Handout Abet

download Handout Abet

of 5

Transcript of Handout Abet

  • 7/27/2019 Handout Abet

    1/5

    1

    3.185ABETStatementsAdamPowell

    Fallsemester,2003

    SubjectobjectivesandoutcomesObjectives1. Give students an understanding of conservation laws and constitutive equations as they apply toconvectiveanddiffusive(orviscous)transportofmass,heatandmomentum.OutcomesOncompletion,studentsshouldbeableto:(a) Usemicroscopicspecies/heat/mass/momentumbalancestoderivesteadyandunsteadydifferential

    equationsfordiffusion,heatconductionandfluidflow.(b) Usemacroscopicbalances to obtain simple solutions to larger-scaleproblems such asdesign of

    continuousflowreactors.(c) Haveaqualitativeunderstandingofturbulentflowphenomena, including:

    RelationtotheReynoldsnumber.Mechanismsofenhancedeffectiveviscosity,thermalconductivity,anddiffusivity. Turbulentkineticenergyandeddy lengthscales.Thek-model.

    (d) DeveloptheBernoulliequationforinviscidflowinhighReynoldsnumbersituations.2.

    Students

    should

    be

    able

    to

    solve

    simple

    1-D

    diffusion,

    heat

    conduction

    or

    fluid

    flow

    problems

    using

    the

    transportequations.Outcomes(a) Calculatetransportratesofspeciesinmixedreaction/diffusionlimitedorconvectivemasstrans-

    fer/diffusion limitedsituations,suchassecondphaselayergrowth(e.g. oxidation).(b) Usesimple1-Dunsteadydiffusionequationsolutions,e.g.Gaussian,errorfunction,Fourierseries,

    tosolvediffusionandheatconductionproblems.(c) UsetheNavier-Stokesequationstosolve1-D(Cartesianorcylindrical)steady-statefully-developed

    laminarflowproblems.(d) Understand thesimilaritysolution foraviscousboundary layeronaflatplate,andapplication

    todragforceandentrance lengthcalculation.(e) Understandthephenomena involved incoupledfluidflowandheatconductionordiffusion,and

    theirrelationtoheatandmasstransfercoefficients, insituationsofforcedconvectionoveraflatplateornaturalconvectionnearaverticalwall.

    3. Developthetechniqueofdimensionalanalysisofproblems,andillustrate itsimportance.Outcomes(a) Usedimensionlessnumbersthroughoutthecoursetocondensetransportbehavior involvingfive

    ormoreparameterstosimpleexpressionswithjusttwoorthreeparameters.

    1

  • 7/27/2019 Handout Abet

    2/5

  • 7/27/2019 Handout Abet

    3/5

    4 CorrelationMatrixObjectives1. Give students an understanding of conservation laws and constitutive equations as they apply toconvectiveanddiffusive(orviscous)transportofmass,heatandmomentum.

    2. Studentsshouldbeabletosolvesimple1-Ddiffusion,heatconductionorfluidflowproblemsusingthetransportequations.3. Developthetechniqueofdimensionalanalysisofproblems,andillustrate itsimportance.4. Teachstudentsenoughtransporttobeabletobeconversantinthetopicwithchemicalandmechanical(andother)engineerswhospendmoretime learningthesesubjectsandhaveaccesstomorepowerfultools, as studentswill likelywork inmultidisciplinary teamswith such engineers throughout theircareers.

    ABETcriteriaa. Abilitytoapplyknowledgeofmathematics,science,andengineeringb. Abilitytodesignandconductexperiments,aswellastoanalyzeand interpretdatac. Abilitytodesignasystem,componentorprocesstomeetdesiredneedsd. Abilitytofunctiononmulti-disciplinary teamse. Abilitytoidentify,formulate,andsolveengineeringproblemsf. Understandingofprofessionalandethicalresponsibilityg. Abilitytocommunicateeffectivelyh. The broad education necessary to understand the impact of engineering solutions in a global andsocietalcontext

    i. recognitionoftheneedfor,andanabilitytoengage inlife-long learningj. Knowledgeofcontemporary issuesk. Abilitytousethetechniques,skills,andmodernengineeringtoolsnecessaryforengineeringpractice

    ABETcriterion a b c d e f g h i j kObjective1 H H H M M HObjective2 H H H HObjective3 H H H HObjective4 M M M M M M M H

    Table1: 3.185CorrelationMatrix

    3

  • 7/27/2019 Handout Abet

    4/5

    5 ReflectiveMemorandumAnunfortunatetrendforthepasttwoyearsseemstobefeaturecreep,atermborrowedfromthesoftwareindustry and used to describe the tendency of software engineers to addjust onemore featurehere,justonemore capability there,until thewholeprogrambecomesunmanageably largeandunwieldy. In3.185,thismeansthateachsemesterIaddjustonemoretopic inthissection,justonemoreexplanationforthatphenomenon,

    etc.,

    so

    these

    new

    features

    of

    the

    subject

    squeeze

    out

    important

    topics.

    For

    example,

    last

    yearwhen teaching diffusion, Ijust taught theFourier series for infinite and finite symmetric (1

    2-period)

    systems;thisyearIadded 14-periodsystemstoexplaintheproblemon lastyearsexam1,whichappeared

    onaproblem set. Other items taughtmore slowly thisyearpreventedus fromcoveringhigh-temperaturetrendsinwaterheattransfercoefficients,suchasnucleateboilingandfilmboiling.Ontheotherhand,inboth2002and2003,weconcludedthesemesterwiththesametopic,whichwasthe

    Bernoulliequation. I thinkthatbothBernoulliandnaturalconvectionwerecoveredbetterthisyearthanlast,becauseofanewwayofexplainingtheGrashofnumberasthenaturalconvectionReynoldsnumber,butIstillneedtoworkonabetterexplanationfortherateofgrowthofnaturalconvectionboundarylayers.Neither2002nor2003 includedcontinuousflowreactors,whicharean interestingand importanttopic;wehave never covered flow through porousmedia; but I think thiswas due to the introduction of muddycardsin2002.Speakingofmuddycards,thissemestersclasswasnoticeablymoreparticipatorythan lastyears,both

    intermsofmuddycardsandverbalquestionsinclass. SinceChristineOrtizalsoobservedthistrendin3.11,Ibelievethat itsarealchange,thisyearsclass isjustthatmuchbetterinthatregard.Unfortunately,thetextbookchangewasnotassuccessfulaswashoped.Welty,Wicks,WilsonandRorrer

    didanumberofthingsbetter,suchasvisualizationsandviscositynotation;somethingsjustasbadly,mostnotablytheorderoftopicswhichremains inappropriateforthissubject;andsomethings lesswell,suchastheunconventionalshearstressconventionusedforfluids.Basedonthis,IcannotrecommendthistextfornextyearsMaterialsProcessingsubject.As a final (no pun intended) commentary on this semester, the final examwas again a bit too hard

    this year. PartA (closed-book)was appropriate in length and difficulty, andwill likely have one or two100%scores. ButPartB(open-book)wastoo long,abitonthehardside,andmost importantly,notwellunderstood. Forexample, itseemsthatmoststudentssawthe ladlegraphand immediatelyassumedthatthewholeproblemusedtheBernoulliequation;ahintaboutadaptingHagen-Poiseuillewouldhavehelpeda lot. And studentsdidnot seem tounderstandwhattheComplete IdiotsGuideessaywasasking for;areferencebacktotherecipes inaPartAproblemwouldhavehelpedagreatdeal. Thebasicproblem isthatIneedtonotfocusonstretchingthestudentstoSeehowmuchyoucandowiththetransportyouvelearned,becausethosewhodontfinishitwillfeel liketheyhaventlearnedmuchatall.Nextyear, thissubjectwillgoawayandbereplacedbyMaterialsProcessing,which is supposed tobe

    3.185pluseconomicsplusa lab,withgreater focusontheprocessesthemselves. Goodgrief,doesnt3.185haveenoughmaterial in italready? Butthatsthemandate fromthedepartment,soIllhaveto livewithit.Thequestionthenbecomes,whattoeliminate?

    Discard all of diffusion. This is covered in 3.022, the new kinetics subject. But then, itwas alsocoveredin3.01undertheoldcurriculum,andyetstudentsappreciatedthere-coverage,bothtoreviewthematerialandtopresent it ina3.185way. Thing is,although itwouldseemeliminatingdiffusioncouldsaveabunchoflectures,infact,thefirstheatconductionlecturejustrecapsallofthediffusionmaterialforconduction,sowellneedtoteachthatstuffanywayifwewantittobecovered...

    Discardsomeofdiffusion.Theerfsolutionsaretooimportanttodiscard,butFourierserieswillproba-blyhavetogotoobad,becausethatwasperhapsthemostelegantsolution,andhelpedconsiderablyintheexplanationofthesteady-statetimescale. Butwhatelsecango? Layergrowth isvery impor-tant;perhapsitcangoinkinetics,andwecandoconduction-limitedlayergrowthbyanalogytothat.Dimensional analysis canNOTbe removed, that is an extremely important conceptwhichmustbecoveredatsomepointpriortostudentlearningabouttransport.

    Giveup trying to explainNavier-Stokes. Just face the fact that studentswillneverunderstand thenatureoftheconvectivemomentumtransportterms,andtreatN-Sassomemythicalequationwhich

    4

  • 7/27/2019 Handout Abet

    5/5

    theymighthope tounderstand if theytake10.301or2.005butwhichwejustwontdohere. NevermindthatN-SistheunderpinningofeverythingfromconvectiveheatandmasstransporttoBernoullitothethingsolvedbyamyriadfiniteelementsimulationstheyllwanttodoforeverythingfromcastingandinjectionmoldingtoCVD,etc.

    Sothesearesomeideasonwhattogiveup.Nowwhatshouldbeadded,howshouldthingsbeexplainedin lightoftheserealities,andwhatwillbeadded?

    Treatflowphenomenologically,liketheviscouscomponentproportionaltoU/Landthekineticenergycomponentproportionalto 1

    2U2. SkiptheNavier-Stokessectionandgostraightfromviscoustransfer

    toeitherBernoulliviacontrolvolumes,ordragforceintubes,flatplates,spheresandporousmedia. Economics: Icanthinkofthreetopics,whicharebatchandcontinuousflowreactors,howthey leadintocostmodeling,andinput/outputmodeling.

    Labs: lookatefluids.comfor inspiration,andcomeupwithsomesimplelabconcepts.For lectures, I envision a good amount of chalk-and-talkbecause thats goodpedagogy, butwithmorecomputervisualizationsandmoviesandsuchtoenhance it.So in any case, thats3.185, andhow itsgoing to change to3.044,MaterialsProcessing, aswemove

    forward. Thereinventionwillhelptoclearouta lotofthefeaturecreep,butneedstobedonecarefullysotheresultiscoherentandeffectiveinreaching itsteachinggoals. Ilookforwardtothechallenge!

    5