Heat Transfer Modeling using ANSYS Fluent

43
© 2015 ANSYS, Inc. April 24, 2015 1 16.0 Release Lecture 3 – Forced Convection Heat Transfer Modeling using ANSYS Fluent

Transcript of Heat Transfer Modeling using ANSYS Fluent

Page 1: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 1

16.0 Release

Lecture 3 – Forced Convection

Heat Transfer Modeling using ANSYS Fluent

Page 2: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 2

Outline

• Introduction – Heat Transfer Coefficient

• Laminar and Turbulent Boundary Layers

• Modelling Heat Transfer – The Reynolds Analogy

• Turbulence Modelling and Dynamic and Thermal Wall Functions

• Case Study - Modelling Heat Transfer for Non-Equilibrium and Complex Flows

Page 3: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 3

Heat Transfer Coefficient

• Influence of:

• Geometry, fluid properties, etc.

• Importance of the boundary layer

• Local heat flux

• Mean heat flux

0

0

0TTxh

y

Tkx s

y

fy

0T

sT

0

0

00)(

1)( TThdxTTxh

Lx p

L

py

Mechanism Fluid h (W/m2·K)

Natural

Convection

Gases 5 – 30

Water 100 – 1000

Forced

Convection

Gas 10 – 300

Water 300 – 12,000

Oil 50 – 1,700

Liquid metal 6,000 – 110,000

Phase Change

Boiling 3,000 – 60,000

Condensation 5,000 – 110,000

constant...pT

Page 4: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 4

Boundary Layers

• Important parameters are bulk velocity, bulk temperature, and pressure gradient

• Dimensionless variables: 0

~

U

uu

s

s

TT

TTT

0

~

L

00 , TULaminar Transition Turbulent

laminar

turbulent

Page 5: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 5

Boundary Layers

• Laminar boundary layer

• Mixing is characterized by the ratio of viscous boundary layer thickness to thermal boundary layer thickness.

• Turbulent boundary layer

• Mixing is primarily governed by turbulence.

• Heat transfer coefficient – use an available correlation for the friction coefficient, Cf (valid for a flat plate only)

• Laminar Boundary Layers (exact)

• Turbulent Boundary Layers (empirical correlations)

2/1,Re

664.0

x

xfC 3/12/1 PrRe332.0Nu xx

5/1,Re

0592.0

x

xfC 3/15/4 PrRe0296.0Nu xx

Page 6: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 6

Modeling Turbulent Heat Transfer

• RANS equations

• Boussinesq approximation for Reynolds stresses

• Turbulent viscosity, μT, is calculated from some turbulence model:

• By analogy, PrT = 0.85 (from experimental data)

uuu TTT

vu

y

u

yx

P

y

uv

x

uu

TvC

y

Tk

yy

Tv

x

TuC pp

y

uvu T

y

TDTv T

T

TTD

Pr

Page 7: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 7

Turbulent Boundary Layer Structure

• Velocity profile exhibits layered structure identified from dimensional analysis

• Viscous sublayer – Viscous forces dominate, velocity depends on ρ, τw, μ, y.

• Outer layer – Depends on mean flow characteristics

• Overlap layer – Log law applies

• TKE production and dissipation are nearly equal in the overlap layer (turbulent equilibrium)

• Dissipation dominates production in the viscous sublayer region.

Uy

0L

oss

Ga

in

Fully-Developed Pipe Flow

Dissipation of k

Diffusion of k

Production of k

10 30

Uy5 60

U

U

45.5ln5.2

Uy

U

U

Inner layer

Outer

layer

Fully turbulent

or

Log-law region Buffer layer

or

Blending

region

Viscous

sublayer

Upper limit

Depends on

Reynolds number

Page 8: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 8

Effects of Transition

• Spurious jump of Cf and h at transition from laminar to turbulent flows (Rex > 5e5)

• Natural transition is a complex phenomenon (for RANS)

• RANS: k-kL-w , intermittency transition, and Transition SST models can be used for natural transition, bypass transition, separation induced transition

• Use if extent of laminar flow region is significant

TU ,

wT

)(x

)(xh

cx

TU , Laminar Transition Turbulent

laminar

turbulent

k

Page 9: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 9

Boundary Layer Heat Transfer

• Impact on numerical modeling

• Use of wall functions for y+ >> 1 (when hypothesis are fulfilled)

• Sensitivity of the results to y+ (transition, low-Re effect) and Pr

• When hypothesis fails (Non-equilibrium boundary layers, recirculation, stagnation, transition), we need to correctly resolve both the momentum AND thermal viscous sub-layer (y+ < 1)

• This is straightforward for Pr ~ 1 or Pr < 1.

• When Pr is greater than 1, the thermal sublayer is much thinner than the viscous sublayer.

• Small sensitivity to grid resolution (provided that the momentum boundary layer is correctly predicted

• y+ ≤ 1 and ~10 cells for 1 < y+ < 30

Page 10: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 10

BL Heat Transfer Example – Abrupt Pipe Expansion

• Abrupt pipe expansion (non-equilibrium boundary layer, recirculation, wall heat transfer)

• Mesh: y+ ~ 1, 50

• Inlet: Fully-developed turbulent pipe flow.

• Models: RKE with EWT, SST k–ω

• Enhanced wall treatment (for y+ ~ 1 mesh)

• Standard wall functions (for y+ ~ 50 mesh)

• Both equilibrium and non-equilibrium wall functions were studied.

J. Baughn, M. Hoffman, R. Takahashi, and B. Launder (1984), “Local Heat Transfer Downstream of an Abrupt Expansion

in a Circular Channel with Constant Wall Heat Flux,” ASME J. Heat Transfer, Vol. 106, No. 4, pp. 789–796.

750,40Re Dd DFlow

Page 11: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 11

BL Heat Transfer Example –Pipe Expansion

• Local Nusselt number compared to the Dittus-Boelter correlation (valid for pipe flows).

4.08.0

DB PrRe023.0Nu

DBNu

Nu

DBNu

Nu

Hx / Hx /

Page 12: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 12

Turbine Blade Heat Transfer with Transition Models

• VPI Turbine

• Hybrid Mesh: 24,386 cells

• Re = 23,000, Uin = 5.85 m/s, Tin = 20 ºC, Chord = 59.4 cm

• Air with constant properties

• Inlet turbulent intensity = 10%

• Both models do a good job of predicting transition point and heat transfer coefficient

Page 13: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 13

Example – Impinging Jet

0

)(TT

xhp

• Relevant dimensionless parameters

• Height-to-diameter ratio, H/D

• Reynolds number, Re

• Prandtl number, Pr

• Quantities analyzed

• Surface heat transfer coefficient

• Nusselt number

f

xk

Lxh )(Nu

0T

H

D

or pT

Page 14: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 14

Free jet

Stagnation zone

Boundary layer

and transition

?

Characteristics of Impinging Jet Flow

• Modeling challenge – complex flow

• Free jet turbulence

• Stagnation point

• Boundary layer

• Strong streamline curvature

• Transition (?)

Wall jet

Page 15: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 15

TKE Production at Stagnation Point

• Physically, decreased production of turbulence is observed at the stagnation point.

• Two-equation models tend to overestimate TKE production at the stagnation point

Realizable k–ε RNG k–ε

Can the production of turbulent kinetic energy be reduced?

Standard k–ε

Page 16: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 16

Impinging Jet Example

• Turbulent kinetic energy transport equation:

• Modification of production term (Menter, 1992):

• Text user interface command is define/models/viscous/turbulent-expert/

Diffusion

i

j

j

i

j

i

jkj x

u

x

u

x

u

x

k

xDt

DkT

T

Production Dissipation

2

T kP

Page 17: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 17

Effect of Modified Production Term

k–ω Model

Default Production Ω-Based Production

Page 18: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 18

Flow Calculations (y+ = 1)

• The following RANS models were evaluated:

• Standard k–ε (SKE)

• RNG k–ε (RKE) – Minimizes TKE at stagnation point.

• Standard k–ω (KW) – Laminar/turbulent transition in boundary layer.

• Modified k–ω (KWW) – Production of TKE based on rotation rate, Ω.

• V2F model – Accounts for near-wall anisotropy by solving a transport equation for (v')2

• Flow characteristics

• Prandtl number: Pr = 0.7

• Reynolds number: Re = 23,000

• Height-to-diameter ratio: H/D = 2.0 and 6.0

Page 19: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 19

Impinging Jet: Velocity Profiles

• Results: H/D = 2, Re = 23,000

Mean velocity profiles

KW

RNG

V2F

r/D = 1

r/D = 2 H

D

• Experiment

Experiment

Page 20: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 20

Results from Two-Equation Models

• Results: H/D = 2, Re = 23,000

Nu* TKE*

Nusselt Number Re = 23,000

Turbulent Kinetic Energy Re = 23,000

• Experiment RNG

SKE KWW

RNG

SKE KWW

Page 21: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 21

Comparison of k–ω and V2F models

• Results: H/D = 2, Re = 23,000

Nu* TKE*

Nusselt Number Re = 23,000

Turbulent Kinetic Energy Re = 23,000

• Experiment V2F

KWW V2F

KWW

Page 22: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 22

Results from Two-Equation Models

• Results: H/D = 6, Re = 23.000

Nusselt Number Re = 23,000

Nusselt Number Re = 23,000

Nu* Nu* • Experiment

RNG

SKE KWW

• Experiment V2F

KWW

Page 23: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 23

Mixed Convection around a Wall-Mounted Cylinder

• Re = 40,000 (subcritical flow)

• Laminar BL with turbulent wake

• Bluff Body

• Massive separation, vortex shedding

• Turbulence model

• SST k–ω with y+ = 1

• LES with dynamic Smagorinsky subgrid model

• 3 million cell mesh

• Mixed convection (buoyancy is important)

• Boussinesq approximation

• Cylinder covered by a 5 mm thick steel layer

• Fluid/Solid coupled thermal simulation

• D >> d so use of shell conduction is appropriate

2.13 m

2 m

0.642 m

ReD = 40,000 g

Courtesy CEA/EDF

600 W

12 m

Page 24: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 24

Flow Regimes for Flow Past Cylinders

• Re < 50

• Laminar wake

• 50 < Re < 5000 :

• Von-Karman street (laminar BL)

• 5,000 < Re < 200,000:

• Laminar BL prior to separation (α = 80°). Sub-critical regime

• Re > 200,000 “Drag Crisis”

• Turbulent boundary layer prior to separation (α = 120°).

No separation Steady separation bubble

Oscillating Kàrman vortex wake

Turbulent boundary

layer with narrow

turbulent wake

Laminar boundary layer

with wide turbulent wake

Page 25: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 25

Subgrid Scale Viscosity Models

• FLUENT offers the following subgrid scale models to be used with LES:

• Smagorinsky model

• WALE model

• Wall Modeled LES (WMLES)

• Wall Modeled LES S-Omega

• Dynamic subgrid kinetic energy transport model

Viscous Model

Page 26: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 26

Results – Surface Temperature

20

40

60

80

100

120

140

160

-180 -160 -140 -120 -100 -80 -60 -40 -20 0

Te

mpéra

ture

(°C

)

Angle (°C)

SST450 SST1250 SST 1750

Exp 450 Exp 1250 Exp 1750

LES 450 LES1250 LES 1750

Exp. From CEA/EDF

450, 1250, 1750 … constant z-Planes

Angle (°)

Page 27: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 27

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

12,0-14,0

10,0-12,0

8,0-10,0

6,0-8,0

4,0-6,0

2,0-4,0

0,0-2,0

Visualisation de

l'échauffement de l'air

G=40cm

SST LES Exp.

H (mm)

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

12,0-14,0

10,0-12,0

8,0-10,0

6,0-8,0

4,0-6,0

2,0-4,0

0,0-2,0

Visualisation de

l'échauffement de l'air

G=40cm

W

(mm)

Results – Wake (x = 0.4 m) Normalized temperature contours

Page 28: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 28

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

8,0-10,0

6,0-8,0

4,0-6,0

2,0-4,0

0,0-2,0

Visualisation de

l'échauffement de l'air

G=50cm

Results – Wake (x = 0.5 m)

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

8,0-10,0

6,0-8,0

4,0-6,0

2,0-4,0

0,0-2,0

Visualisation de

l'échauffement de l'air

G=50cm

SST LES Exp.

H (mm)

W (mm)

Normalized temperature contours

Page 29: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 29

Results – Wake (x = 0.75 m)

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

6,0-8,0

4,0-6,0

2,0-4,0

0,0-2,0

G=75cm Visualisation de

l'échauffement de l'air

SST LES Exp.

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

6,0-8,0

4,0-6,0

2,0-4,0

0,0-2,0

G=75cm Visualisation de

l'échauffement de l'air

H (mm)

W (mm)

Normalized temperature contours

Page 30: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 30

Results – Wake (x = 1.5 m)

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

3,0-4,0

2,0-3,0

1,0-2,0

0,0-1,0

Visualisation de

l'échauffement de l'airG=1m50

SST LES Exp.

H (mm)

W (mm)

Normalized temperature contours

Page 31: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 31

Results – Conclusions

• Wall temperature comparable between RANS/LES

• More accurate wake prediction with LES

• CPU time required

• RANS – Days

• LES – Weeks

• In this case fluid/solid thermal coupling and large difference between characteristic time scales induce expensive unsteady calculations

Page 32: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 32

Large Eddy Simulation – Applications

• Compute unsteady temperature field

• Explicit representation of mixing

• Accurate min/max fluctuations

• Application examples

• Thermal fatigue

• Fluid-structure interaction (FSI)

Page 33: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 33

16.0 Release

Appendix: Lecture 3 Forced Convection

Page 34: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 34

Reynolds Analogy

• Boundary Layer Equations:

• Wall Fluxes:

L

00 , TULaminar Transition Turbulent

laminar

turbulent

0~~

~

Re

2

yL

fy

uC

0~~

~

Nu

yy

T

1,x~T~

00,x~T~

y~T~

PrRe

1

y~T~

vx~T~

u~

U/u,x~u~00,x~v~0,x~u~

y~u~

Re

1

x~P~

y~u~

vx~u~

u~

2

2

0

2

2

Page 35: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 35

Boundary Layers

• Reynolds analogy

• If dP/dx ~ 0, Pr ~ 1 (constant properties)

• In dimensionless form, equations are of the same form. Thus, the solutions for dimensionless velocity and dimensionless temperature should be equivalent.

Nu2

ReL

fC St2

fC

1,x~T~

00,x~T~

y~T~

PrRe

1

y~T~

v~

x~T~

u~

1,x~u~00,x~v~0,x~u~

y~u~

Re

1

y~u~

v~

x~u~

u~

2

2

2

2

PrRe

NuSt

Page 36: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 36

Some Definitions

0

w

yy

u

wU

0

w

yy

Tkq

UC

qT

p

w

y

ulT

2

mix yl mix

This definition is valid for the mixing length model

Page 37: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 37

Wall Functions

• BL Momentum RANS equations

• BC at the wall (y = 0):

• Mixing length model

2

0

0total

U

y

u

y

y

vu

y

u

yx

P

y

uv

x

uu

0 0 0

constant

vu

y

u

total

2

2

Ty

uyκ

y

uvu

Page 38: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 38

• Normalization:

• Viscous sublayer

• Turbulent region

Boundary Layers

2

Uvu

y

u

total

0

yu

2

Uvu

y

u

total

0

Cyu

ln1

yUy

U

uu

q

UcTTT

ppw

Page 39: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 39

Boundary Layers

• Boundary layer energy equation

• BC at the wall (y = 0):

• Reynolds analogy:

UTC

y

Tkq p

y

y

0

0total

TvC

y

Tk

yy

Tv

x

TuC pp

0 0

constant

TvC

y

Tk p

totalq

y

T

y

uyκ

y

TTv

T

2

T

T

PrPr

Page 40: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 40

Boundary Layers

• Viscous sublayer

• Turbulent region

UTCTvC

y

Tk pp

0

yT Pr

UTCTvC

y

Tk pp

0

PrlnPrT fyT

totalq

totalq

For a derivation please refer to “Turbulent heat-

transfer” by Scott Stolpa, pp 26-30

Page 41: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 41

Turbulent Thermal Boundary Layers

• The wall laws are also functions of Prandtl number.

• Viscous sublayer thickness defined as the intersection between viscous and logarithmic law.

y+ ~ 10 for Momentum and for Pr = 1

Pr = 1

)Pr(Pr, TT fyy

0.1 1 10 100 1000

y*

0

4

8

12

16

20

T*

0.1 1 10 100 1000

y*

0

20

40

60

T*

Pr = 7

Page 42: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 42

Velocity Wall Functions in FLUENT

• Non-equilibrium effect and pressure gradient effect

• Use Prandtl-Komolgorov eddy-viscosity model

• Keep pressure gradient in boundary layer equations (partially cancel the inertial terms)

ykCT

2/14/1

yEU ln

1

PP ykCy

2/14/1

/

2/14/1

w

PP kCUU

ykCE

U

kCU 2/14/1

2

2/14/1

ln1

~

2

ln2

1~ vv

v

v y

k

yy

y

y

k

y

dx

dPUU

2/14/1

P

vv

kC

yy

Page 43: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 43

Temperature Wall Functions in FLUENT

• Jayatilleke: Wide range of Prandtl number

TctPt

P

t

T

Pp

PPpw

yyUUq

kCPyE

k

yyq

kCUy

q

kCCTTT

for PrPrPr2

ln1

Pr

for 2

PrPr

22

2/14/1

2/14/12

2/14/1

tt

PPr

Pr007.0exp28.011

Pr

Pr24.9

4/3