HEP Tel Aviv University

33
HEP Tel Aviv University Lumical - A Future Linear Collider detector Lumical R&D progress report Ronen Ingbir

description

Lumical. R&D progress report. Ronen Ingbir. Lumical - A F uture L inear C ollider detector. HEP Tel Aviv University. Outline. Prague follow up. 1.Phi bias 2. Delta theta 3. Real life approach 4. New selection mechanism. Luminosity study Future steps. Dense design. - PowerPoint PPT Presentation

Transcript of HEP Tel Aviv University

Page 1: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

LumicalR&D progress report

Ronen Ingbir

Page 2: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Dense design

Design variations

Luminosity study Future

steps

1.Phi bias

2. Delta theta

3. Real life approach

4. New selection mechanism

1. Moliere radius

2. Radiation length

3. Detector properties

4. Design optimization

1. Margins design properties

2. Events close to margins

3. Maximum pick shower design

4. Remarks

Prague follow up

Page 3: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Constant value

Constant value

)(deg)(

)(deg)_( genrecmean

250 GeV

Fixed non zero bias under investigation.

Events Num.E weight.

Log. weight.

(deg)genrec

Azimuthal reconstruction

Page 4: HEP  Tel Aviv  University

Two plots convinced us that the bias observed is not detector design dependent nor imperfect algorithm.

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

48 sectors design

(deg)genrec X (cm)

Y (cm)

Page 5: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Magnetic field

Page 6: HEP  Tel Aviv  University

Constant value

Constant value

))(_( radmean genrec

))(( rad400 GeV

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

)(radgenrec

)(radgen

Log. weight.

E weight.

Polar reconstruction

Page 7: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

44 103.1107.5

‘Pure’ electrons simulation

Bhabha+Beam+BS(5e-4)

)(radgenrec

Bias study

Page 8: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Real life algorithm

Working with both sides of the detector and looking at the difference between the reconstructed properties:

(In real life we don’t have generated properties)

2new

Page 9: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Polar resolution

Page 10: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Energy resolution

Page 11: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

33 mrad

Energy Resolution )( GeV

)(rad

The most significant event selection cut is the geometric acceptance cut.

This cut was used to get the best energy, angular resolutions and minimum biases.

Events selection

Page 12: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Out

In

Eout - EinEout + EinP=

New selection cut

Ring

Signal

Page 13: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Eout-EinEout+EinP=

)(rad

Out

In

Page 14: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

3 cylinders

3 Rings

2 cylinders

3 Rings

1 cylinders

3 Rings

Eout-EinEout+EinP=

)(rad

Page 15: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Dense design

0.34 cm Tungsten

0.31 cm Silicon

15 cylinders * 24 sectors * 30 rings = 10800 cells

8 cm

28 cm

0.55 cm Tungsten

0.1 cm Silicon

RL20 cm 20 cm

6.1 m

Page 16: HEP  Tel Aviv  University

Dense0.156e-3Regular0.137e-3

Dense, 35%

Regular, 27%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Ang

ular

res

olut

ion

(rad

)E

nerg

y re

solu

tion

(GeV

)^0.

5

Regular

Dense

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Basic properties

?

Page 17: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Moliere radius

0.8cm

1.1cm

X (cm)

Detector Signal

Page 18: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Radiation length

30 radiation length detector47 radiation length detector

Z (cm)

Detector Signal

Page 19: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Optimization

Page 20: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

16 cylinders 40 rings

15 cylinders 30 rings

Polar resolution & bias

Page 21: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

16 cylinders 40 rings

15 cylinders 30 rings

Energy resolution

Page 22: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

)(rad

Energy Resolution )( GeV

)(rad

Events

New geometric acceptance

Page 23: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Optimization

Page 24: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Optimization

Page 25: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Margins around cells

Having margins

Means

Losing Information

Page 26: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

One cylinder One sector

Radius (cm) ) deg(

Det

ecto

r si

gnal

Det

ecto

r si

gnal

Loosing information

Page 27: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Energy resolution

Page 28: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Polar resolution

Page 29: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Our basic detector is designed with

30 rings * 24 sectors * 15 cylinders = 10,800 channels

Do we use these channels in the most effective way?

Maximum pick shower design

30 rings 15 cylinders

20 cylinders

10 cylinders

24 sectors * 15 rings * (10 cylinders + 20 cylinders) = 10,800 channels

4 rings 15 rings 11 rings

10 cylinders

Page 30: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Maximum pick shower design

Basic Design

Angular resolution improvement

without changing the number of

channels

Other properties remain the same

))(_( radmean genrec

))(( rad

Constant value

Constant value

Polar reconstruction

0.11e-3 rad0.13e-3 rad

Page 31: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Remarks

Options to minimize the margin effect:

1. Rings rotation.

2. Different cylinders segmentation

Maximum pick shower design can enable us to reduce the number of channels while maintaining properties or to improve properties while kipping the same number of channels.

Page 32: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

Pure electron MC

Detector properties

Events selection

‘Real physics’ MC + digitization noise + New max pick design + Margins

Final optimization

‘Real physics’ MC

Bhabha + Beamstrahlung + Beamspread

R&D status & future steps

))(,,),(( EENN

LL High statistics MC for

required precision

410 N

N

Page 33: HEP  Tel Aviv  University

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector

THE END