Heavy Quark Diffusion in Heavy Ion Collisions

21
Heavy Quark Diffusion in Heavy Ion Collisions Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: H. van Hees, V. Greco, M. Mannarelli Conference on “Early Time Dynamics in Heavy Ion Collisions” McGill University (Montreal, Canada),

description

Heavy Quark Diffusion in Heavy Ion Collisions. Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: H. van Hees, V. Greco, M. Mannarelli Conference on “Early Time Dynamics in Heavy Ion Collisions” - PowerPoint PPT Presentation

Transcript of Heavy Quark Diffusion in Heavy Ion Collisions

Page 1: Heavy Quark Diffusion  in Heavy Ion Collisions

Heavy Quark Diffusion

in Heavy Ion Collisions

Ralf Rapp Cyclotron Institute + Physics Department

Texas A&M University College Station, USA

With: H. van Hees, V. Greco, M. Mannarelli

Conference on “Early Time Dynamics in Heavy Ion Collisions”McGill University (Montreal, Canada), 16.07.07

Page 2: Heavy Quark Diffusion  in Heavy Ion Collisions

1.) Introduction: Heavy Quarks at RHIC• c, b quarks (more!?) sensitive to: - thermalization (low pT)

- energy loss (high pT)

- coalescence (int. pT?)

[PHENIX ’07]

Direct relation to other observables

• quarkonia: - interaction with c, b within bound state - regeneration →

• intermediate-mass dileptons: → e+e X competes with thermal (QGP) radiation

cc

cc

Diffusion/interactionsin sQGP at all pT

Hadronization (low pT?)

Page 3: Heavy Quark Diffusion  in Heavy Ion Collisions

1.) Introduction Single-Electron Puzzle at RHIC

2.) Heavy-Quark Diffusion in (s)QGP Fokker-Planck Approach Resonance Model HQ and e± Spectra at RHIC

3.) Lattice-QCD Based Potential Approach In-Medium Heavy-Light Quark T-Matrix Transport Coefficients HQ RAA and v2

4.) Conclusions

Outline

Page 4: Heavy Quark Diffusion  in Heavy Ion Collisions

pT [GeV]

RA

A =

(A

A)

/ (p

p)

[Gyulassy etal ’05]

[Armesto et al ’05]

• substantial collectivity• bottom “contamination”?

Elliptic FlowNuclear Modification Factor

• factor 4-5 suppression• elastic E-loss, pQCD?!

1.2 Expectations at RHIC• Radiative energy loss smaller for c+b quarks• Elastic interactions? • Collective flow? Heavy-quark diffusion? • experimental tool: electron spectra D,B → eX

c,b

?

Page 5: Heavy Quark Diffusion  in Heavy Ion Collisions

QmDT

2

2

p

fD

p)pf(

tf

• Brownian

Motion:

scattering rate diffusion constant

2.) Heavy-Quark Diffusion in the QGP

Fokker Planck Eq.[Svetitsky ’88,…]Q

• e.g. T =300 MeV, s=0.4:therm~15 fm/c slow! (QGP ≤ 5 fm/c)

2.1.1 Perturbative QCD

g

c

dominated by t-channel gluon-ex.:

Microscopic Calculations of Diffusion:

q

c gT~,~ DD

scg

2

2elast

[Svetitsky ’88, Mustafa et al ’98, Molnar et al ’04,Zhang et al ’04, Hees+RR ’04, Teaney+Moore‘04]

k)p,k(wkdp 323 ),(

2

1 kpkwkdD

Page 6: Heavy Quark Diffusion  in Heavy Ion Collisions

2.1.2 Open-Charm Resonances in QGP

h.c.2

v1 c)(

qG DDDcq L

• effective lagrangian with pseudo/scalar + axial/vector “D-mesons”

551 ,,,

“Light”-Quark Resonances

1.4Tc

[Asakawa+ Hatsuda ’03]

• parameters: mD=2GeV , GD , mc=1.5GeV, mq=0 • chiral (u,d) + HQ (c,b) symmetry

• resonance cross section isotropic, pQCD forward

[van Hees+ RR ’04]

c

“D”

c

_q

_q

Page 7: Heavy Quark Diffusion  in Heavy Ion Collisions

2.1.3 Thermal Relaxation of Heavy Quarks in QGP

• factor ~3 faster with resonance interactions!

Charm: pQCD vs. Resonances

pQCD

“D”

• ctherm ≈ QGP ≈ 3-5 fm/c

• bottom does not thermalize

Charm vs. Bottom

Page 8: Heavy Quark Diffusion  in Heavy Ion Collisions

Relativistic Langevin Simulation: • stochastic implementation of HQ motion in expanding QGP-fireball• “hydrodynamic” evolution of bulk-matter T , v2

2.3 Heavy-Quark Spectra at RHIC [van Hees,Greco+RR ’05]

Nuclear Modification Factor

• resonances → large charm suppression+collectivity, not for bottom • v2 “leveling off ” characteristic for transition thermal → kinetic

Elliptic Flow

Page 9: Heavy Quark Diffusion  in Heavy Ion Collisions

2.3.2 The first 5 fm/c for Quark-v2 and -RAA Inclusive v2

• RAA built up earlier than v2

Page 10: Heavy Quark Diffusion  in Heavy Ion Collisions

2.3.3 HQ Langevin Simulations: Hydro vs. Fireball

[van Hees,Greco+RR ’05]

Elastic pQCD (charm) + Hydrodynamicss , g

1 , 3.5

0.5 , 2.5

0.25,1.8

[Moore+Teaney ’04]

• Tc=165MeV, ≈ 9fm/c • gQ ~ (s/D)2

s and D~gT independent (D≡1.5T)

• s=0.4, D=2.2T ↔ D(2T) ≈ 20 hydro ≈ fireball expansion

Page 11: Heavy Quark Diffusion  in Heavy Ion Collisions

2.4 Single-e± at RHIC: Effect of Resonances• hadronize output from Langevin HQs (-fct. fragmentation, coalescence)• semileptonic decays: D, B → e++X

• large suppression from resonances, elliptic flow underpredicted (?)• bottom sets in at pT~2.5GeV

Fragmentation only

Page 12: Heavy Quark Diffusion  in Heavy Ion Collisions

• less suppression and more v2 • anti-correlation RAA ↔ v2 from coalescence (both up) • radiative E-loss at high pT?!

2.4.2 Single-e± at RHIC: Resonances + Q-q Coalescence

frag2

2333

)p(f)p(f|)q(|qd)(

pdg

pd

dNE ccqqDD

D fq from , K

Nuclear Modification Factor Elliptic Flow

[Greco et al ’03]

Page 13: Heavy Quark Diffusion  in Heavy Ion Collisions

2.5 Model Comparisons to Recent PHENIX Data

Single-e± Spectra [PHENIX ’06]

• coalescence essential for consistent RAA and v2

• other mechanisms: 3-body collisions, …

[Liu+Ko’06, Adil+Vitev ‘06]

• pQCD radiative E-loss with 10-fold upscaled transport coeff.

• Langevin with elastic pQCD + resonances + coalescence

• Langevin with 2-6 upscaled pQCD elastic

Page 14: Heavy Quark Diffusion  in Heavy Ion Collisions

2.5.2 Transport Properties of (s)QGP

• small spatial diffusion → strong coupling

Spatial Diffusion Coefficient ‹x2›-‹x›2=Dx·t, Dx=2d·(T/mQ)/Ds=Dx/2d

E.g. strongly coupled gauge theory (AdS/CFT): /s=1/4, DHQ≈1/2T resonances: DHQ≈4-6/2T , DHQ ~ /s ≈ (1-1.5)/

Charm-Quark Diffusion Viscosity-to-Entropy: Lattice QCD[Nakamura +Sakai ’04]

Page 15: Heavy Quark Diffusion  in Heavy Ion Collisions

3.) Potential Scattering in sQGPLattice Q-Q Free Energy

TSUF QQQQ

QQQ mU 2

[BielefeldGroup ’04]

solve numerically

Q-q T-Matrix -

Applications

• → Schrödinger-Eq. → bound states (sQGP)

• scattering states + imaginary parts → Lippmann-Schwinger Eq.

QQU [Shuryak+ Zahed ’04, …]

[Mannarelli+RR ’05]

Page 16: Heavy Quark Diffusion  in Heavy Ion Collisions

3.2 Charm-Light Cross Sections with lQCD-based Potential

Temperature Evolution Channel Decomposition

• interaction strength close to threshold • meson and diquark channels dominant

2

Page 17: Heavy Quark Diffusion  in Heavy Ion Collisions

3.3 Friction Coefficients (Relaxation Rate): Lat-QCD vs. Resonance Model

• uncertainty in potential extraction from lattice QCD• potential scattering comparable to resonance model close to Tc

T ≈ 200 MeV T ≈ 250 MeV

Page 18: Heavy Quark Diffusion  in Heavy Ion Collisions

3.4 Charm-Quark Spectra at RHIC

Nuclear Suppression Factor Elliptic Flow

• supports importance of nonperturbative effects• radiative (2↔3) scattering?

Page 19: Heavy Quark Diffusion  in Heavy Ion Collisions

4.) Summary and Conclusions

• Heavy quarks probe the (s)QGP: strong suppression, collectivity

• Importance of elastic collisions

• Indications for nonperturbative interactions

• Supported by microscopic description: lQCD-based T-matrix,

scrutinize: lQCD correlators, U1 vs. F1, finite-T quark masses

• “Hadronic” correlations dominant (meson + diquark)

↔ natural connection to quark-coalescence at Tc [Ravagli+RR ’07]

• Impact on other observables: light sector, quarkonia, dileptons,…

Page 20: Heavy Quark Diffusion  in Heavy Ion Collisions

3.2 Selfconsistent T-Matrix and Selfenergy [Mannarelli+RR ’05]

• assume mq(gluon)=0.1GeV

• transition from bound (1.2Tc) to resonance states! • quark-width ≈0.3GeV≈(2/3fm)-1 (≈ mass ↔ liquid!?) • colored states, equat. of state?

q-q T-Matrices -

Quark Self-

Energy

T=1.2Tc

T=1.5Tc

T=1.75Tc

T=1.5Tc

Page 21: Heavy Quark Diffusion  in Heavy Ion Collisions

5.3.2 Dileptons II: RHIC

• low mass: thermal! (mostly in-medium )• connection to Chiral Restoration: a1 (1260)→ , 3• int. mass: QGP (resonances?) vs. cc → e+e-X (softening?)-

[RR ’01]

[R. Averbeck, PHENIX]

QGP