Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

download Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

of 14

Transcript of Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    1/14

    H E D G I N G B Y S E Q U E N T I A L R E G R E S S IO N : A N I N T R O D U C T I O N T OT H E M A T H E M A T I C S O F O P T I O N T R A D I N G

    BY H . FOLLMER a n d M . SCHW EIZERETH Ziirich

    1. INTRODUCTIONI t i s w i d e l y a c k n o w l e d g e t h a t t h e r e h a s b e e n a m a j o r b r e a k t h r o u g h i n t h em a t h e m a t i c a l t h e o r y o f o p t i o n t r a d i n g . T h i s b r e a k t h r o u g h , w h i c h is u s u a l ly s u m -m a r i z e d b y t he B l a c k - S c h o l e s f o r m u l a , h a s g e n e r a t e d a l ot o f e x c i te m e n t a n d ac e r t a i n m y s t i q u e . O n t h e m a t h e m a t i c a l s i d e , i t i n v o l v e s a d v a n c e d p r o b a b i l i s t i ct e c h n i q u e s f r o m m a r t i n g a l e t h e o r y a n d s t o c h a s t i c c a l c u l u s w h i c h a r e a c c e s s i b l eo n l y t o a s m a l l g r o u p o f e x p e r t s w i t h a h i g h d e g r e e o f m a t h e m a t i c a l s o p h i s t i -c a t io n ; h e n c e th e m y s t iq u e . I n i ts p r a c t i c a l imp l ic a t io n s i t o f f e r s e x c i tin g p r o s p e c t s .I t s p r o m i s e i s t h a t , b y a s u i t a b l e c h o i c e o f a t r a d i n g s t r a t e g y , t h e r i s k i n v o l v e di n h a n d l i n g a n o p t i o n c a n b e e l i m i n a t e d c o m p l e t e l y .

    S i n c e O c t o b e r 1 9 8 7 , t h e m o o d h a s b e c o m e m o r e s o b e r . B u t t h e r e a r e a l s om a t h e m a t i c a l r e a s o n s w h i c h s u g g e st t h a t e x p e c t a t i o n s s h o u l d b e l o w e r e d . T h i sw i ll b e t h e m a i n p o i n t o f t h e p r e se n t e x p o s i t o r y a c c o u n t . W e a r g u e t h a t , t y p i c a l l y ,th e r i sk in v o lv e d in h a n d l in g a n o p t io n h a s a n i r r e d u c ib le in t r in sic p a r t . Th i s in t r in -s ic ri s k m a y b e m u c h s m a l l e r t h a n t h e a priori r i s k , b u t i n g e n e r a l o n e s h o u l d n o te x p e c t it t o v a n i s h c o m p l e t e l y . I n t h i s m o r e s o b e r p e r s p e c t i v e , t h e m a t h e m a t i c a lt e c h n iq u e b e h i n d t h e B l a c k - S c h o l e s f o r m u l a d o e s n o t l o se a n y o f it s i m p o r t a n c e .I n f a c t , i t s h o u ld b e s e e n a s a s e q u e n t ia l r e g r e s s io n s c h e me wh o s e p u r p o s e i s tor e d u c e t h e a priori r i s k to i t s in t r in s ic c o r e .

    W e b e gi n w i th a s h o r t i n t ro d u c t i o n t o t h e B l a c k - S c h o l e s f o r m u l a i n t e r m s o fc u r r e n c y o p t i o n s . T h e n w e ci ev e lo p a g e n e r a l r e g r e s s io n s c h e m e i n d i sc r e te t i m e ,f ir st i n a n e l e m e n t a r y t w o - p e r i o d m o d e l , a n d t h e n i n a m u l t i p e r i o d m o d e l w h i c hi n v o lv e s m a r t i n g a l e c o n s i d e r a t i o n s a n d s e ts th e s t a g e f o r e x te n s i o n s t o c o n t i n u o u st im e . O u r m e t h o d is b a s e d o n t h e i n t e r p r e t a t io n a n d e x t e n s io n o f t h eB l a c k - S c h o l e s f o r m u l a i n t e r m s o f m a r t i n g a l e t h e o r y . T h i s w a s in i ti a te d b y K r e p sa n d H a r r i s o n ; s e e , e .g . th e e x c e ll e n t s u r v e y o f HARRISON a n d PLI SKA ( 1 9 81 , 1 9 8 3) .T h e i d e a o f e m b e d d i n g t h e B l a c k - S c h o l e s a p p r o a c h i n to a s e q u e n ti a l r e g re s s io ns c h em e g o e s b a c k t o j o in t w o r k o f t h e f ir st a u t h o r w i t h D . S o n d e r m a n n . I n co n -t i n u o u s t i m e a n d u n d e r m a r t i n g a l e a s s u m p t i o n s , t h is w a s w o r k e d o u t i nSCHWEIZER (1984) a nd FOLLMER an d SONDERMA NN (1986) . SCHWEIZER (1988)d e a l s w i t h t h e s e p r o b l e m s i n a g e n e r a l s e m i m a r t i n g a l e m o d e l .

    T h e p r e s e n t p a p e r i s a w r i t t e n v e r s i o n , w i t h s o m e e x t e n s i o n s , o f a n e x p o s i t o r yt a l k g i v e n a t t h e a n n u a l m e e t i n g o f t h e V e r e i n i g u n g S c h w e i z e r i s c h e r V e r -s i c h e r u n s m a t h e m a t i k e r i n S e p t e m b e r 1 98 7. A s in t h e t a l k , o u r p u r p o s e is t o p r o -v i de a n e le m e n t a r y i n t r o d u c t i o n t o s o m e k e y f e a t u re s o f t h e m a t h e m a t i c a l t h e o r yo f o p t i o n p r i c i n g , w i t h s p e c ia l e m p h a s i s o n t h e u s e o f l in e a r r e g r e s s io n .A ST I N B ULLETIN, VoI . 19 , S

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    2/14

    30 FOLLMER AND SCHWEIZER2. FROM HUYGENS AND BERNOULLI TO THE FORMULA OF BLACK AND SCHOLES

    C o n s i d e r a c a l l o p t i o n o n U S d o l l a r s a g a i n s t S w i s s f r a n c s . T h i s o p t i o n g i v e s t h er i gh t t o buy a spec i f i ed amoun t o f do l l a r s , s ay $100 , a t a spec i f i ed t ime T a t ap r e d e t e r m i n e d e x c h a n g e r a t e K . I f Xt deno t e s t he exchange r a t e , i . e . t he va luei n S F R o f $ 1 0 0 a t ti m e t E [ 0 , T ] , t h e n t h e v a l u e Vr o f t h e o p t i o n a t t h e t e r m i n a l

    " t i rne T wi l l beH = ( X r _ K ) + . [ 0 X r - K i f X r ~ > Ko t h e r w i s e .

    I t is n o w n a t u r a l t o a s k " W h a t i s a f a i r p ri c e f o r t h is o p t i o n ? I n o t h e r w o r d s : W h a tis the va lue Vo o f t he op t i on a t t he i n i t i al t im e 0 when t he f i na l ou t co m e H i s s ti llu n c e r t a i n ?U n t i l 1 9 73 , w h e n t h e f u n d a m e n t a l p a p e r s o f B L A C K a n d S C HO L ES ( 1 97 3 ) a n dM E R TO N ( 1 97 3 ) a p p e a r e d , t h e r e s e e m e d t o b e a n o b v i o u s a n s w e r . T h i s a n s w e rcou ld have been g iven a l r ea dy by CH R. HUYGENS ( 1657 ) and BERNOULLI ( 1713 ).T o b e g i n w i th , t h e e x c h a n g e r a t e X r a n d , c o n s e q u e n t l y , t h e r e t u r n H o f th eo p t i o n s h o u l d b e v i e w e d a s r a n d o m v a r i a b l e s o n s o m e p r o b a b i l i t y s p a c e ( f] , 0~-, P )w h i c h d e s c r i b e s t h e p o s s i b l e t i m e e v o l u t i o n s o f t h e e x c h a n g e r a t e a n d t h e i rr e spec t ive p r obab i l i t i e s . G iven such a s t ochas t i c m ode l , t h e f a i r p r i c e o f t heo p t i o n s h o u l d b e e q u a l t o t h e e x p e c t e d v a l u e E [ H ] o f t h e r a n d o m v a r i a b l e H :(2 .1) Vo = E[ H] .O n e c o u l d t h i n k o f se v e r a l m o d i f i c a ti o n s . F o r e x a m p l e , o n e c o u l d t a k e i n t oaccoun t an i n t e r e s t r a t e r and r ep l ace ( 2 .1 ) by

    1(2.2) V0 = ~ " E [ H ] .l + rA l s o , t h e p r i c e c o u l d i n c l u d e a r i s k p r e m i u m , a n d i t w o u l d s e e m r e a s o n a b l e t oc o m p u t e s u c h a p r e m i u m in te r m s o f t h e v a ri a n c e V a r [ H ] o f t h e r a n d o m v a r ia b l eH , s i n c e t h i s v a r i a n c e w o u l d a p p e a r t o b e a n a t u r a l m e a s u r e o f t h e r i s k i n v o l v e di n h a n d l i n g t h e o p t i o n . I n e s s e n c e , h o w e v e r , t h e p r o b l e m w o u l d h a v e s e e m e d t ob e r e d u c e d t o t h e c h o i ce o f a s u it a b l e p r o b a b i l i t y m e a s u r e P .S u c h a p r o b a b i l i t y m e a s u r e P o n t h e s p a c e f~ o f a l l c o n t i n u o u s t i m e e v o l u t i o n so~: [ 0 ,1 ] ~ R w as p r o po sed i n 1900 by Bache l i e r i n h is t he si s ' T h6o r i e de l aS p 6 c u l a t i o n ' ; a r i g o r o u s c o n s t r u c t i o n w a s g iv e b y W i e n e r i n 1 9 23 . U n d e r t h isW iene r m easu r e P , t he s t ochas t i c p r oces s X / ( ~ , ) := o~ ( t) ( 0 ~< t ~ T ) b ehav es l i kea B r o w n i a n m o t i o n . T h i s s t o c h a s t i c m o d e l h a s t u r n e d o u t t o b e o f b a s i c i m p o r -t a n c e , n o t o n l y f o r i t s f u n d a m e n t a l c o n n e c t i o n t o p h y s i c s , b u t a l s o o n p u r e l ym a t h e m a t i c a l g r o u n d s . I t i s , f o r e x a m p l e , t h e n a t u r a l r e f e r e n c e m o d e l f o r f u n c -t i ona l v e r s i o n s o f t h e c en t r a l li m i t t h e o r e m .

    I n v i e w o f a p p l i c a t i o n s t o t h e s t o c k m a r k e t o n e m i g h t w a n t t o u s e a m o d i f i e dv e r s io n . F o r e x a m p l e , S A M UE LS O N ( 19 6 4 ) h a s p r o p o s e d t o m o d e l t h e s t o c h a s t i cp r oces s X t ( 0 ~< t ~< T ) a s t he so lu t i on o f a s t och as t i c d i f f e r en t i a l e qu a t i on(2 .3) d Xt = o . Xt dBt + # " Xt dt

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    3/14

    HEDGING BY SEQUENTIAL REGRESSION 31w h e r e ( B t ) is a B r o w n i a n m o t i o n . H e r e t~ " X t d t i s a t r e n d f o r e c a s t w i t h d r i f tp a r a m e t e r t ~ , a n d o . X t d Bt is a r a n d o m f l u c t u a t i o n w i t h v o l a t il i t y p a r a m e t e r o .S u p p o s e n o w t h a t w e a cc e p t ( 2 .3 ) a s a m a t h e m a t i c a l m o d e l f o r t h e s t o c h a s t i c ti m ee v o l u t i o n o f o u r e x c h a n g e r a t e X t ( 0 ~< t ~< T ) . I n t h i s m o d e l , t h e r a n d o mv a r i a b l e X r h a s a lo g - n o r m a l d i s t r ib u t i o n , a n d t h e H u y g e n s - B e r n o u l l i p r e s c r ip -t i o n ( 2 . 1 ) w o u l d l e a d t o f o r m u l a( 2 . 4 )

    V o = E [ H ]= I2 ~ ( o . , f T . + ( t ~ - ~ tr 2 ) T ) - K ) e x p ( - - ~ ) d u .2 ( o e x , u ' +

    B u t i n t h e s a m e m o d e l ( 2 . 3 ) , t h e B l a c k - S c h o l e s f o r m u l a g i v e s a q u i t e d i f f e r e n ta n s w e r . I t te ll s y o u t h a t t h e d r i f t p a r a m e t e r tz is c o m p l e t e l y i r r e le v a n t , t h a t y o um i g h t a s w e l l r e p la c e P b y t h e m e a s u r e P * c o r r e s p o n d i n g t o tz * = 0 w h i c h m a k e st h e e x c h a n g e r a t e b e h a v e l i k e a f a i r g a m e , a n d t h a t t h e f a i r p r i c e o f t h e o p t i o ns h o u l d b e c o m p u t e d a s t h e e x p e c t e d v a l u e o f H i n t h i s n e w m o d e l , e v e n t h o u g ht h e e x p e r t s ' f o r e c a s t is g i v e n b y P a n d n o t b y P * :( 2 . 5 )

    V o = E * [ H ]1 " I ~ ( ( " ~ )= 2 ~ X o " e x p (t r. 4 ~ . u - l " tr2 " T ) - K ) + e xp - d u

    = X o o ' , , ~ " l o g - ~ - - K ' , I , o -~ fT " lo g K - 2 'w h e r e ~ d e n o t e s t h e c u m u l a t i v e d i s tr i b u t io n f u n c t i o n o f a s ta n d a r d n o r m a ld i s t r i b u t i o n N ( 0 , 1 ). A l s o , i t i s c l a i m e d t h a t t h e r e i s a t r a d i n g s t r a t e g y w h i c h r e -q u i r e s t h e i n i ti a l i n v e s t m e n t V 0 = E * [ H ] a n d t h e n d u p l i c a t e s t h e c o n t i n g e n t c l a i mH ( ~ ) w i t h o u t a n y a d d i t i o n a l c o s t , n o m a t t e r w h i c h t i m e e v o l u t i o n 0 E f l i s r e a l-i ze d b y t h e r a n d o m m e c h a n i s m d e s c r i b e d b y P . I n p a r t ic u l a r , t h e r e is n o r e a s o nt o m o d i f y t h e f a ir p ri c e V o = E * [ H ] b y a r is k p r e m i u m .

    I f w e i n c l u d e i n t e r e s t r a t e s i n t h e m o d e l , t h e n ( 2 . 5 ) i s r e p l a c e d b y( 2 . 6 ) Vo = E *[ ( X r - K . e - " 7")+ ]

    = X o ~ ( o 1 " ( l o g X o 1

    - - K - e - # ' r - o ( - o 1 - ( l o g X o 1

    H e r e 0 d e n o t e s t h e c o n t i n u o u s l y c o m p o u n d e d r a t e o f r e t u r n o n a S w i s s f r a n ca c c o u n t .

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    4/14

    32 FOLLMER AND SCHWEIZER

    A r igorous mathemati cal justification of this counter-intuitive prescription in-volves rather advanced tools, e.g. the Cameron-Martin-Maruyama-Girsanovformula an d a deep representa tion theorem of K. ITt3 (1951). This explains someof the mystique around the Black-Scholes formula. But from an economic pointof view, its crucial feature can already be explained in a very elementary settingwhich does not require any mathe matical sophistication. To this end, we employthe well-known didactic device of using an example with binary structure.Suppose that the current exchange rate is given by X0 = 135. Consider a callopt ion with a strike of K = 145 at time T. We assume the following binaryscenario: the exchange rate at time T will be 175 with prob abil ity p or 80 withprobabilit y 1 - p. Correspon dingly, the return H of the opt ion will be 30 withprobab ility p and 0 with proba bility 1 - p. Taking into account an interest rater, the Huygens-Bernoulli prescription (2.2) would compute the fair price of theoption as(2.7) Vo = - 1'---~" p" 30;for p = 0.5 and r = 0.05 we would get V0 = 14.3. The Black-Scho les prescr iption,however, wou ld be the following. First replace p by p* so that the exchange rate,properly discounted, behaves like a fair game:

    or, more explicitly,, r x r lXo-- Ll+rJ

    1135 = l + r ( p * . 1 7 5 + ( 1 - p * ) - 8 0 ) .Now comput e the fair price as the expected value of the return H, properly dis-counted, in this new model:

    E*[ H ] 1 .p *. 30 ;Vo= Ll+r j= l+rfor r = 0.05 we would get p * = 0.65 and V0 = 18.6.

    At first sight, this change of the model seems completely arbitrary, just as inthe more int ricat e model above. But in the present simple case we can give a directeconomic justification. Suppose that at time 0 you sell the opti on. Then you canprepare for the resulting contingent claim at time T by using the followingstrategy:

    Sell the option at the Black-Scholes price 18.6Buy $31.6 at the present exchange rate of 1.35Take a loan of SFR 24.1 with interest ra te r = 0.05

    + 18.6- 42.7+24.1

    0

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    5/14

    HEDGING BY SEQUENTIAL REGRESSION 33T h u s , t h e b a l a n c e a t t i m e 0 is 0 . A t t i m e T w e h a v e t o d i s t i n g u i s h t w o c a s e s :

    ( i ) T h e d o l l a r h a s r i s e n : O p t i o n is e x e r ci z ed - 3 0Se l l do l l a r s a t 1 . 75 + 55 . 3P a y b a c k l o a n w i t h i n te r e s t - 2 5 . 3

    0( ii ) T h e d o l l a r h a s f a l l e n : O p t i o n e x p i r e s 0

    S e l l d o l l a r s a t 0 . 8 0 + 2 5 . 3P a y b a c k l o a n w i t h i n te r e s t - 2 5 . 3

    0T h i s d e m o n s t r a t e s t h a t t h e B l a c k - S c h o l e s p r ic e 1 8 .6 is j u s t t h e r i g h t a m o u n tw h i c h is n e e d e d i n o r d e r to h e d g e t h e o p t i o n w i t h o u t a n y r i sk . A n y o p t i o n p r i c ed i f fe r e n t f r o m t h e B l a c k - S c h o l e s p r ic e w o u l d e n a b l e e i th e r th e o p t i o n s e ll er o rt h e o p t i o n b u y e r to m a k e a s u r e p r o f it w i t h o u t a n y r i sk : T h e r e w o u l d b e a na r b i t r a g e o p p o r t u n i t y .

    I n th e n e x t s e c ti o n , w e e x p l a in h o w t h e c o r r e ct h e d g i n g s t r a t e g y c a n b e f o u n di n a s y s t e m a t i c w a y . I n t h e p r e c e d i n g e x a m p l e i t i s c l e a r t h a t t h e m o d e l is t o os i m p l i s t ic : t h e r e i s n o r e a s o n t o r e s t r ic t o u r a t t e n t i o n t o a b i n a r y s c e n a r i o .T h e r e f o r e , w e a r e g o i n g t o a d m i t m o r e g e n e r a l m o d e l s . B u t t h is w i ll fo r c e u s tol o w e r o u r e x p e c t a t i o n s t o a m o r e r e a l is t i c l e v el . I n f a c t , t h e s i t u a t i o n b e c o m e s l e s sp l e a s a n t a s s o o n a s w e a d m i t a t h i r d p o s s i b i l i t y f o r t h e v a l u e o f X r : I t is n o l o n g e rp o s s i b l e t o r e d u c e t h e r i s k t o 0 .

    F r o m t h e p o i n t o f v ie w o f th e c o n t i n u o u s - t i m e m o d e l ( 2 .3 ) , a b i n a r y s i tu a t i o na s a b o v e s h o u l d o n l y s er v e as a n i n f in i t e si m a l b u i ld i n g s t o n e a n d n o t b e t a k e ns e r i o u s ly in i ts e lf . B u t a ls o o n t h e m a t h e m a t i c a l l y m u c h m o r e a d v a n c e d l ev e l ( 2 .3 )t h e r e a re g o o d r e a s o n s t o b e li e v e t h a t t h e m o d e l , a n d i n p a r t ic u l a r i t s p r o m i s e o fr i s k - f re e o p t i o n t r a d i n g , i s t o o n i c e t o b e r e a l i s t ic .

    3. HEDG ING IN A TWO-P ERIOD MODEL: AN EXERCISE IN LINEAR REGRESSIONL e t u s f ir s t c o n s i d e r a s i m p l e t w o - p e r i o d m o d e l w h e r e t h e e x c h a n g e r a t e s X k a tt h e i n i t ia l t i m e k = 0 a n d t h e t e r m i n a l t i m e k = 1 a r e r a n d o m v a r i a b l e s o n s o m ep r o b a b i l i t y s p a c e (f ~, ,~ , P ) . A t t i m e 0 t h e e x c h a n g e r a t e X o is k n o w n a n d c a n b et r e a t e d a s a c o n s t a n t , i . e. w e a s s u m e t h a t P [Xo = x 0 ] = 1 f o r s o m e x 0 > 0 . T h eo p t i o n , o r r a t h e r t h e r e s u l t in g c o n t i n g e n t c l a i m a t ti m e 1 , i s d e s c r i b e d b y a r a n -d o m v a r i a b l e H d e f in e d o n t h e s a m e p r o b a b i l i t y sp a c e . F o r a c a ll o p t i o n w i t h as t r ik e o f K , w e w o u l d h a v e H = (X ~ - K ) + . T o k e e p th e e x p o s i t i o n a s s i m p le a sp o s s i b l e , w e l e a v e i n t e r e s t r a t e s a s i d e f o r t h e m o m e n t .

    L e t u s n o w a s s u m e t h a t w e h a v e s o ld t h e o p t i o n . A t t i m e 1 w e w i ll h a v e t o p a yt h e r a n d o m a m o u n t H ( o~ ). W e s h o u l d l ik e to i n s u r e o u r s e lv e s a g a i n s t t h is e v e nt ;w e w a n t t o hedge t h e o p t i o n . T o t h is e n d , w e b u y 1 0 0 . ~ d o l l a r s a n d p u t a s i d e

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    6/14

    3 4 FOLLMER AND SCHWE1ZERTo S w i s s f r a n c s . T h i s i n i t i a l p o r t f o l i o a t t i m e 0 h a s t h e v a l u e(3. I) Vo = 6" Xo + T/o.A t t h e t e r m i n a l t i m e 1 , w e w a n t a p o r t f o l i o w h o s e v a l u e i s e x a c t l y e q u a l t o H .T h e v a l u e o f t h e d o l l a r a c c o u n t w i ll b e 6 " X t , a n d i f w e t h e n a d j u s t t h e S w i ssf r a n c a c c o u n t f r o m ~/o t o 7/~ = H - 6 " X ~ , t h e v a l u e(3 .2) VI = ~- X l + v /lo f t h e r e s u l ti n g p o r t f o l i o a t t im e 1 w i ll sa t i s f y o u r c o n d i t i o n(3 .3) V1 = H .F o r a g i v e n H , s u c h a s t r a t e g y w il l b e d e t e r m i n e d b y o u r i n i t ia l c h o i c e o f t h e c o n -s t a n t s 6 a n d V o.

    L e t u s e x a m i n e t h e c o s t s i n d u c e d b y s u c h a s t r a t e g y ( 6, V o ) . I f C k d e n o t e s t h ec u m u l a t i v e c o s t u p t o t i m e k , t h e n w e h a v e(3 .4) Co = Vo,a n d t h e a d d i t i o n a l c o s t d u e t o o u r a d j u s t m e n t o f t h e S w i s s f r a n c a c c o u n t a t t i m e1 i s g i v e n b y( 3 . 5 ) C i - Co = ~l - v/o

    = - 6 " - ( V o - X o )= V ~ - V o - 6 . A X

    w h e r e w e p u t A X . '= - X ~ - X o . L e t u s n o w c h o o s e o u r t r a d i n g s t r a t e g y ( 6, V o ) i ns u c h a w a y t h a t t h e r e m a i n i n g r i s k a t t im e 0 , m e a s u r e d b y t h e e x p ec t e d q u a d r a t i cCOSt( 3 . 6 ) R : = E [ (C ~ - C o ) 2 ]

    = E [ ( H - Vo - 6 " A X ) 2 ] ,is m i n i m i z e d . T h i s is , o f c o u r s e, a w e l l - k n o w n p r o b l e m : w e a re s i m p l y l o o k i n gf o r t h e b es t l i n e a r e s t i m a t e o f H b a s e d o n A X . T h u s , t h e o p t i m a l c o n s t a n t s 6 a n dV o a r e g i v e n b y(3 .7) 6 =a n d( 3 . 8 )

    C o y ( H , A X ) = C o y ( H , X t )V a r [ A X ] V a r [ X ~ ]

    It"o = E [ H ] - 6 " E [ A X ] .T h i s o p t i m a l v a l u e V0 o f t h e i n i ti a l p o r t f o l i o m a y b e r e g a r d e d a s a f a i r p r i c e o ft h e o p t i o n . I n p a r t i c u l a r w e o b t a i n t h e c o n d i t i o n(3.9 ) Co = E [ C~ ] .T h i s m e a n s t h a t t h e o p t i m a l s t r a t e g y i s m e a n - s e l f - f i n a n c i n g : o n c e w e h a v e d e t e r -m i n e d t h e i n i t i a l v a l u e V o = C o , t h e a d d i t i o n a l c o s t C~ - C o i s a r a n d o m v a r i a b l ew i t h e x p e c t a ti o n E [ C t - C o ] = 0 . B y t h i s o p t i m a l t r a d i n g s t r a t e g y , t h e r e m a i n i n g

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    7/14

    HEDGING B Y SEQUENTIAL REGRESSION 35r is k is re d u c e d t o t h e m i n i m a l m e a n s q u a r e p r e d i c t i o n e r r o r(3 .10 ) Rmin = V a r [ H ] - ~ 2 . V a r [ X l ]

    = V ar [ H ] (1 - ( p (H , X~ ) ) z )w h e r e p d e n o t e s t h e c o r r e l a t i o n c o e f f i c i e n t. T h i s v a l u e R m i . m a y b e v i e w e d a s t h ei n t r i n s i c r i s k o f t h e o p t i o n H . I t is t h i s in t r i n s i c r i s k , a n d n o t t h e a p r i o r i r i s km e a s u r e d b y th e v ar i a n ce V a r [ H ] o f H , o n w h i c h a n y a d j u s t m e n t o f t h e fa i rp r i c e V o b y a s u i ta b l e r is k p r e m i u m s h o u l d b e b a s e d .

    I n a m o d e l w i t h a n i n t e r e s t r a t e r o n t h e S w i s s f r a n c a c c o u n t , w e w o u l d h a v et o r e p l a c e ( 3 . 5 ) b y

    CI - Co = r/ l - (1 + r ) - T/o

    = ( l + r ) . i + r V 0 - ~ - " l + r X o .T h e o p t i m a l c h o i c e o f ~ w o u l d s t il l b e ( 3 . 7 ); V o , h o w e v e r , i s t h e n g i v e n b y(3 .11 ) V o = - ~ . E l + r

    T y p i c a l l y , t h e c r u c i a l q u a n t i t i e s ~ , V o a n d R m i , a l l d e p e n d o n t h e u n d e r l y i n gp r o b a b i l i t y m e a s u r e P . T h e i n t r i n s i c ri s k Rm in , a l t h o u g h s t r i c t l y l es s t h a n t h e ap r i o r i r i s k V a r [ H ] , i s s t il l s t r i c tl y p o s i t iv e a n d c a n n o t b e n e g l e c t e d . O n l y i n t h ef o l l o w i n g s c e n a ri o c a n w e e l i m i n a t e th e r i s k c o m p l e t e l y , i n a n a l o g y t o w h a t isp r o m i s e d b y th e B l a c k - S c h o l e s f o r m u l a .S u p p o s e t h a t o n l y t w o c a s e s a p p e a r w i t h p o s i ti v e p r o b a b i l i t y : E i t h e r th ee x c h a n g e r a t e g o e s u p t o s o m e l e v e l x + a n d t h e c o n t i n g e n t c l a i m H a s s u m e s a c o r -r e s p o n d i n g v a l u e h + , o r t h e e x c h a n g e r a t e g o es d o w n t o s o m e l ev e l x - a n d Ha s su m e s t h e v al u e h - . T h u s ,(3 .12) , a [ X t = x + , H = h ] = p

    l a [ X l = x - , H = h - ] = 1 - pw i t h x - < (1 + r ) . Xo < x + a n d s o m e p E ( 0 , 1 ). T h i s a l l o w s u s t o d e t e r m i n e t w oc o n s t a n t s ~ a n d Vo s u c h t h a t(3 .13 ) P [ H = (1 + r ) . Vo + t~" (X~ - (1 + r ) - Xo )] = 1 .I n f a c t , (3 . 1 2 ) r e d u c e s ( 3 .1 3 ) t o t w o l i n e a r e q u a t i o n s f o r t h e t w o u n k n o w n s / ~ a n dV o , a n d t h e s o l u t i o n i s g i v e n b y

    h + - h -(3 .14 ) ~ = x + - x -- - ( x + - ( l + r ) " x )V O = l + . h + . ( l + x + _ x: c - x - ~- h - . x + _ x _ "

    T h u s , t h e r e is a l in e a r d e p e n d e n c e b e t w e e n t h e r a n d o m v a r i a b le s H a n dX ~ - (1 + r ) - X o , a n d t h e l i n e a r r e g r e ss i o n b e c o m e s p e r f e c t: Rmin = 0 . I n t h i s

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    8/14

    3 6 FOLLMER AND SCHWEIZERc a s e , t h e r e i s n o n e e d t o a d j u s t t h e f a i r p r i c e Vo b y a r is k p r e m i u m b e c a u s e t h er i s k h a s c o m p l e t e l y d i s a p p e a r e d . I n p a r t i c u l a r , w e h a v e(3.15) C , - Co = 0,i . e . t h e s t r a t e g y b e c o m e s self-financing. T h e r a n d o m v a r i a b l e T/1 i s n o w k n o w ni n a d v a n c e a n d c o i n c id e s w i t h t h e c o n s t a n t (1 + r ) " r/ o. F o r t h e s p e ci fi c v a l u e si n o u r i n t r o d u c t o r y e x a m p l e , w e r e c o v e r t h e s t r a t e g y w h i c h w a s d e s c r i b e d i nS e c t i o n 2 .

    N o t e t h a t t h e o p t i m a l v a l u es ~ a n d Vo i n ( 3 . 1 4 ) d o n o t i n v o l v e t h e p r o b a b i l i t yp a r a m e t e r p ; t h e y a r e th e s a m e f o r a n y m e a s u r e / 5 w h i c h p r es e r v es t h e b i n a r ys t r u c t u r e ( 3 .1 2 ) w i t h s o m e p a r a m e t e r , 0 E ( 0 , I ) . I n p a r t i c u l a r , w e a r e f r e e t o s w i t c hf r o m P t o t h e m e a s u r e P * w i th

    p * =s o t h a t(3 .16)

    ( l + r ) . x o - x -X + - - X -

    E * [ x ~ ]x 0 = i_l + r j .T h u s , t h e d i sc o u n t e d e x c h a n g e r a t e b e h a v e s li ke a f a i r g a m e u n d e r P * . I n th i sn e w m o d e l , t h e f a i r p r i c e Vo c a n n o w b e c o m p u t e d d i r e c tl y , w i t h o u t g o i n gt h r o u g h t h e e x er c is e o f c o m p u t i n g ~ a n d Vo f r o m t w o l i n e a r e q u a t i o n s . I n f a c t ,(3 .15) impl ies

    E * [ Vz - ~ " ( X t - ( I + r ) . X o ) ] = (1 + r ) . V o,a n d b y ( 3 . 3 ) a n d ( 3 . 1 6 ) w e o b t a i n(3 .17) Vo-- La + r J 'a s p r e s c r i b e d b y C h r . H u y g e n s a n d J . B e r n o u l l i .

    T h e p r e c e d i n g d i s c u s s i o n o f t h e b i n a r y s c e n a r i o , v i e w e d a s a s p ec i a l c a s e o f t h eg e n e r a l tw o - p e r i o d m o d e l , is j u s t a n e l e m e n t a r y r e m a r k o n t h e l i n e ar r e g r e s s io np r o b l e m . B u t ( 3 .1 7 ) is t h e e x a ct a n a l o g u e t o t h e B l a c k - S c h o l e s f o r m u l a . I n b o t hc a s e s , t h e m o d e l i s comple t e i n t h e s e n s e t h a t a n y c o n t i n g e n t c l a i m H c a n b eg e n e r a t e d b y a s u i t a b l e s t r a t e g y a s in ( 3 . 13 ) . T h i s a l l o w s u s t o r e d u c e t h e r i s k t o0 , a n d t o c o m p u t e t h e v a l ue Vo b y a n a p p r o p r i a t e c h a n g e o f m e a s u r e .

    4. HEDGING BY SEQUENTIAL REGRESSIONL e t u s n o w c o n s i d e r a m u l t i p e r i o d m o d e l w h e r e t h e e v o l u t i o n o f t h e e x c h a n g e r a t ei s g i v e n b y a s t o c h a s t i c p r o c e s s X k ( k = 0 , . . . , T ) o n s o m e p r o b a b i l i t y s p a c e( f l, ,~ ', P ) . Le t .~-k den o te the a - f i e ld o f even ts w hich a re obs e rva b le up to an d in -c l u d in g t im e k . W e a s s u m e t h a t X k is ~ k - m e a s u r a b l e a n d s q u a r e - i n t e g r a b l e . I no r d e r t o a v o i d c o m p l i c a t e d n o t a t i o n s , w e w o r k a g a i n w i t h o u t i n t e re s t r a t e s . T h is

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    9/14

    HEDGING BY SEQUENTIAL REGRESSION 37i s n o r e s t r i c t i o n s i n c e w e c a n a l w a y s s t a r t b y d i s c o u n t i n g t h e o r i g i n a l p r i c ep r o c e s s e s .

    A n o p t i o n is d e s c ri b e d b y a s q u a r e - i n t e g r a b l e r a n d o m v a r i a b l e H E L2(p); f o re x a m p l e , a ca ll o p t i o n w i t h s tr i k e K w o u l d c o r r e s p o n d t o H = ( X T - - K ) + . At r a d i n g s t r a t e g y i s g i v e n b y t w o s t o c h a s t i c p r o c e s s e s ~ k ( k = 1, . . . , T ) a n d T/k( k = 0 , . .. , T ) . ~k i s t h e a m o u n t o f U S d o l l a r s h e l d i n p e r i o d k a n d h a s t o b e f i x eda t t h e b e g i n n i n g o f t h a t p e r i o d , i . e . w e a s s u m e t h a t( 4 .1 ) ~k i s . ~ ' k - t - m e a s u r a b l e ( k = 1 , . . . , T ) .T h e a m o u n t r/k o f S w i ss f r a n c s i n p e r i o d k c a n b e c h o s e n a t t h e e n d o f t h i s p e r i o d ,i . e . w e a s s u m e t h a t(4 .2 ) 7/k i s . ~k -m easu rab l e (k = 0 , . . . , T ) .F o r s u c h a t r a d i n g s t r a t e g y , t h e v a l u e o f t h e p o r t f o l i o a t t i m e k i s g i v e n b y(4 .3 ) V k = ~k " X k + */k (k = 1, . . . , T ) ,a n d Vo = r l0 . W e a d m i t o n l y s t r a te g i e s s u c h t h a t e a c h V k i s s q u a r e - i n t e g r a b l e a n ds u c h t h a t t h e c o n t i n g e n t c l a i m H i s p r o d u c e d i n th e e n d , i . e . w e r e q u i r e(4 .4 ) VT = H .D u e t o t h e f l ex i b i li ty a l l o w e d b y ( 4 . 2 ) , t h i s c a n a l w a y s b e a c h i e v e d b y a s u i t a b l ec h o i c e o f r / r . T h e c u m u l a t i v e c o s t a t t i m e k i s g i v e n b y

    k(4 .5 ) Ck = V k - ~ a ~ i" A X jj = lw i t h A X i : = X j - X j - ~, a n d C o = Vo = 7 0. G o i n g b a c k w a r d s f r o m t i m e T , w e c a nn o w a p p l y t h e a r g u m e n t o f th e p r e c e d i n g s e c t io n s te p b y s t ep t o d e t e r m i n e o u rt r a d i n g s t r a t e g y r e c u r s i v e ly . S u p p o s e t h a t t h e r a n d o m v a r i a b l e s ~ t,+ 2 , . . ., / ~ r a n dr lk +~ , . . . , ~ r ( o r , e q u i v a l e n t l y , V k + ~ , . . . , V r ) h a v e a l r e a d y b e e n p r e s c r ib e d . A tt i m e k , w e w a n t t o c h o o s e f i rs t ~k . ~ a n d t h e n V k ( r e s p e c ti v e l y ~ k = V k - ~ k " X k )s u c h t h a t t h e c o n d i t i o n a l r i s k(4 .6 ) R k ~ E [ ( C k . t - C k ) 21 ,--~'k

    = E [ ( V k + t - V k - ~ k + l " A X k + l ) 2 l , - ~ k ]i s m i n i m i z e d . N o t e t h a t t h e e x p e c t a t i o n i n ( 3 . 6 ) h a s n o w b e e n r e p l a c e d b y a c o n -d i t i o n a l e x p e c t a t i o n . I n a n a l o g y t o ( 3 . 9 ) , th i s im p l i e s( 4 . 7 ) C k = E [ C j , ; , t l ~ r k ] ,i . e . t h e c o s t p r o c e s s C k ( k = O , . . ., T ) is a m a r t i n g a l e . M o r e o v e r , t h e c o n d i t io n a lv e r s i o n s o f ( 3 . 7) a n d ( 3 .8 ) y i el d t h e r e c u r s i o n f o r m u l a e

    . C o v . $ , _ ~ - j = k + 1(4.8 ) /ik = Var.~ ,_, [ A X k ]

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    10/14

    38 FOLLMER AND SCHWEIZERa n d(4 .9 )

    l

    I n p a r t i c u l a r , t h i s r e c u r s i o n l e a d s t o t h e f a i r p r i c e V0 = ~/0 o f o u r o p t i o n .T h e s t r u c t u re o f t h e o p t i m a l s t r a te g y b ec o m e s m u c h m o r e t r a n s p a r e n t i f P is

    a m a r t i n g a l e m e a s u r e , i . e . i f X k ( k = O , . . ., T ) i s a m a r t i n g a l e u n d e r P :( 4 . 1 0 ) X ~ = E [ X k + t 1 .~ ' , ] ( k = 0 , . . . , T - I ) .B y ( 4 .7 ) a n d ( 4 . 5 ), i t f o l l o w s t h a t t h e v a l u e p r o c e s s V k ( k = 0 , . .. , T ) i s a l s o a m a r -t i n g a l e , h e n c e o f t h e f o r m(4 .1 I ) V k = E [ H ] ,~ -,1d u e t o ( 4 .4 ) . W e c a n n o w g i v e a m o r e d i r e c t c o n s t r u c t i o n o f th e o p t i m a l s t r a te g y .T o b e g i n w i t h , ( 4. I 1) d e t e r m i n e s ~ k = I I , - / j k " X k a s s o o n a s w e k n o w ~ k. I no r d e r t o c o m p u t e ~ k , w e u s e t h e f a c t t h a t H c a n b e w r i t t e n a s

    T( 4 .1 2 ) H = V o + ~ ,, ~in " A X j + L ~j = lw h e r e L k ( k = O, . . ., T ) is a m a r t i n g a l e w h i c h i s o r t h o g o n a l t o X k ( k = O , . . ., T )i n t h e s e n s e t h a t( 4 .1 3 ) E [ A L ~ . A X , [ . ~ ' k - ~ ] = 0 .T h i s a l l o w s u s t o c o n c l u d e t h a t( 4 . 1 4 ) /jk = ~ ( k = 1 , . . . , T )i s t h e o p t i m a l h e d g i n g s t r a t e g y . I n f a c t , ( 4 . 1 1 ) a n d ( 4 . 1 2 ) i m p l y

    "w

    k( 4 .1 5 ) V k = V o + ~ ~ h , . A X j + L f f ,j = !h e n c e( 4 .1 6 ) R k - I = E [ ( A L ~ ) Z I , . ~ ' k - I ] + (~ k -- ~ kH )2 " E [ ( A X k ) 2 } J k - l ]d u e t o ( 4 . 1 3 ), a n d t h i s is m i n i m i z e d b y t h e c h o i c e o f ( 4 .1 4 ) .

    N o w c o n s i d e r t h e v e r y s p e c ia l ca s e w h e r e H c a n a c t u a l l y b e g e n e r a t e d b y X k( k = 0 , . . . , T ) i n t h e s e n s e t h a t

    T( 4 .1 7 ) H = V o + "~, b n " A X j ,j= li . e . w h e r e L r = 0 i n ( 4 . 1 2 ). T h e n ( 4 . 1 6 ) i m p l i e s R , = 0 ( k = 0 , . . . , T ) , h e n c e

    C i , + 1 = C , = C o

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    11/14

    HEDGING BY SEQUENTIAL REGRESSION 3 9d u e t o ( 4 . 6 ) . T h u s , t h e o p t i m a l s t r a t e g y i s s e l f - f i n a n c i n g . B y ( 4 . 3 ) a n d ( 4 . 1 5 ) ,

    ,7,, = v , - ~ k" X ,= V ~ _ ~ + ~ k " ( X k - X ~ - t ) - ~ k " X k= V ~ _ ~ - ~ k" X k - l .

    I n t h i s s p e c i a l c a s e , t h e p r o c e s s r/k ( k = 0 , . . . , T ) i s p r e d i c t a b l e , i . e .( 4 . 1 8 ) rlk i s . ~ r k - l - m e a s u r a b l e ( k = 1 , . . . , T ) .T h i s m e a n s t h a t a l l t h e i n g r e d i e n ts o f t h e t r a d i n g s t r a t e g y c a n a l r e a d y b e f ix e da t t h e b e g i n n i n g o f e a c h p e r i o d . N o t e a l s o t h a t t h e s tr a t e g y r e m a i n s t h e s a m e i fw e c h a n g e t h e m e a s u r e P t o a n y m e a s u r e / 5 w h i c h is e q u i v a l e n t t o P b e c a u s e t h isp r e s e r v e s t h e s t r u c t u r e ( 4 . 1 7 ). T h u s , t h e p r e c e d i n g d i s c u s s i o n i s v a l i d f o r a n ym o d e l P w h i c h c a n b e o b t a i n e d b y a n e q u i v a le n t c h a n g e o f m e a s u r e f r o m am a r t i n g a l e m o d e l P * s a t i s f y i n g ( 4 . 1 7 ) . I n s u c h a c a s e , t h e e x p l ic i t u se o f P *p e r m i t s a d i r e c t c o m p u t a t i o n o f t h e f a i r o p t i o n p r i c e . I n f a c t , ( 4 .1 7 ) im p l i e s

    V0 = E * [ H ] ,i n a n a l o g y t o ( 3 . 1 7 ) a n d ( 2 . 5 ) .

    5. OPTION TRADING AND STOCHASTIC CALCULUSL e t u s b r ie f ly c o m m e n t o n t h e e x te n s i o n o f o u r p r e v i o u s d i s c u s s io n t o ac o n t i n u o u s - t i m e s e t t in g w h e r e X t ( 0 ~ t ~< T ) is a s q u a r e - i n t e g r a b l e s e m i m a r -t i n g a l e o n s o m e p r o b a b i l i t y s p a c e ( fl , .~ r, p ) w i t h a r i g h t - c o n t i n u o u s f i l tr a t i o n 9 " t( 0 ~< t ~ T ) . W e c a n u se t h e s a m e c o n c e p t u a l a p p r o a c h t o t h e p r i c in g a n d h e d g i n go f o p t i o n s a s i n t h e d i sc r e t e -t i m e c a s e , b u t t h e t e c h n ic a l it i es a r e m u c h m o r ei n v o l v e d .H e r e a g a i n , t h e s i t u a t io n is m o s t t r a n s p a r e n t i n t h e c o m p l e t e c a s e w h e r e , i na n a l o g y t o (4 . 1 7 ), o u r s q u a r e - i n t e g r a b l e c o n t i n g e n t c l a im H c a n b e r e p r e s e n t e d a s

    TH = V o + ( ~ H d X .( 5 . 1 ) J 0P - a l m o s t s u r e l y , i. e . a s a st o c h a s t i c i n t e g r a l o f s o m e p r e d i c t a b l e p r o c e s s ~ t( 0 ~< t ~< T ) w i t h r e s p e c t t o t h e b a s i c s e m i m a r t i n g a l e X t (0

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    12/14

    4 0 F O L L M E R A N D S C H W E I Z E R

    sat isfiesC t = C o = V o (O

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    13/14

    HEDGING BY SEQUENTIAL REGRESSION 41i n t e n s i t y X ( t ) . T h i s m o d e l i s c o m p l e t e i n t h e s e n s e t h a t a n y s q u a r e - i n t e g r a b l e Hc a n b e r e p r e s e n t e d i n t h e f o r m

    T( 6 . 2) H = V o + ~ ~ d X u .J oI n p a r ti c u la r , t h i s is tr u e f o r t h e r a n d o m v a r i a b l e H = ( S T - c ) a s s o c i a t e d t o as t o p - l o s s c o n t r a c t . N o w w e c o n s i d e r a n i n s u r a n c e s tr a t e g y g i v e n b y ~ ( 0 ~ t ~ T )a n d r/t ( 0 ~ t ~ T ) . H e r e , r /t i s t h e c a s h r e s e r v e h e l d a t t i m e t , a n d ~ t r e p r e s e n t sa p r o p o r t i o n a l r e i n s u r a n c e c o n t r a c t i n d u c i n g t h e ca p i t a l f l owI ' S '.(dSu-~6(u) du)= ~ . dX. .0 0W e t a k e ~ t = ~ ff , a n d w e d e t e r m i n e r/t = V t - ~ t" X t b y s e t t i n g

    S '6 .3 ) Vt = Vo + ~ dX , , .oA s i n th e p r e v i o u s s e c t i o n , w e c o n c l u d e t h a t th i s st r a t eg y i s s e l f - f in a n c i n g a n d p r o -d u c e s t h e r a n d o m p a y m e n t H a t t h e t e r m i n a l t i m e T . T h e r e q u i r e d in i t ia l c o s t V oc a n b e c o m p u t e d d i r e c t l y a s t h e e x p e c t e d v a l u e

    Vo = E * [ H ] - - E * [ ( S t - c ) ]i f w e s w i t c h f r o m P t o t h e n e w m o d e l P * w h e r e t h e p r o c e s s X , ( 0 ~< t ~< T ) is am a r t i n g a l e ; t h i s i s a c h i e v e d b y c h o o s i n g t h e r a te k * ( t ) = / ~ , (t ) . N o t e t h a t , i n c o m -p l e t e a n a l o g y t o o u r d i s c u s s i o n o f c u r r e n c y o p t i o n s , t h e fa i r p r e m i u m V o d o e s n o td e p e n d o n t h e a p r io r i ra t e X ( t ). F o r a m o r e d e t a i le d a c c o u n t s e e S O N D E R M A N N( 1 9 8 8 ) .

    REFERENCESBACHELIER, L. "Th~orie de la Speculation", A n n . S c i . E c . No r m . S u p . H I - 1 7 (1900), 21-86.BERNOULLi, J. "Ars coniectandi" (1713).BLACK, F. and SCHOLES, M. "The Pricing o f Options and Corporate Liabilities", Jo u r n a l o f P o l i t ica lE c o n o m y 81 (1973), 637-659.Cox, J. C. and Ross, S. A. "The Valuation of Options for Alternative Stochastic Processes",Jo u r n a l o f F i n a n c i a l E co n o m i cs 3 (1976), 145-166.FOLLMER, H. and SONOERMANN, D. "Hedging of Non-Redundant Contingent Claims", in: HILOEN-BRAND, W. and MAS-COLELL, A. (eds.), Contributions to Mathemat ical Economics North-Holland (1986), 205-223.HARRISON, J. M. and PLISKA, S. R. "Martingales and Stochastic Integrals in t h e T h e o r y of Con-tinuous Trading", Stochas t ic Processes and their Appl ica t ions 11 (1981), 215-260.HARmSON, J. M. and PLISKA, S. R. "A Stochastic Calculus Model of Continuous Trading: C o m p l e t eMarkets", Stochas t ic Processes and their Appl ica t ions IS (! 983), 313-316.HUYGENS, CHR. "De ratiociniis in ludo aleae" (1657).ITO, K. "Multiple Wiener Integral", Jo u r n a l o f t h e M a t h em a t i ca l S o c i e t y o f Ja p a n 3 (1951),157-169.MERTON, R. C. "Theory of Rational Option Pric ing", B e ll J o u rn a l o f E c o n o m i c s a n d M a n a g e m e n tScience 4 (1973), 141-183SAMUELSON, P. A. "Ra tional Theory of Warrant Pricing", in: COOTNER, P. H. (ed.), "Th e Random

    C h a r a c t e r of Stock Market Prices", MIT Press, Cambridge, Massachusetts (1964), 506-525.SCHWE[ZER, M. "Varianten der Black-Scholes-Formel", Diplomarbeit ETHZ, Ztirich (1984).

  • 8/3/2019 Hedging by Sequential Regression an Introduction to the Mathematics of Option Trading

    14/14

    42 F O L L M E R A N D S C H W E I Z E RSCHWEIZER, M. "He dgin g o f Opt ion s in a Genera l Semim ar t inga le M ode l" , D i s s . ET H Z n o. 8615,Ziirich (1988).SONDERMANN,D. "Re insurance in Arbi t rage-Free Marke t s " , d i s cus s ion paper no . B-82 , Univers i tyof Bonn (1988) .WIENER,N. "D i f fe rent i a l -Space" , Jou rna l o f M athem at ics and Phys ics 2 (1923), 131-174 ; repr in ted

    in: WIENER, N . "Col l ec ted W ork s" , Volum e ! , MIT Pres s (1976).H A N S F O L L M E R , M A R T I N S C H W E I Z E Rl n s t i tu t f i i r An gew an d te Ma them at ik , Un ive rs itgi t Bon n , Wege le rs tr . 6 , D -53 00B o n n