HEAT BLANKETING ENVELOPES OF NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute,...

19
HEAT BLANKETING ENVELOPES OF N HEAT BLANKETING ENVELOPES OF N EUTRON EUTRON ST ST A A R R S S D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Ladek Zdroj, February 2008, Outer crust Density profile Thermal structure Main properties of heat blankets

Transcript of HEAT BLANKETING ENVELOPES OF NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute,...

HEAT BLANKETING ENVELOPES OF HEAT BLANKETING ENVELOPES OF NNEUTRON STEUTRON STAARRSS

D.G. Yakovlev

Ioffe Physical Technical Institute, St.-Petersburg, Russia

Ladek Zdroj, February 2008,

• Outer crust• Density profile• Thermal structure• Main properties of heat blankets

OUTER CRUST

Composition: electrons + ions (nuclei)

Electrons (e): constitute a strongly degenerate,almost ideal gas, give the main contributioninto the pressure

Ions (A,Z): fully ionized by electron pressure, givethe main contribution into the density

Electron background

g/cc 10/ ;)/(009.1)/(

:parameter icrelativistElectron

)3( :momentum FermiElectron

:Pressure

:densty Mass

:neutrality Electric

66

3/16F

3/12F

AZcmpx

np

PP

nm

Znn

e

e

e

ii

ie

)g/cm 104( 311

Equation of state of degenerate electron gas

2 2 4 2 2 1/ 23

0

1/32

24 , ( ) , sinh

(2 )

( , ), 3

Fp

e

VE dp p m c p c p mc

NE V x E E xP x

V V x V mc V

))1(ln(13

2)1(

))1(ln()12()1(

2/1222/120

2/1222/120

xxxxxPP

xxxxxVPE

223

32

54

0 cm

dyn 10801.1

8

cm

P e Frenkel (1928)Stoner (1932)Chandrasekhar (1935)

LIMITING CASES

Non-relativistic electron gas

6 3

2 22 1 1/

1, 10 g/cm ( 10 meters under the surface)

3 1 5E , ~ , , 1.5

10 5 3nF F

e e e ee e

x

p pEm c n n P n n

V m m

Ultra-relativistic electron gas

6 3

1 1/

1, 10 g/cm ( 10 meters under the surface)

3 1 4E , ~ , , 3

4 4 3n

F e F e

x

Ep c n P p c n n

V

2 4 2 2 2 2

2

9 6

Electron chemical potential: 1

Electron degeneracy temperature: ( ) /

( 1.6 10 K at 10 g/cc)

e F e

F e B

m c c p m c x

T m c k

Equation of state of degenerate electron gas

Universal Density Profile in a Neutron Star Envelope

In a thin surface envelope

222222

222

222

22

/1/)( ,/1

/11

11ee , ,

dRdzdcds

RrrRzdtRrd

dRRr

dr

R

rdtcds

R

r

r

rMmRr

gg

g

g

gg

locally flat space

r

r=R z=0

z

13

2 2 2 2

2 3 2 2

2

4 2 1 1 1

, / ~ / 1

1 /

S S

g

dP G m P r P Gm

dr r c mc rc

P c P r mc P c

dP GMg g

dz R r R

surface gravity

14 2Sun1.4 , 10 km 2.43 10 cm/sSM M R g for a «canonical»

neutron star

1/32 2 6

2

22

00 14

2

, , /

/ , 1 , 1.009

При 0 0

1 1 49.3 m

(1 /

e e i i u e

FeS u e

e

e

e

u S S

P P dP n d n m m n A Z

p Zdg m A Z m c x x

dz m c A

z x m c

m c Zz Zx z

z m g A Ag

x z

3/ 2

2 3 60

0 0

) 1, 1.03 2Z z z

z xA z z

In the outer envelope:

depth-scale

the density profile in the envelope

Limiting cases:

360

2/360

~ g/cc 10 ,1 , )2(

~ g/cc 10 ,1 , )1(

zxzz

zxzz

Accumulated mass:

2

2 20

6 10 11 5Sun Sun

( ) ( )

1 / 4 1 /

( ~ 10 g/cc) ~ 10 , ( ~ 4 10 g/cc) ~ 10

z RS S

S S

rg g

g g M rdPg P r g dz dr R

dz R r R R r R

M M M M

14 214 /10 cm/sS Sg g

Density profile in the envelope of a canonical neutron star

THERMAL STRUCTURE OF HEAT BLANKETING ENVELOPES

=F=const

MAIN EQUATIONS

heat transport in a thin envelope without energy sources and sinks

= thermal conductivity (radiative+electron)

= opacity

S

dPg

dz hydrostatic equilibrium;

gS=const – surface gravity

(F)

(H)

Divide (F)/(H):

The basic equation to be solved(TP)

Degenerate layerElectron thermal conductivity

Non-degenerate layerRadiative thermal conductivity

Atmosphere. Radiation transfer

THE OVERALL STRUCTURE OF THE BLANKETING ENVELOPE

Nearly isothermal interior

Radiativesurface

T=TF = onset of electron degeneracy

9 11 3~ 10 10 g cm

b

H

ea

t b

lan

ke

t

z

Z=0

Hea

t fl

ux

F

T=TS

T=Tb

TS=TS(Tb) ?

NON-DEGENERATE RADIATIVE LAYER

Assume:

Kramers’s radiative thermal conductivity (free-free transitions):

66

3

2, 6.5

~ 1 = Gaunt factor

/(10 K)

in g/cm

effg

T T

Pressure of nondegenerate matter (P=nkBT):

Eq. (TP):

(K)

Integrate with

0 at =0:T

Insert Into (K):

/( ) ~T

Constant thermal conductivity along thermal path

14 214 /10 cm/sS Sg g

Analytic model

Linear growth of T with z zCM=z/(1 cm)

Densityprofile

( )T T

TEMPERATURE AND DENSITY PROFILES IN THE RADIATIVE LAYER

ONSET OF ELECTRON DEGENERACY2 /(2 )F F e BT T p m k

ELECTRON CONDUCTION LAYER Analytic model

Electron thermal conductivity of degenerate electrons (ei-scattering):

~ 1 = Coulomb logarithm

Equation (TP) assuming P=Pe (degenerate electrons):

Integrate within degenerate layer with at ( )d t d r rtT T x x

Temperature profile within degenerate layer

INTERNAL TEMPERATURE VERSUS SURFACE TEMPERATURE

Typically, and

T(z)const=Tb at z>>zd which is the temperature of isothermal interior

The main thermal insulation is provided by degenerate electrons!

TS-Tb RELATION FOR NEUTRON STARS

Our semi-analytic approach:

Exact numerical integration (Gudmundsson, Pethick and Epstein 1983)

For estimates:

8 46 1410 / Kb S ST T g

“DETECTOR OF LIE”

For iron heat blanketing envelopes (A=56, Z=26)

COMPUTER VERSUS ANALYTIC CALCULATIONS

log TS [K] = 5.9 or 6.5 (Potekhin and Ventura 2001) s = radiative surface solid lines – computer d = electron degeneracy dashed lines – analytics t = transition between radiative and electron conduction

THERMAL CONDUCTIVITY OF DEGENERATE ELECTRONS

MAIN PROPERTIES OF HEAT BLANKETING ENVELOPES

• Self-similarity (regulated by gS)

• Dependence on chemical composition (thermal conductivity becomes lower with increasing Z). Envelopes composed of light elements are more heat transparent (have higher TS for a given Tb)

• Dependence on surface magnetic fields (B-fields make thermal conductivity anisotropic). For a given Tb magnetic poles can be much hotter than the magnetic equator – non-uniform surface temperature distribution

• Finite thermal relaxation (heat propagation) times:

• Actual heat blanket is typically thinner than the “computer one” (density <1010 g/cc). When the star cools, the actual heat blanket becomes thinner (as well as degeneracy layer and the atmosphere)

• In very cold stars (TS<<104 K) the blanket disappears (TSTb)

6 10

6 8

For ~ 10 K and ~ 10 g/cc ~1 yr

For ~ 10 K and ~ 10 g/cc ~1 d

s b

s b

T

T

REFERENCES