hematology.wustl.edu/conferences/presentations/dip... ...

26
Nature 414: 98, 2001 Stem cells find their niche ALLAN SPRADLING, DANIELA DRUMMOND-BARBOSA & TOSHIE KAI

Transcript of hematology.wustl.edu/conferences/presentations/dip... ...

Page 1: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Stem cells find their niche

ALLAN SPRADLING, DANIELA DRUMMOND-BARBOSA & TOSHIE KAI

Page 2: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Concept of Niches

Stable custom environment for stem cells

Niches are subsets of tissues and extracellular subsets that can indefinitelyhouse one or more stem cells and control their self-renewal and progeny production in vivo

Many niches have one or more specialized cell groups like the skin, GI tract

Extracellular matrix and adhesion molecules (basement membrane) may help securethe niches spacially and may modulate the concentration of adhesiveand other signalling molecules

Page 3: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Figure 1 Niche structure. Niche cells (green) underlying a basement membrane signal to stem cells (red) to block differentiation and regulate division. When a lineage mechanism prevails (lower mitotic cell), the stem cell divides such that one daughter retains its connections to the niche, while the other (yellow) becomes untethered and begins to differentiate. When a population mechanism prevails (upper mitotic cell), stem cell division may be either symmetric (shown) or asymmetric (not shown), as determined by local factors. ECM, extracellular matrix.

Page 4: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Figure 2 Manipulating niches. a, Replacement assay to identify niches. Labelled stem cells (blue) are introduced into a tissue. If one or more of the introduced cells becomes associated stably with a particular tissue region and subsequently functions as a stem cell, then the existence and location of a stem cell niche (green) is inferred. b, Cell marking experiments. Marking a single stem cell in vivo (blue), and following the number and location of marked progeny cells reveals its regulatory behaviour. When the stem cell follows a lineage mechanism, the number of labelled stem cells remains relatively constant over many stem cell cycles. When the initially labelled stem cell follows a population mechanism (bottom), initially mosaic niches will sort out stochastically into niches that have all labelled or all unlabelled cells.

Page 5: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Figure 3 Male germ cell niches. a, A cross-section of part of a seminiferous tubule of a mouse testis is shown to illustrate the approximate location and properties of the mammalian germline stem cell niche. The stem cells also known as Asingle (As) cells (red) constitute a minority of the basal germ cells in contact with the basement membrane

(green). Most other basal cells (yellow) are part of growing germ cell cysts, whose members are interconnected by ring canals. As development proceeds, the cysts leave the basement membrane and move in a highly ordered manner towards the lumen of the tubule (top). All developing germ cells are surrounded by Sertoli cells (green). It is not known whether the region of the Sertoli cell or basement membrane near the stem cells are specialized (dark green). b, A sagittal section of the distal tip of the Drosophila testis is drawn schematically and leaves out most of the cells for clarity. The hub cells (green) are attached to 5–9 groups comprising one germline stem cell and two cyst progenitor stem cells (red). The basement membrane (green) may be thinner and specialized (dark green) near the hub. Germline stem cell daughters called gonialblasts are encased by two cyst cells, begin to differentiate, and move posteriorly away from the hub. After four more divisions, the cyst cells (yellow) cease division and synchronously enter meiosis.

Page 6: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Figure 5 Epithelial stem cell niches. a, Mammalian epidermal stem cells. A hair follicle and a segment of adjacent skin is illustrated. The dermal papilla (DP) signals to matrix stem cells (red) located across a basement membrane (green). Matrix cell daughters (yellow) differentiate into a variety of cell types, including the medulla, cortex and cuticle of the hair shaft (brown), the inner root sheath (IRS) and the outer root sheath (ORS). About two-thirds of the way up an anagen follicle lies the bulge — an expanded region that contains long-term stem cells (red). These cells periodically replenish (arrows) the matrix cells, and also help maintain the sebaceous gland (SG) and the epidermal stem cells (red, top layer) that lie against the basement membrane (not shown) overlying the basal layer in interfollicular regions. b, A mammalian gut crypt is a tube of cells arrayed on a basement membrane (green). Stem cells (red) are located in the basal region along with Paneth cells, but their exact location is variable and both types account for only a fraction of the cells present in the regions shown. A portion of the basement membrane in the stem cell region may be specialized (dark green). Stem cell progeny (yellow) known as transit amplifying cells (TA) move upwards and differentiate.

Underlying mesenchymal cells (green) send signals that help regulate stem cell activity.

Dermal papilla produce FGF-7, BMP-4, KGF

Inner root sheath

Outer root sheath transit amplifying cells

Page 7: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

hsc

msc

osetoid osteoblasts

Blood cells

Role of osteoblasts and hematopoiesis

Osteobalst output 0.01% of blood cells (350 bill/day)

Stromal cell cultures express OB markersOB express hematopoietic cytokines

Page 8: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

               

Page 9: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Bmpr1a/b signaling: negative on osteoblasts,MSC proliferation

Bmpr1a -/- embryonic lethal with major defects in blood formation

Authors use conditional KO of Bmpr1a:

Mating Bmpr1a fx/fx with Mx1-Cre (poly IC induction)

Also used triple genotype mice bearing Mx1-Cre, Bmpr1a fx/fx, and Z/EG alleles

Page 10: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Page 11: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

STLT

Due to decreased BM cavity

Transplanted (2 x 103) with WT (ly 5.1) into control vsBrmp1a mutants

Transplanted (2 x 103) with Brmp1a (ly 5.2) into control vsWT recipients (ly5.1) It is the microenvironment

In competitive repop studies using whole BM, Bmpr1a wins out 2:1 (data not shown)

Page 12: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

TBLA

Page 13: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Poly IC induction

Page 14: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Page 15: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Triple geneotype mice (correct targeting to Bmpr1a region)

Page 16: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Page 17: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

# N-Cadherin+Osteoblasts(per section)

78%

33%

Page 18: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001SNO: spindle shpaed osteoblast N-cathedrin+ cells

Page 19: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Possible mechanisms

Intrinsic changes in stem cells that either promote self renewal or decreased apoptosis

Internal defect in differentation

External influence of microenvironment****

Wild type to Bmpr1a transplantation (3 mo 1.6-2.0 x WT donor)Ectopic Trabecular bone-like areaIncreased # of HSCs in TBLANo differnce in MSC per femur (data not shown)10X increased bone volume3 x # osteoblastsSame # osteoclasts

Page 20: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Osteoblastic cells regulate the haematopoietic stem cell niche

L. M. CALVI1,*, G. B. ADAMS3,*, K. W. WEIBRECHT3, J. M. WEBER1, D. P. OLSON3, M. C. KNIGHT4, R. P. MARTIN3, E. SCHIPANI4, P. DIVIETI4, F. R. BRINGHURST4,

L. A. MILNER2, H. M. KRONENBERG4 & D. T. SCADDEN3

Nature 425:841

Page 21: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Figure 1

Nature 425:841

BMT-male PTH+inreased aAbility to reconstitute female WTBy real time DNA PCR for Y

Page 22: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001Figure 2

Nature 425:841

Stromal cells from from tg (n=6)And wt (n=6) improves supportOf LTC-IC..no CFU data

Increased Jag-1 in tg Increased jag/osteopontin

Increased NICDIn tg lin-Sca+c-Kit+

HSC expansion mediatedBy stromal cells

Gamma-secretase of notch

Page 23: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Figure 3

Nature 425:841

When WT stroma is grown in the presence of PTH, the Effect same as tg stromaNo effect of PTH alone

Increased # alk phos OB

Effect blocked byGamma-secretaseinhibitor

Page 24: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001Figure 4a

Nature 425:841

PTH was administered for one month prior to myeloablativeBMT and animals were given limiting numbers of donor stem cells

Page 25: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001

Figure 4b-e

Nature 425:841

Histology 4 weeksPost-transplant

Page 26: hematology.wustl.edu/conferences/presentations/dip...  hematology.wustl.edu/conferences/presentations/dip...

Nature 414: 98, 2001Nature 425:778

Figure 1 Birth control for stem cells. The niche that regulates the birth and differentiation of blood-forming (haematopoietic) stem cells is formed of osteoblasts (a type of bone-marrow cell) that line the inner surface of bone. Zhang et al.7 showed that depleting osteoblasts of a receptor for bone morphogenetic protein (BMP) caused a doubling in both the osteoblast population and the stem-cell population. Calvi et al.8 found a parallel expansion of the stem-cell population when they increased the numbers of osteoblasts by using parathyroid hormone (PTH).

Lemischka et al Nature 425: 778, 2003