Heat

18
Heat Photo: Wikimedia.org

description

Heat & Internal energy

Transcript of Heat

Page 1: Heat

Heat

Photo: Wikimedia.org

Page 2: Heat

Temperature scales

Heat 2

degree Celcius

°C 1742

Kelvin

K 1848

degree Fahrenheit

°F 1724

-273.15

0

-459.67

100

373.15

212

310.93

37.8

100

255.37

-17.78

0

0

32

273.15

𝑁𝑎𝐶𝑙 ∙ 2𝐻2𝑂

Absolute zero

Page 3: Heat

Temperature conversion

Heat 3

𝑇 °𝐶 = 𝑇 𝐾 − 273.15 𝑇 𝐾 = 𝑇 °𝐶 + 273.15

𝑇 °𝐶 =5

9∙ 𝑇 °𝐹 − 32 𝑇 °𝐹 =

9

5∙ 𝑇 °𝐶 + 32

Page 4: Heat

Temperature conversion

Heat 4

𝑇 °𝐶 = 𝑇 𝐾 − 273.15 𝑇 𝐾 = 𝑇 °𝐶 + 273.15

𝑇 °𝐶 =5

9∙ 𝑇 °𝐹 − 32 𝑇 °𝐹 =

9

5∙ 𝑇 °𝐶 + 32

Page 5: Heat

Cold vs. Hot: Random motion

Heat 5

COLD HOT

SOLID

LIQUID

GAS

LOW Kinetic energy HIGH

Page 6: Heat

Internal energy

Heat 6

Translational kinetic energy

Rotational kinetic energy

Vibrational kinetic energy

+

Total kinetic energy

𝐹𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠Expansion

𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 < 0∆𝐸𝑝 > 0

𝑠

Compression𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 > 0∆𝐸𝑝 < 0

Total potential energy

+

Total internal energy

It takes effort (work) to increase the average distance between molecules.This is stored in the substance as potential energy.

Page 7: Heat

Macroscopic vs. microscopic

Heat 7

𝑣2 𝑣7 𝑣10 𝑣6

𝑣9

𝑣8

𝑣3 𝑣1 𝑣5

𝑣4

𝑣11

𝑁 molecules

𝑖

𝑣𝑖 = 0

𝑖

𝑣𝑖2 = 𝑁 ∙ 𝑣𝑎𝑣𝑔

2 > 0

NO macroscopic motion

𝑁 ∙ 12𝑚𝑣𝑎𝑣𝑔2 = 𝐸𝑘𝑖𝑛 =measure for temperature

Temperature is a macroscopic quantityTemperature is a result of statistical mechanics

Page 8: Heat

Transport of internal energy

Heat 8

𝑇1 𝑇2𝑡 = 0𝑠𝑄

Loses internal energy𝑇1 decreases

Gains internal energy𝑇2 increases

𝑇1 𝑇2𝑡 > 0𝑠 𝑄 = 0

𝑇1 > 𝑇2

The energy transported from body 1 to body 2is called thermal energy or heat (Q)

𝑇1 = 𝑇2

The end stage representsThermal equilibrium

Insulation

Insulation

Page 9: Heat

Heat & Work - I

Heat 9

James Prescott Joule, 1847

Action: Release the crank

Reaction: The water temperature increases

Explanation: Gravitational potential energy is converted into internal energy

Page 10: Heat

Heat & Work - II

Heat 10

Heat is converted into work…but never completely

Page 11: Heat

Thermal properties of matter

Heat 11

HEAT from combustion provides…

1: increased internal energy of the pot

2: increased internal energy of the water

3: vaporization = destruction of molecular bonds

Thermal capacity

Specific heat capacity

Specific latent heat

Page 12: Heat

Thermal capacity

Heat 12

𝑇 ⟶ 𝑇 + Δ𝑇𝑄( 𝐽)

The thermal capacity 𝐶 is the amount of (internal) energy (J) an object stores if it becomes 1°C (1 K) hotter

𝐶 =𝑄

Δ𝑇

C = 200J𝐾−1

𝐶 = 4 ∙ 108𝐽𝐾−1 𝐶 = 6 ∙ 105𝐽𝐾−1

The house The air inside

Page 13: Heat

Specific heat capacity

Heat 13

𝑇 ⟶ 𝑇 + Δ𝑇𝑄( 𝐽)

The specific heat capacity 𝑐 is the amount of (internal) energy (J) an material per kg stores if it becomes 1°C (1 K) hotter

𝐶 = 𝑐 ∙ 𝑚 =𝑄

Δ𝑇⇒ 𝑐 =

𝑄

𝑚 ∙ ∆𝑇

If the body consists of one single substance/material:

𝐶 ∝ 𝑚 or 𝐶 = 𝑐 ∙ 𝑚The constant 𝑐 is specific for this material and can be found in data tables

𝑐 = 4.18 ∙ 103𝐽𝐾−1𝑘𝑔−1𝑊𝑎𝑡𝑒𝑟

𝑉𝑜𝑙𝑢𝑚𝑒 𝑉 = 𝜋𝑟2ℎ = 𝜋 ∙ 1𝑚 2 ∙ 0,6𝑚 = 1.9𝑚3

𝑀𝑎𝑠𝑠 𝑚 = 𝜌 ∙ 𝑉 = 998𝑘𝑔𝑚−3 ∙ 1.9𝑚3 = 1.9 ∙ 103𝑘𝑔

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑝𝑜𝑜𝑙 𝐶 = 𝑐 ∙ 𝑚 = 4.18 ∙ 103𝐽𝐾−1𝑘𝑔−1 ∙ 1.9 ∙ 103𝑘𝑔 = 8 ∙ 106𝐽𝐾−1

Page 14: Heat

Phases and phase changes

Heat 14

SOLID

LIQUID

GAS

𝑄 ⟶

𝑄 ⟶

⟶ 𝑄

⟶ 𝑄Melt / Fusion Solidification / Frost

CondensationVaporization

𝑇

Boiling point

Melting point

Page 15: Heat

Specific latent heat

Heat 15

Heat required to melt/fuse 1 kg = ‘Latent heat of fusion’ 𝐿𝑓 ,

which is needed to weaken the intermolecular bonds and increase potential energy

Heat required to vaporize 1 kg = ‘Latent heat of vaporization’ 𝐿𝑣 , which is needed to break the already weakend bonds and set the molecules free

Material 𝑇𝑚𝑒𝑙𝑡(𝐾) L𝑓 𝑘𝐽𝑘𝑔−1 𝑇𝑏𝑜𝑖𝑙(𝐾) L𝑣 𝑘𝐽𝑘𝑔

−1

Water 273.15 334 373.15 2260

Sulphur 386 39 718 1510

Nitrogen 63 26 77 199

Page 16: Heat

Example

Heat 16

How much energy (heat) does it take to convert 100 kg water of 10°C to steam of 200°C?

Water

Specific heat capacity (liquid) 4.18 𝑘𝐽𝑘𝑔−1𝐾−1

Specific heat capacity (vapor) 1.5 𝑘𝐽𝑘𝑔−1𝐾−1

Latent heat of fusion 334 𝑘𝐽𝑘𝑔−1

Latent heat of evaporation 2260 𝑘𝐽𝑘𝑔−1

Heat water from 20°C to 100° : 𝑄 = 𝑐 ∙ 𝑚 ∙ ∆𝑇 = 4.18 ∙ 103 ∙ 100 ∙ 100 − 10 =

Vaporize the boiling water: 𝑄 = 𝐿𝑣 ∙ 𝑚 = 334 ∙ 103 ∙ 100 =

Heat vapor from 100°C to 200° : 𝑄 = 𝑐 ∙ 𝑚 ∙ ∆𝑇 = 1.5 ∙ 103 ∙ 100 ∙ 200 − 100 =

37.62 ∙ 106𝐽

33.4 ∙ 106𝐽

15 ∙ 106𝐽

+86 ∙ 106𝐽

Page 17: Heat

Example

Heat 17

A piece of iron 200𝑔 900℃ is inserted in a cup C = 460 JK−1 filled with 500mL water 18℃ .

At which temperature will there be thermal equilibrium?

Material 𝑐(𝑘𝐽𝑘𝑔−1𝐾−1)

Water 4.18

Iron 0.45

𝑄↑ = 𝑄↓𝐶 ∙ 𝑇𝑒𝑞 − 18 + 𝑐𝑤𝑎𝑡𝑒𝑟 ∙ 𝑚𝑤𝑎𝑡𝑒𝑟 ∙ 𝑇𝑒𝑞 − 18 = 𝑐𝑖𝑟𝑜𝑛 ∙ 𝑚𝑖𝑟𝑜𝑛 ∙ 900 − 𝑇𝑒𝑞

460 ∙ 𝑇𝑒𝑞 − 18 + 4.18 ∙ 103 ∙ 0.998 ∙ 0.500 ∙ 𝑇𝑒𝑞 − 18 = 0.45 ∙ 10

3 ∙ 0.200 ∙ 900 − 𝑇𝑒𝑞

460 ∙ 𝑇𝑒𝑞 − 18 + 2086 ∙ 𝑇𝑒𝑞 − 18 = 90 ∙ 900 − 𝑇𝑒𝑞

460 ∙ 𝑇𝑒𝑞 − 8280 + 2086 ∙ 𝑇𝑒𝑞 − 37548 = 81000 − 90 ∙ 𝑇𝑒𝑞

460 ∙ 𝑇𝑒𝑞 + 2086 ∙ 𝑇𝑒𝑞 + 90 ∙ 𝑇𝑒𝑞 = 81000 + 8280 + 37548

2636 ∙ 𝑇𝑒𝑞 = 126828

𝑇𝑒𝑞 = 48℃

Heat taken up by cup & water equals heat released by the iron

Page 18: Heat

END

Heat 18

DisclaimerThis document is meant to be apprehended through professional teacher mediation (‘live in class’) together with a physics text book, preferably on IB level.