Heat Conduction Unsteady stateeng.sut.ac.th/.../file/05-Conduction_1482710711.pdfUnsteady state of...

22
Heat Conduction Unsteady state In general, temperature is varying with direction and time t , z , y , x f T t T C q z T y T x T k p 2 2 2 2 2 2 Heat Conduction Importance of External Versus Internal Resistance to Heat Transfer Solid Liquid Heat transfer from surface to center of the solid will counter two resistance 1. External resistance 2. Internal resistance

Transcript of Heat Conduction Unsteady stateeng.sut.ac.th/.../file/05-Conduction_1482710711.pdfUnsteady state of...

  • Heat Conduction

    Unsteady state In general, temperature is varying with direction and time

    t,z,y,xfT

    tTCq

    zT

    yT

    xTk p2

    2

    2

    2

    2

    2

    Heat Conduction

    Importance of External Versus Internal Resistance to Heat Transfer

    Solid

    Liquid

    Heat transfer from surface to center of the solid will counter two resistance

    1. External resistance

    2. Internal resistance

  • Heat Conduction

    Bi > 40 Finite internal and external resistance

    Bi < 0.1 No internal and finite external resistance0.1 < Bi < 40 Finite internal resistance, no external resistance

    Case 1Case 2Case 3

    Internal resistance (L/k)External resistance (1/h)Bi =

    Bi = hL k

    L = characteristic length

    Heat ConductionBodies with negligible internal temperature gradient

    Major simplification: Assume that temperature variation within the body are negligible.

    tfT In the case of material having very high thermal conductivity (k)

    If initial temperature is Toh

    Volume VSurface A

    Tf

    Tf

    T0

    Time

    “Lump System”

  • Unsteady state of Heat Conduction

    - At any instant of timeApply the first law of Thermodynamics

    Rate at which heat transfer to the body

    )TT(hAtTVC fp

    Differential equation

    )TT( fLet

    hAt

    VCp

    Initial condition

    0f0 )TT(

    0TT,0tAt

    Unsteady state of Heat ConductionBodies with Negligible Internal Temperature Gradients (cont)

    VchAt

    0f0

    f peTTTT

    Solution

    Temperature ratio

    Time

    VchAt

    0

    pe

    0

    Tf

    T0

    Time

    fTT Remaining temperature

  • Differential Equation of Heat Conduction

    ExampleSteel ball

    - R = 2.5 cm - k = 54 W/moC - p = 7833 kg/m3 - Cp = 0.465 kJ/kgoCFind ‘t’ to cool down from 850 oC to 250oC, if exposed to air at 50 oC (h = 100 W/moC)

    tc.VA.hpeTR

    25.05085050250

    )TT()TT(TRf0

    f

    t)025.0

    34)(10465.0)(7833(

    )025.04)(100(.EXP25.033

    2

    s8.420t

    Unsteady state of Heat ConductionExample ρ = 980 kg/m3

    Rjacket= 0.5 m

    hsteam= 5000 W/m2oC

    Tinside jacket = 90 oC

    Ttomato juice= 20 oC

    Cp= 3.95 kJ/kgoCJacket hemispherical kettle

    Tomato juice

    Steam Find temperature of tomato juice after 6 min

    Hemispherical kettle 2

    2

    r22r4A

    33

    r3/22r3/4V

    r3

    VA

  • Differential Equation of Heat Conduction

    Jacket hemispherical kettle

    Tomato juice

    Steam

    tc.VA.hpeTR

    r3

    )1095.3)(980()605)(5.0/3)(5000(.EXP

    902090T

    3

    C16.83T o

  • Unsteady state of Heat ConductionBodies in which internal temperature gradients cannot be neglected

  • Unsteady state of Heat ConductionBodies in which internal temperature gradients cannot be neglected

    Unsteady state in an finite slab

    2b

    tTCq

    zT

    yT

    xTk p2

    2

    2

    2

    2

    2

    tTC

    xTk p22

    Unsteady state of Heat Conduction

    tT

    xT2

    2

    Define )TT( f

    tx22

    1. Initial condition

    0f00 )TT(orTT,0t

    2. Boundary conditions

    0dxd

    0x

    bx

    bx

    hdxdk

    1) 2)

    Need sophisticate techniques

  • Unsteady state of Heat ConductionSolution obtained by “separation of variables” method in the form of a convergent series

    1nn

    t

    nnn

    n )xcos(ebcosbsinn

    bsin22n

    Where are called eigenvalues and are the roots of the equation

    n21 ...,

    )k/hb/()b(h/kbcot and

    Unsteady state of Heat ConductionSolution in terms of dimensionless parameters

    1nn

    )b/t()b(

    nnn

    n

    0

    )bx,bcos(e

    bcosbsinnbsin2

    222n

    Thus

    bx,

    bt,bf 2n

    0

    bx,

    bt,

    khbf 2

    0

  • Unsteady state of Heat Conduction

    khb

    bx

    Biot number (Ratio of thermal resistance of the solid to thermal resistance at the surface)

    2bt Fourier number (Dimensionless of time)

    Dimensionless measure of location in the slab

    xb

    Rx

    In the case of sphere

    Unsteady state of Heat ConductionPresent in graphic

    0b/x0

    0b/x

    0

    Note

    bx,

    bt,

    khbf 2

    0

  • Unsteady state of Heat ConductionPresent in graphic

    0

    0b/x

    Midplane

    Unsteady state of Heat ConductionPresent in graphic

    At any point

    0b/x

  • Unsteady state of Heat ConductionUnsteady state in a finite cylinder and in a sphereSimilarly, series solutions available for an infinitely long cylinder and a sphere, results are also presented graphically

    0b/r0

    0b/r

    0

    Note

    Unsteady state of Heat ConductionUnsteady state in an finite cylinder

  • Unsteady state of Heat ConductionPresent in graphic

    At any point

    Unsteady state of Heat ConductionUnsteady state in a sphere

  • Unsteady state of Heat ConductionPresent in graphic

    At any point

    Unsteady state of Heat Conduction

    T0 = 200ºC

    Problem

    Tf = 20ºCTf = 20ºC

    Tx = 0 = ?Tx = b = ?

    at t = 5 min find

    1 cm

  • Unsteady state of Heat ConductionSignificant of Biot Number

    The value of Biot number decides whether internal temperature gradient are importantUsual criterion

    Bi < 0.1 Neglect internal temperature gradients

    For a slab (hb/k) < 0.1For a cylinder/sphere (hR/k) < 0.1

    Unsteady state of Heat ConductionTwo and three dimensional unsteady state heat conductionLong rectangular bar

    2a

    2b

    - Initially at a temp. T0- Immerged at t=0 in

    surroundings at a temp. Tf- Surface heat transfer is h

    T = f(x, y, t)

  • Unsteady state of Heat ConductionTwo and three dimensional unsteady state heat conductionDifferential equation

    2a

    2b

    tTCq

    zT

    yT

    xTk p2

    2

    2

    2

    2

    2

    tT1

    yT

    xT

    2

    2

    2

    2

    t1

    yx 22

    2

    2

    )TT( fwhere

    Unsteady state of Heat ConductionDifferential equation

    t1

    yx 22

    2

    2

    Initial conditions t = 0, T = T00f0 )TT(

    Boundary conditions

    0x 0x

    0y 0y

    2a

    x

    y

    axax

    hx

    k

    byby

    hx

    k

    2b

  • Unsteady state of Heat ConductionSolution

    y0x00

    Product solution

    x0

    is the solution for dimensionless temperature in an

    infinite slab of width 2a

    y0

    is the solution for dimensionless temperature in an

    infinite slab of width 2b

    They both are derived from the charts

    Unsteady state of Heat ConductionRectangular box (2a x 2b x 2c)

    z0y0x00

    In a similar way

  • How to calculate HT in multiple dimensional case? (Finite objects)

    1) TRoverall= TR1 x TR2 x TR3

    2) TRoverall= TR3

    3) TRoverall= TRslab x TRcylinder

    ExampleD = 6.8 cm L = 10.3 cm

    T0= 29.5 oC Tstream = 115.5 oC

    h = 4542 W/m2oC k = 0.83 W/moCα = 2.007 x 10-7 m2/s

    จงหาวาอุณหภูมิที่ตรงกลาง เทาไรเม่ือเวลาครบ 45 min.- วางซอนกัน- วางช้ันเดียว

  • Applying one-dimension HT for the case of a long cylinder

    R = 0.034 m

    Case 1 Stacked over each other

    1/Bi = k/hR = 0.005375Fo= αt/R2 = 0.4638

    0.13

    TR = (T – Tf)/(T0-Tf)

    T = 104.3 oC= 0.13

    Case 2

    CylinderTR = 0.13

    Plane wall1/Bi = k/hR = 0.0036

    Fo= αt/R2 = 0.209TR = 0.8

    0.8 wallplanecylinderoverall TRTRTR

    104.08.013.0TRoverall

    C6.106T ocenter

  • Unsteady state of Heat ConductionA food product of cylindrical shape (length = 10 cm, diameter = 10 cm) is initially at30oC. What will be its center temperature after exposure to heating medium at 100oCfor 124 minutes assuming no thermal resistance at the surface? Given: k = 0.571W/(m.oC), = 1,055 kg/m3 and C = 4.015 kJ/(kg.oC).

    If this food product was produced in cubical and spherical shapes having same volume,what will be the temperatures at the center under identical heat conditions?

  • Unsteady state of Heat Conductionผลิตภัณฑทางการเกษตรรูปทรงกระบอก (cylinder) ขนาด 7 cm ยาว 5 cm มีอุณหภูมิเร่ิมตนที่ 30 ºCถูกนําไปใสใน autoclave ท่ีอุณหภูมิ 100 ºC จงหาวาอุณหภูมิที่ตรงกลางของผลิตภัณฑน้ีจะเปนเทาไรเม่ือเวลาผานไป 60 นาที กําหนดให k = 0.571 W/m ºC, = 1,055 kg/m3, Cp = 4.015 kJ/kg ºCกําหนดใหสมการหาอุณหภูมิท่ีจดุศูนยกลางของผลิตภัณฑท่ีรูปทรงตางๆ ดังน้ี Infinite plane ln TR = -(0.413 + 0.70Fo) Infinite cylinder ln TR = -(0.319 + 1.56Fo) Sphere ln TR = -(0.159 + 2.50Fo) ถาผลิตภัณฑเปลี่ยนเปนทรงกลม (sphere) และรูปทรงลูกเตา (cubic shape) ท่ีปริมาตรเทาเดิม จงเปรียบเทียบอุณหภูมิของผลิตภัณฑแตละชนิด