Hanson Stanford Flame Workshop 2012

download Hanson Stanford Flame Workshop 2012

of 36

Transcript of Hanson Stanford Flame Workshop 2012

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    1/36

    MeasurementsofElementaryRateConstants,

    IgnitionDelaysandSpeciesHistoriesinShockTubes

    R.K.Hanson,D.F.Davidson

    StanfordUniversity

    1st InternationalWorkshoponFlameChemistry

    July2829,2012

    ShockTube/LaserApproach

    AdvancesinMethodology

    ElementaryReactionRateStudies

    MultiSpeciesTimeHistories

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    2/36

    StanfordShock

    Tubes

    2

    Kinetics

    Shock

    Tube2

    (30atm)

    Kinetics

    Shock

    Tube1(30atm)

    Aerosol

    Shock

    Tube

    (10atm)

    High

    Pressure

    Shock

    Tube

    (500atm)

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    3/36

    NewConstrainedReactionVolume(CRV)Facility

    2Configurations

    3

    CRV1

    GasPhase

    Experiments

    to100atm

    CRV2

    Aerosol

    Experiments

    to100atm

    Constrained

    ReactionVolume

    Sliding

    Valve

    Aerosol

    GenerationTank

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    4/36

    StanfordLaser

    Diagnostics

    4

    Ultrafast

    lasersusedto

    extendUVtuningrange

    (2009)

    Firstuseof

    tunable

    dyelasers

    inshocktubes

    (1982)

    Newlasers

    allowsimple

    accesstomidIR(200710)

    Ultraviolet

    CH3 216nm

    NO

    225nm

    O2 227nm

    HO2 230nm

    OH 306nm

    NH 336nm

    Visible

    CN 388nm

    CH

    431nm

    NCO 440nm

    NO2 472nm

    NH2 597nm

    HCO 614nm

    Infrared

    H2O 2.5m

    CO2 2.7m

    CH4 3.4m

    CH2O 3.4m

    CO 4.6m

    NO 5.2m

    C2H4 10.5m

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    5/36

    LaserAbsorptionYieldsHighSensitivityRepresentativeDetectionLimits:PolyatomicMolecules

    Polyatomicmolecules@1500K:2200ppm

    1000 1500 2000 2500 3000

    0.01

    0.1

    1

    10

    100

    1000

    CH2OCO2

    CH3

    C2H4

    DetectionLimit[pp

    m]

    Temperature [K]

    1atm,15cm,1MHz

    H2O

    NH2

    5

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    6/36

    subppm

    sensitivityfor

    OH,CH,CN

    LaserAbsorptionYieldsHighSensitivityRepresentativeDetectionLimits:DiatomicMolecules

    Diatomicmolecules@1500K:

    subppmdetectivitiy forUVabsorbers

    ppmdetectivity forIRabsorbers

    1000 1500 2000 2500 3000

    0.01

    0.1

    1

    10

    100

    1000

    CO

    OH

    DetectionLimit[pp

    m]

    Temperature [K]

    1atm,15cm,1MHz

    CH

    CN

    6

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    7/36

    AdvancesinShockTube

    Methodology

    1. Improveduniformitywithdriverinserts

    2. Longertesttimeswithtailoredgas

    mixtures&extendeddriver

    3. Reactivegasmodeling:

    problemandsolutions

    7

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    8/36

    ImprovementinReflectedShockTemperatureUniformity

    UsingDriver

    Inserts

    Conventional shocktube

    operationcanprovide

    nearidealuniformflows

    for13ms

    But,boundarylayersand

    attenuation inducedP/dt

    anddT/dt atlongertimes

    8

    dP/dt = 3%/ms

    dT/dt = 1.2%/ms

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    9/36

    ImprovementinReflectedShockTemperatureUniformity

    UsingDriver

    Inserts

    Driverinsertsmodifyflowtoachieve

    uniformTandPatlongtesttimes

    P5T5

    These effectsreduce

    ignitiondelaytimes

    relativetoConstantPcase

    Solution:DriverInserts

    VRS

    9

    dP/dt = 3%/ms

    dT/dt = 1.2%/ms

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    10/36

    ImprovementinReflectedShockTemperatureUniformity

    UsingDriverInserts

    Result: dP/dt = 0priortoignition

    ProperignforcomparisonwithConstantPsimulations

    P5T5VRS

    10

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    11/36

    LongerTestTimesAchievablewith

    TailoredGasMixtures&ExtendedDriverSectionsConventionalshocktubeoperation:~13mstesttime

    NooverlapwithRCMoperation~10150mstesttime

    10

    0.4 0.8 1.2 1.61E-3

    0.01

    0.1

    1

    10

    100

    1000

    TestTime,

    Ignition

    Time

    [ms]

    1000/T [1/K]

    2500K 1000K 625K

    Unmodified

    Stanford ST

    n-Dodecane/Air

    10atm

    0.4 0.8 1.2 1.61E-3

    0.01

    0.1

    1

    10

    100

    1000

    TestTime,

    Ignition

    Time

    [ms]

    1000/T [1/K]

    2500K 1000K 625K

    Unmodified

    Stanford ST

    RCM

    n-Dodecane/Air

    10atm

    =1

    11

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    12/36

    0.4 0.8 1.2 1.61E-3

    0.01

    0.1

    1

    10

    100

    1000

    Tes

    tTime,

    Ignition

    Time

    [ms]

    1000/T [1/K]

    2500K 1000K 625K

    Unmodified

    Stanford ST

    Modified ST

    RCM

    n-Dodecane/Air

    10atm

    Longerdriverlengthandtailoredgasmixtures

    canprovidelongertesttimes(>40ms)

    2xDriverExtension

    ShocktubesnowcanoverlapwithRCMs

    =1

    LongerTestTimesAchievablewith

    TailoredGas

    Mixtures

    &Extended

    Driver

    Sections

    12

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    13/36

    FirstUseofLongTestTimeFacility:

    LowPressurenHeptaneIgnitionintheNTCregime

    Testtime=45ms at725K

    Enablesfirstlowpressure(~3atm)nheptaneignition

    datainNTCregime

    Clearevidenceof2stageignition:1=8ms,2=20ms

    Nextstep:adddriverinsertsto

    removedP/dt &dT/dt

    Howdothe3atm data

    comparetohighPdata?

    13

    0 10 20 30 40 500

    1

    2

    3

    4

    5

    62nd Stage

    Ignition

    OH Emission

    Non-Reactive Mix w/o Inserts

    RelativePressure

    Time [ms]

    n-Heptane/21%O2/Ar

    =1, 725K, 2.9 atm

    Reactive Mix1st Stage

    Ignition

    Test time = 45 ms

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    14/36

    LowPressure,LowTemperatureStudies:

    NewResults

    for

    nHeptane

    inthe

    NTC

    Regime

    Previous1255atm data

    New3atm data

    Howdomeasurementscomparewithcurrentmodels? 14

    1.0 1.2 1.4 1.60.1

    1

    10

    100

    55 atm

    40 atm

    12 atm

    1000K 625K833K

    IgnitionD

    elayTimes

    [ms

    ]

    1000/T [1/K]

    714K

    3 atm

    n-Heptane/21%O2/Ar,N2 =1

    Stanford

    Aachen

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    15/36

    LowPressure,LowTemperatureStudies:

    NTCHeptane,

    Comparison

    with

    Model

    LLNLC7(2000)modelperformsreasonably wellathighP

    FurthertestsneededatlowP

    Revealsvalueoflongtesttimeexperiments 15

    1.0 1.2 1.4 1.60.1

    1

    10

    100

    40 atm

    12 atm

    1000K 625K833K

    IgnitionDelayTimes

    [ms

    ]

    1000/T [1/K]

    714K

    3 atm

    n-Heptane/O2/Ar/N2 =1

    Solid:

    LLNL C7

    Model

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    16/36

    ReactiveGasdynamics Modeling:AProblem

    Mostcurrentreflectedshockmodelingassumes

    ConstantVolumeorConstantPressure

    But:

    Exothermic energyreleaseduringoxidationor

    endothermic coolingduringpyrolysischangesT&P

    behindreflectedshocks

    notaConstantVorConstantPprocess! Example:HeptaneIgnition

    16

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    17/36

    EffectofEnergyReleaseonPProfiles:

    nHeptane

    Oxidation

    Howdoesthiscomparewithmodels?

    NotaconstantPprocess!

    17

    -100 0 100 200 300 400 500 6000

    1

    2

    3

    4

    5

    0.4% Heptane/4.4% O2/Ar, =1

    1380K, 2.3 atm

    Pressure

    [atm

    ]

    Time [us]

    ign

    0

    2

    4

    MeasuredSidewallP

    ConstantP

    Model

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    18/36

    EffectofEnergyReleaseonPProfiles:

    nHeptane

    Oxidation

    Howdoesthiscomparewithmodel?

    NotaconstantPprocess!

    NotaConstantVprocess,evenfor0.4%fuel!

    Sohowcanentireprocessbemodeled? 18

    -100 0 100 200 300 400 500 6000

    1

    2

    3

    4

    5

    0.4% Heptane/4.4% O2/Ar, =1

    1380K, 2.3 atm

    Pressure

    [atm

    ]

    Time [us]

    ign

    0

    2

    4

    MeasuredSidewallP

    ConstantP

    Model

    ConstantV

    Model

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    19/36

    3ProposedSolutionstoEnableModelingthrough

    EntireCombustionEvent

    1. Minimizefuelloadingtoreduceexothermically orendothermicallydrivenTandPchangesenabledbyhighsensitivitylaserdiagnostics

    2. Modifiedgasdynamics modelingtoaccountforPandTchangeduringcombustionworkinprogress(butcomputationallyintensive:1D,3D)

    3. Usenewconstrainedreactionvolumeconcepttominimizepressureperturbations

    enablesconstantP(orspecifiedP)modeling

    Examples: 1)Useofdilutereactivemixtures2)Useofconstrainedreactionvolume

    19

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    20/36

    Example1:BenefitofDiluteMixtures

    3PentanoneOxidation

    Pressurenearlyconstantthroughoutexperiment

    GoodagreementbetweenConstantH,Pmodelandexpt.

    Modelsuccessfullyincludestemperaturechange

    0 500 1000 15000

    50

    100

    150

    OHMoleFraction[ppm]

    Time [s]

    Const. H PModel

    OH Data

    0 500 1000 1500

    0.0

    0.5

    1.0

    1.5

    2.0

    Pressure[atm]

    Time [s]

    400 ppm 3-Pentanone/O2/Ar

    1486 K, 1.52 atm, =1

    LowFuelLoadingExperiment

    20

    OHMoleFraction

    TfinalTInitial=45K

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    21/36

    Example2:ConstrainedReactionVolumeApproach

    HydrogenIgnitionat950K

    Largereactionvolumegiveslargeenergyrelease P& T

    CRVgivesreducedenergyrelease nearconstantP

    ConventionalShockTube

    21

    ConstrainedReactionVolume

    Helium TestMixture

    PreShock

    PostShock

    PreShock

    PostShock

    Helium NonReactiveMix TM

    LargeRegionof

    Energy Release

    SmallRegionof

    EnergyRelease

    Reflected

    ShockWave

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    22/36

    ConventionalSTexhibitslargepressurechange!

    CRVpressurenearlyconstantthroughoutexperiment!

    Allowskineticsmodelingthroughignitionandcombustion!

    ConventionalShockTube

    22

    ConstrainedReactionVolume

    0 1 2 3 4 5

    0

    2

    4

    6

    8

    Pressure

    4%H2-2%O

    2-Ar

    Normal Filling979K, 3.44 atm

    Pressure

    [atm]

    Time [ms]

    Emission

    0 1 2 3 4 5

    0

    2

    4

    6

    8

    Pressure

    4% H2-2%O

    2-Ar

    CRV = 4 cm956K, 3.397 atm

    Pressure

    [atm]

    Time [ms]

    Emission

    Ignition

    Example2:ConstrainedReactionVolumeApproach

    HydrogenIgnitionat950K

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    23/36

    ElementaryReactionRate

    Determinations

    Goal

    Neardirectdeterminationofrateconstantsforspecificreactions

    ExamplesOH+ketones:

    acetone,2butanone,2&3pentanone

    OH+alkanes

    OH+butanol isomers

    OH+methylesters

    23

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    24/36

    ExperimentalStrategy

    fast upon

    shock heating

    tertbutylhydroperoxide

    TBHPusedasapromptOHprecursor

    UsefulTrange(850to1350K)

    PioneeredbyBott andCohen(1984) AlsousedatArgonne

    Fuelinexcess,pseudofirstorderexperiment

    24

    Acetone

    + +

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    25/36

    Representative3Pentanone+OHData:

    1188Kand1.94atm

    0 50 100

    0

    5

    10

    15

    20

    OHM

    oleFraction[ppm]

    Time [s]

    Current Study

    1.23x1013

    cm3mol

    -1s

    -1

    211 ppm 3-Pentanone / Ar

    17 ppm TBHP

    1188 K, 1.94 atm

    0 50 100-4

    -3

    -2

    -1

    0

    1

    OH

    Sensitivity

    Time [s]

    3-Pent+OH=Products

    CH3+OH=CH

    2*+H

    2O

    C2H

    5=C

    2H

    4+H

    Highqualitydataallowshighprecisioncomparisonwithmodel

    Sensitivityanalysisconfirmspseudofirstorderbehavior

    Neardirectdeterminationofreactionrateconstant!25

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    26/36

    Resultsfor3Pentanone+OH Products

    Nootherhightemperaturedataavailable

    NUImodel(Serinyel etal.)inexcellentagreement

    0.7 0.8 0.9 1.0 1.1 1.21E12

    1E13

    1E14

    833K1429K 909K1000K1111K

    Current Study

    Serinyel et al. - NUI Galway (2010)

    k[cm

    3m

    ol-1

    s-1]

    1000/T [1/K]

    3-Pentanone + OH = Products

    1250K

    26

    0.7 0.8 0.9 1.0 1.1 1.21E12

    1E13

    1E14

    833K1429K 909K1000K1111K

    Current Study

    k

    [cm

    3m

    ol-1

    s-1]

    1000/T [1/K]

    3-Pentanone + OH = Products

    1250K

    +/20%

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    27/36

    Summary:OH+KetonesProducts

    HowdodatacomparewithStructuralActivityRelationship(SAR)model?

    Dataagreewithin25%withSARestimatedrateconstants

    Similarmeasurementsperformedwithmethylesters 27

    0.7 0.8 0.9 1.0 1.1 1.21E12

    1E13

    833K909K1000K1111K1250K

    Acetone

    2-Butanone3-Pentanone

    2-Pentanone

    kKetone+OH

    [cm

    3m

    ol-1

    s-1]

    1000/T [1/K]

    Ketone + OH = Products

    1429K

    Lines: Modified SAR (SAR x 0.75)

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    28/36

    Summary:OH+Methyl Esters Products

    Dataagreewithin25%withSARestimatedrateconstants

    Currentwork: OH+aldehydes,alcohols

    28

    0.7 0.8 0.9 1.0 1.1 1.2

    1E12

    1E13

    833K909K1000K1111K1250K

    MButanoate

    MPropanoate

    MFormate

    MAcetate

    Lines: Modified SAR (SAR x 0.75)

    kMethylEs

    ter+OH

    [cm

    3m

    ol-1 s

    -1]

    1000/T [1/K]

    Methyl Ester + OH = Products

    1429K

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    29/36

    MultiSpeciesTimeHistories

    Motivation

    Multispecies

    provide

    greater

    constraint

    onmechanismrefinement/evaluation

    RecentWork

    Ketones:Acetone,Butanone,3Pentanone

    Alcohols:1,2,tert,&isoButanol

    Alkanes:nHexadecane

    Esters:MethylFormate,MA,MP,MB,EP

    29

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    30/36

    MultiSpeciesApproach:3PentanonePyrolysis

    3Pent =3.39m CH3 =216nm

    C2H4 =10.5mCO =4.6m

    0 100 200

    0

    100

    200

    300

    0.1% 3-Pentanone / Ar.

    1346 K, 1.67 atm

    CH

    3MoleFraction[ppm]

    Time [s]

    0 500 1000 1500

    0.0

    0.5

    1.0

    1.5

    2.0

    1343 K, 1.60 atm

    C2H

    4MoleFraction[%]

    Time [s]

    1% 3-Pentanone / Ar

    0 500 10000.0

    0.4

    0.8

    1.2 1% 3-Pentanone / Ar

    3-PentanoneMoleFraction[%]

    Time [s]

    1323 K, 1.32 atm

    0 500 1000

    0

    1000

    2000

    3000

    1325 K, 1.60 atm

    C

    O

    MoleFraction[ppm]

    Time [s]

    0.25% 3-Pentanone / Ar

    30ExcellentSNR,

    high

    sensitivity

    data

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    31/36

    ComparisonwithSerinyel etal.(2010)GalwayNUI

    3Pent CH3

    C2H4CO

    0 100 200

    0

    100

    200

    300

    0.1% 3-Pentanone / ArSerinyel et al.

    1346 K, 1.67 atm

    CH

    3MoleFraction[ppm]

    Time [s]

    0 500 1000 1500

    0.0

    0.5

    1.0

    1.5

    2.0

    1343 K, 1.60 atm

    C2

    H4

    MoleFraction[%]

    Time [s]

    1% 3-Pentanone / Ar

    0 500 10000.0

    0.4

    0.8

    1.2 1% 3-Pentanone / ArSerinyel et al.

    3-PentanoneMoleFraction[%]

    Time [s]

    1323 K, 1.32 atm

    0 500 1000

    0

    1000

    2000

    3000

    1325 K, 1.60 atm

    C

    O

    MoleFraction[ppm]

    Time [s]

    0.25% 3-Pentanone / ArSerinyel et al.

    TwoDifferences:1)3Pdecompositionrate; 2)CO/C2H

    4yields

    31

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    32/36

    3PDataEnablesRevisionofDecompositionRate

    3Pdatashow strongsensitivitiestok1+k2

    3PentanoneSensitivity

    Revisedktotal3.5xSerinyel etal.rate

    COyieldsstillnotcorrect!

    ArrheniusPlot:

    3Pent

    Products

    0.7 0.8 0.91

    10

    100

    1000

    10000

    100000

    1111K1250K

    ktotal

    [1/s]

    1000/T [1/K]

    3-Pentanone = Products

    1.6 atm

    Serinyel et al. (2010)

    1429K

    32

    2Channels

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    33/36

    COYieldResolvedthroughUseofOAtomBalance

    Modelunderpredicts COandoverpredicts methylketene

    Why? Methylketenedecompositionpathwaymissinginmechanism

    IntroduceCH3CHCO C2H4+CO(assumekthesameasketenedecomp.)33

    3PandCOdatayieldtotalOatoms Oatomconcentrationat1.5ms

    LaserAbsorption

    3Pentanone:

    CO:

    Sum:

    23%

    69%

    Simulation(withnewk1+k2)

    3Pentanone:

    CO:

    CH3CHCO:

    Sum: 93%

    23%

    43%

    27%

    92%

    0 500 1000 1500

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    MoleFraction[%]

    Time [s]

    1% 3-Pentanone / Ar

    1248 K, 1.6 atm

    3-PentanoneCO

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    34/36

    RevisedModelImproves3PSimulations

    CH3

    CO

    0 500 1000

    0

    1000

    2000

    3000

    1325 K, 1.60 atm

    COM

    oleFraction[ppm]

    Time [s]

    0.25% 3-Pentanone / Ar.

    1215 K, 1.68 atm

    1403 K, 1.57 atm

    1272 K, 1.64 atm

    FinalModificationstoSerinyel etal.

    3PentanoneMechanism

    Reviseddecompositionrate:

    3pentanone products

    Additionalreaction:methylketene C2H4+CO

    34

    C2H4

    Goodagreementwith3P,CH3,CO,andLowTC2H4timehistories

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    35/36

    OngoingWork

    Diagnostics development & spectroscopy:

    aldehydes (CH2O, CH3CHO)

    alkyl radicals (C2H5)

    methyl esters (methyl formate)

    Alkenes (C3H6, C4H8)

    Continued improvement of shock tube methods: constrained reaction volume

    Direct measurement of elementary reactions:

    OH + oxygenates (aldehydes, ethers, alcohols)

    decomposition of oxygenates

    CH3, HO2 reactions with HC

    35

  • 8/13/2019 Hanson Stanford Flame Workshop 2012

    36/36

    Acknowledgements

    ARO,AFOSR,DOE,NSF

    Students: Genny Pang,MattCampbell,WeiRen,BrianLam,SijieLi,

    SreyashiChakraborty

    36