Hemodynamics and Mechanical Ventilation

68
[email protected] Department of Surgical Sciences and Integrated Diagnostics (DISC) IRCCS San Martino IST University of Genoa, Genoa, Italy Hemodynamics and Mechanical Ventilation Paolo Pelosi

Transcript of Hemodynamics and Mechanical Ventilation

Page 1: Hemodynamics and Mechanical Ventilation

[email protected]

Department of Surgical Sciences

and Integrated Diagnostics (DISC)

IRCCS San Martino IST

University of Genoa, Genoa, Italy

Hemodynamics and

Mechanical Ventilation

Paolo Pelosi

Page 2: Hemodynamics and Mechanical Ventilation

Conflicts of Interest

I declare

NO conflicts of interest

Page 3: Hemodynamics and Mechanical Ventilation

Determinants of Cardiac Output

Page 4: Hemodynamics and Mechanical Ventilation

What should we know for txdecisions ?

• Preload

• Flow

• Flow adequacy

Fluids

Inotrops

Pressors dilators

Treatment !

Page 5: Hemodynamics and Mechanical Ventilation

Preload & Stroke Volume

PRELOAD = RVEDV/LVEDV

(Frank-Starling)

Page 6: Hemodynamics and Mechanical Ventilation
Page 7: Hemodynamics and Mechanical Ventilation
Page 8: Hemodynamics and Mechanical Ventilation
Page 9: Hemodynamics and Mechanical Ventilation
Page 10: Hemodynamics and Mechanical Ventilation

RAP/CVP IS A FUNCTION OF

FOUR INDIPENDENT

PARAMETERS

• Blood volume and flow in the central

veins

• Right ventricular compliance and

contractility during diastolic filling

• Central veins tonus

• Ventricular interactions

• Intrathoracic pressure

Page 11: Hemodynamics and Mechanical Ventilation

• Patient’s posture

• Venus obstruction

• Valvular alterations (stenosis/tricuspidal

insufficiency) and ventricular compliance

• Cardiac rythm and respiratory rate

…….RAP/CVP IS A FUNCTION

OF MANY OTHER FACTORS

Page 12: Hemodynamics and Mechanical Ventilation

HEARTITP

THORAX

V

CAO

RV LV

VENOUS RETURN CURVE

PmS - RAP VR = --------------------

r

Pms

Rap

0

1

2

-4 -2 0 2 4 6 7

Right Atrial Pressure

Ven

ou

s R

etu

rn

P2P1

Page 13: Hemodynamics and Mechanical Ventilation

PAWP

• PAWP LAP - shape(eccentric) of the balloon

- no zone III West

- venous pulmonary occlusion

• LAP LVEDP- stenosis or insufficiency of the mitral valve- tachicardia and premature occlusion of mitral valve- atrial contraction during hypovolemia

• LVEDP LVEDV Compliance variations due to:

- Stiffness of LV

- Pressure around pericardium (effusion, ITP)

- Ventricular interdependence

ZONE_WEST_

1 PA>Pa>Pv_

2 Pa>PA>Pv_

3 Pa>Pv>PA_

Page 14: Hemodynamics and Mechanical Ventilation

• Use transmural filling

pressures !

• CVPTM = CVP - IAP/2

• PAOPTM = PAOP - IAP/2

ITP

CVP PAOP

IAP

Intensive Care Med 2007; 33(1): 6-8

Page 15: Hemodynamics and Mechanical Ventilation

CO determinants

CO

Preload = RVEDV/LVEDV

Afterload

ContractilityFrequency

Page 16: Hemodynamics and Mechanical Ventilation

Intra Thoracic Blood Volume:preload?

ITBV TBV

ITBV

3=

ECHO

Esophageal Doppler

LiDCO

Picco

Vigileo

Page 17: Hemodynamics and Mechanical Ventilation

By the Nepean Institute of Critical Care Education and Research

Page 18: Hemodynamics and Mechanical Ventilation
Page 19: Hemodynamics and Mechanical Ventilation

Vieillard-Baron et al

AJRCCM 168:1270;2003

CO can be preserved even when EF is markedly altered

CO can be altered even when EF is normal (hypovolemia)

Page 20: Hemodynamics and Mechanical Ventilation

CO

PAC PICCO LIDCO*

OEDECHO FICKNICO

Vigileo

Nonivasive

Invasive

Page 21: Hemodynamics and Mechanical Ventilation

SV = VTI x LVOTare a

Me asu re m e n t o f card iac o u tp u t

LVOT=

left ventricular outflow tract

VTI= velocity time integral

Page 22: Hemodynamics and Mechanical Ventilation

Apical 5 chambers

PARASTERNAL LONG AXISMeasurement of cardiac output

Page 23: Hemodynamics and Mechanical Ventilation

Measurement of cardiac output

Ch o lle y B e t al

He m o d y n am ic m o n ito rin g u sin g

e ch o card io grap h y in th e

critically ill

Ed s: De Backe r e t al

Sp rin ge r 2 0 1 1

Page 24: Hemodynamics and Mechanical Ventilation

Hu n tsm an e t al.

Circu latio n 1 9 8 3

Ech o vs Th e rm o d ilu tio n CO m e asu re m e n ts

Page 25: Hemodynamics and Mechanical Ventilation

Le wis JA e t al.

Circu latio n 1 9 8 4

Th e rm o d ilu tio n vs e ch o ( stro ke vo lu m e )

Page 26: Hemodynamics and Mechanical Ventilation

In ter-o bserver variability

Le wis JA e t al.

Circu latio n 1 9 8 4

N = 3 9

Page 27: Hemodynamics and Mechanical Ventilation

CO with echocardiography

Th e p ro s:

• Re liable

• Ad d itio n al m easu rem en ts

(p re ssu re / vo lu m e s)

• Fu ll card iac e valu atio n

• Me asu re m e n t o f SVV

Th e co n s:

• Skills re qu ire d

• Tim e co n su m in g

• In te rm itte n t

Page 28: Hemodynamics and Mechanical Ventilation

PiCCO2®

EV-1000/VolumeViewTM

LiDCOplusTM

Geisen M, et al. Curr Opin Crit Care 2012, 18:377–384

Page 29: Hemodynamics and Mechanical Ventilation

VigileoTM

LiDCOrapidTM

Geisen M, et al. Curr Opin Crit Care 2012, 18:377–384

Page 30: Hemodynamics and Mechanical Ventilation

NICOM®

Nexfin® NICO®ECOM®

Geisen M, et al. Curr Opin Crit Care 2012, 18:377–384

Page 31: Hemodynamics and Mechanical Ventilation

Intermittent Continuous Invasive Limitations Additional

information

PAC + +

(5 -12 min)

+++ Well

described

complication

s

PAP, PCWP,

SVO2

PiCCO + +

(3 sec)

+(+) Specific

arterial

catheter

GEDV,

EVLW, SVV

LiDCO + + + Lithium

injection

SVV

Flotrac +

(20 sec)

(+) SVV

Page 32: Hemodynamics and Mechanical Ventilation

SPONTANEOUS VENTILATION

Inspiration Expiration

- 8 mmHg -2 mmHg

Page 33: Hemodynamics and Mechanical Ventilation

INTRATHORACIC PRESSURE

Page 34: Hemodynamics and Mechanical Ventilation
Page 35: Hemodynamics and Mechanical Ventilation

Effects of Different Ventilatory Modes on

Cardiopulmonary Performance

SPONT. Ass Part. AssTotMofied from

Synder 1984

Page 36: Hemodynamics and Mechanical Ventilation

Pappl

PalvPcp

RH LHITP

abdominal

pressure gut

Pcp

Effects of the increase in ITP : RV pre-load

Pra

Pms

V

R

Pms= driving pressure to the RA

• Changes in ITP will not alter

the (RV afterload) pressure

gradient

• Decrease in VR are due to

increase in Pra because of

increased in pericardial

pressureIncrease in

Pericardial Pressure

LHRH

Page 37: Hemodynamics and Mechanical Ventilation

effects of changes in ITP: LV afterload

PalvPcp

RH LHITP

abdominal

pressure gut

Pcp

Pappl

spontaneous

breath

mechanical

breath

RH LH

Page 38: Hemodynamics and Mechanical Ventilation

effects of changes in ITP: LV afterload

PalvPcp

RH ITP

abdominal

pressure gut

Pcp

Pappl

spontaneous

breath

mechanical

breath

LH

Page 39: Hemodynamics and Mechanical Ventilation
Page 40: Hemodynamics and Mechanical Ventilation

CPAP IN CARDIOGENIC

PULMONARY EDEMA

Rasen et al: Chest 1985; 87: 158-162

Page 41: Hemodynamics and Mechanical Ventilation
Page 42: Hemodynamics and Mechanical Ventilation

EFFECTS OF LUNG VOLUME CHANGES

LOW LUNG

VOLUME

HIGH LUNG

VOLUME

Page 43: Hemodynamics and Mechanical Ventilation

Pappl

PalvPcp

RH LHITP

abdominal

pressure gut

Pcp

• Incresase in PAP

afterload is due to

increase in PA resistance

•Decrease in VR are due

to increase in Pra

because of increased PA

resistance

Effects of the increase in lung volume: RV afterload

and preload

Pra

Pms

V

R

RH LH

Page 44: Hemodynamics and Mechanical Ventilation

EFFECTS OF POSITIVE

INTRATHORACIC PRESSURE

ON VENOUS RETURN

Pulmonary compliance HIGH

(Emphisema)

LOW (ARDS)

Chest wall compliance HIGH

LOW

TAKE HOME MESSAGE

Page 45: Hemodynamics and Mechanical Ventilation

Chest ultrasound in

Acute Respiratory Distress SyndromeCorradi F., Brusasco C., Pelosi P. Curr Opin Crit Care 2014, 20:98–103

Pelosi P., Corradi F. Anesthesiology 117(4):696-698, 2012

Page 46: Hemodynamics and Mechanical Ventilation

Known Variations to Indexes at the Bedside

Biais, Anesthesiology 2012

Why use these Dynamic Indexes?

Page 47: Hemodynamics and Mechanical Ventilation

MECHANICAL VENTILATION

RA RVLV

LA

LUNGS

PA

AOVenous Return

INSPIRATION

C

H

E

S

T

Page 48: Hemodynamics and Mechanical Ventilation

MECHANICAL VENTILATION

RARV

LVLA

LUNGSPA

AOVenous Return

EXPIRATION

C

H

E

S

T

Page 49: Hemodynamics and Mechanical Ventilation

Overall Picture - Inspiration

Broccard, J Clin Monit Comput 2012

Page 50: Hemodynamics and Mechanical Ventilation

Overall Picture - Expiration

Broccard, J Clin Monit Comput 2012

Page 51: Hemodynamics and Mechanical Ventilation

Assessing Fluid Responsiveness by the

Systolic Pressure Variation in Mechanically

Ventilated Patients

Perel A. Anesthesiology 1998

Page 52: Hemodynamics and Mechanical Ventilation

Looking back in 80’s…

Szold, Intensive Care Med 1989

Predict who could be responsive

to volume restoration

Page 53: Hemodynamics and Mechanical Ventilation

P sys MAX

P sys MIN

SV MAXSV MAX

PP MAX

PP MIN

SV = K • A

Page 54: Hemodynamics and Mechanical Ventilation

STROKE VOLUME VARIATION

SVmax – SVmin

SVV =

SVmean

Page 55: Hemodynamics and Mechanical Ventilation

Which Parameter can better recognize it?

+ -+

-

SVV > 10%

SVV < 10%

+ -+

-

PPV > 15%

PPV < 15%

Michard, Chest 2002

Page 56: Hemodynamics and Mechanical Ventilation

Which Parameter can better recognize it?

Michard, Chest 2002

Page 57: Hemodynamics and Mechanical Ventilation

LOW HIGHMEDIUM

R I S K

Pulse oximeter / capnometry

Plethysmography variability

Arterial catheter / PPV

Pulse contour CO

PAC

ScvO2

Transesophageal Doppler

Indicator dilution CO

Page 58: Hemodynamics and Mechanical Ventilation

Limitations of functional hemodynamic parameters

- Spontaneous breathing

- Tidal volume should be 8 ml/kg

- Nonstandardized airway pressure/respiratory rate

- Open-chest conditions may affect the FHP

- Pediatric patients

- Nonsinus rithm

- Right heart failure

Page 59: Hemodynamics and Mechanical Ventilation

PPV/SVV – Dynamic Arterial ElastanceP

ress

ure

Volume

PPV=18.6%

PPV=27%

PPV/SVV=1.03

Eadyn

PPV/SVV=1.5

Eadyn’

Giraud, Crit Care 2011

Page 60: Hemodynamics and Mechanical Ventilation

Cuttoff

Values?

Page 61: Hemodynamics and Mechanical Ventilation

Monge-Garcia, Crit Care 2011

PPV/SVV – Dynamic Arterial Elastance

0,89

Page 62: Hemodynamics and Mechanical Ventilation

Arterial catheter

Central venous catheter

Fluid Responsiveness

(FHP – CVP)

ECHO

present

Hypovolemia likely

Fluid challange

absent

Small chambers

Poor contractile state

Valvulopathy

(cardiogenic)

RV dilatation

Tamponade

Page 63: Hemodynamics and Mechanical Ventilation

Physiological background

SatvO2= SataO2 -VO2 (mL/min)

Q (L/min)

1

Hb (gr/L) * 1.39*

SatvO2 = metabolism

hemodynamic

1

carrier*Lung -

Page 64: Hemodynamics and Mechanical Ventilation

Venous PO2

PvCO2

SatvO2

Base excessv

Reflects the tissue oxygenation

Reflects

Assessment of metabolic status

(always different from the

arterial)

Venous blood

the arterial PaCO2

the tissue acidosis

Reflects SataO2, VO2/Q, Hb

Page 65: Hemodynamics and Mechanical Ventilation

Venous-arterial sampling

It allows

The shunt computation

a-vO2 difference

(Sata – Satv)/Sata

PCO2

PCO2/a-vO2 content

LACTATE !

Page 66: Hemodynamics and Mechanical Ventilation

Venous-Arterial blood gases allow to:

Define the oxygenation status

(PaO2-Shunt (not replaceable))

Define the ventilatory status

Infere on the hemodynamic status

(a-vO2, SatvO2, (SataO2 – SatvO2)/SataO2 (not

replaceable))

Define the energy failure – BE, pH, PCO2/a-vO2

Page 67: Hemodynamics and Mechanical Ventilation

HIGH LOW

SVO2

HIGH

HIGH LOW

SVO2

LOW

CO

Diagnostic process

Heart failure ( PAOP)

Hypovolemia ( PAOP)

Obstruction ( PAP)

Hyperd. States

vasoact agents

Hypervolemia

Hypoxiemia (SaO2 )

Anemia (SaO2 = V02 =)

Exercise (SaO2 = V02 )

Low anesthesia level

Stress (SaO2 = V02 )

Deep anaesthesia

(V02 )

Hypothermia V02 )

Sepsi ( V02 )

SVO2 = SaO2 – VO2/Q * 1/(1.36*Hb) Fick equation

SVO2 = LUNG - METABOLISM/HEMODYNAMIC * 1/ANEMIA

Page 68: Hemodynamics and Mechanical Ventilation

Conclusions

Preload, flow and flow adequacy

Non invasive and Invasive methods

(Echo and other Methods)

Ventilatory assist affects hemodynamics

Flow adequacy: consider ScvO2 and

Lactate