesis: Fall (i.e. October) snow cover over Siberia affects subsequent winter NAO (Cohen and Entekhabi 1999)• But: Not found in CMIP3 models (Hardiman et al. 2008) though the observed relationship is robust and was verified in winter 2009-2010 (Cohen et al. 2010)

JFM 2010forecasted vs observed temperature anomalies

(Cohen et al. 2010)A negative AO/NAO winter preceded by

above normal Siberian snow cover

SnowCast Observations

Page 15: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

15

Further evidence based onnumerical sensitivity experiments

Pionneering studies: Land vs SST impact on precipitation variability (e.g. Koster et al. 2000), dynamical vs non-dynamical feedback (e.g. Douville et al. 2001)

GLACE-2 and related studies (e.g. Douville 2009, Koster et al. 2010, Peings et al. 2010)

Remote impacts of Eurasian snow cover (e.g. Fletcher et al. 2009, Peings et al. in preparation)

Page 16: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

16

2ALO / 2

AO

Control experiment ALOA: Atmosphere onlyL: Interactive Land HydrologyO: Observed instead of climatol. monthly mean SST

Varia

nce

of

an

nual

pre

cipita

tion

Impact of Land vs SST variability on annual mean precipitation (Koster et al. 2000)

Page 17: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

17

Sahel

dry wet dry wetdry wet

SouthAsia

dry wet dry wetdry wet

PEAnom. P-E

Dynamical (P-E) versus non-dynamical (E) soil moisture feedbacks (Douville et al. 2001)

Page 18: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

18

ControlNo nudgingObs. SST

NudgingObs. SST

NudgingClim. SST

Zonal mean annual cycle of: Stdev Pot. Pred. (ANOVA) Skill (ACC)

SST vs land surface impacts on monthly T2m predictability over land (Douville 2009)

75°N

55°S

75°N

55°S

75°N

55°S

Page 19: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

19 19

16-30 days

31-45 days

46-60 days

temperature precipitation

GLACE-2 coordinated experiments“Consensus” skill due to land initialization

2-months hindcasts initialized on 1st & 15th June, July and August => 6 hindcasts x 10 years (1986-1995) x 10 members = 600 runs.

13 models (“weaker” models are averaged in with “stronger” ones).

Conditional skill show stronger increase.

Koster et al., GRL, 2010

Page 20: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

20

Impact of snow boundary / initial conditions on springtime (MAM) T2m (Peings et al. 2010)

Total Stdev Pot. Predictability Skill3 ensemble experiments:

Control (CTL)Interactive snow cover

SBC – CTLImpact of

snow relaxation

SIC – CTLImpact of

snow initialization

Page 21: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

21

Remote impact of Siberian snow coveron DJF NAO (Fletcher et al. 2009)

A snow-NAO relationship through a

stratospheric pathway

2 pairs of 100-member

ensemble experiments:

High minus Low fall snow cover

over Siberia

a) SWnet (d1-d15) b) MSLP (d24-d50)

Page 22: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

22

Remote impact of Siberian snow coveron DJF NAO (Peings et al. 2011)

DSS* - CTL*Improved polar

vortex climatology through equatorial

stratospheric nudging

2 pairs of 50-member ensemble

experiments:

DSS - CTLDeep Snow over

Siberia

MSLP (hPa) Zonal mean Z (m)

Page 23: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

23

CONCLUSIONS

Growing statistical and numerical evidence of both local and remote impacts of land surface initial conditions on climate predictability (though some of these studies are questionnable);

Such impacts are highly model-dependent, variable across regions and seasons, and sensitive to the magnitude of the land surface anomalies;

Long-range predictability of the land surface hydrology seems limited (mainly by the low predictability of precipitation) but needs further evaluation (i.e. new observations and data assimilation systems);

Land surface impacts do not amount to simple changes in the surface energy budget, but also involve large-scale dynamical and cloud feedbacks;

Land surface contribution to climate predictability should not be neglected given the weak SST impact on extratropical predictability.

Page 24: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

24

Observations: SMOS (L-band, 2010) & SMAP (Soil Moisture Active and Passive, 2015) for upper soil moisture, improved use of passive microwave data for snow (until ESA’s CoReH20 mission), GRACE for total water storage variations, SWOT (Surface Water and Ocean Topography) , …

Land Surface Models & Data Assimilation Systems: increased vertical discretization, simulation of water bodies including floodplains, improved representation of snow under canopy (e.g. SnowMIP), multi-spectral surface albedo and related data assimilation(MSG, MODIS), off-line model inter-comparison without (GSWP-3?) and with (PILDAS?) data assimilation, global & multi-decadal (at least since 1989) surface reanalysis, …

Sensitivity experiments: SCM studies, follow-on of GLACE-2 looking at soil moisture but also snow water equivalent and possibly surface albedo, GLACE-type versus state-of-the-art (rather than random) initialization, coupled vs AMIP-type experiments, process-oriented case studies, statistical adaptation of dynamical forecasts using land surface variables, …

PROSPECTS(OPEN FOR DISCUSSION)

Page 25: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

25

(CONTROVERSIAL) ISSUES

Statistical benchmarks ACC and RMSS differences

between sCast and DEMETER hindcasts of DJF surface

temperature (72/73 to 92/93) (red / blue means sCast has

greater / lower skill)(Cohen and Fletcher 2007)

What about vegetation ?Difference in statistical

significance of temporal ACCs between two sets of hindcasts of JJA T2m using observed vs

climatological vegetation(red / blue means increased /

decreased significance)(Gao et al. 2008)

Page 26: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

26

(CONTROVERSIAL) ISSUES

Towards decadal predictions ?

Verification of the first genuine dynamical decadal prediction

by Keenlyside et al. 2008for global mean temperature

(from http://www.realclimate.org) A land surface contribution would

be welcome but is unlikely…

BekeleESM

BoltNWP

Seamless is not questionless…

Page 27: Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: B. Decharme, R. Alkama

End