Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

30
Index ABC miktoarm star copolymers 38 abrasion characteristics 9 absorption cross sections 709 acetolysis 928 acid-base interactions 615–16 acorn morphology 194–5 acoustic emission 782–3 acrylamide (AAm) 895–6 2-acrylamido-2-methyl propane sulfonic acid (AMPS) 275–6 acrylated epoxidized soybean oil (AESO) 911 acrylic acid (AA) 208 acrylonitrile-butadiene rubber (NBR) 125, 253–5, 269 acrylonitrile-butadiene-styrol (ABS) 377, 565 activating interlayers 101 active films 764–6 active-PAMPS gels 149–50 Adam-Gibbs theory 480–1, 492 additive flame retardancy 845, 849–62 additive migration 803–6, 826, 829 adhesion 84–5, 87, 768, 961–3 adhesives 458, 609–12, 886–7, 891 adsorption–desorption processes 84, 750 see also gas transport mechanisms aerogels 145 aeronautics applications 882–91 AFM see atomic force microscopy agar microgels 144 Agari model 413–14 ageing processes 10, 797–841 additive migration 803–6, 826, 829 application-related factors 798, 799, 815–16, 832–9 associated issues 797–8 chemical ageing 798, 806–29 classification 798–9 definitions 797–8 diffusion controlled kinetics 805–6, 831–2 elastomers 961 end-of-life criteria 798, 799 environmental factors 797, 798–9, 836–7, 839 evaporation controlled kinetics 804–5 mechanistic schemes 816–29 monitoring systems 886 multiphase polymer systems 829–32, 837–9 physical ageing 798, 799–806, 832–9 solvent absorption 802–3 structural reorganization 800–2, 829–31 superficial layer 815–16 agglomerates 433–5, 437, 672–3 aggregates 433–5, 453, 455–6 aircraft structural health monitoring (ASHM) 886 alloys 251 alumina 853–4, 859, 961 aluminum fillers 436 aluminum nitride 407, 414 aluminum tri-hydroxide (ATH) 849–50, 859–61, 881, 932 amine crosslinked epoxy (ACE) 823 aminolysis 946–7 3-aminopropyltriethoxysilane 145 ammonium persulfate (APS) 144–5 ammonium polyphosphate (APP) 379, 851, 855, 857, 859 amorphous polymer phases ageing processes 800–2, 829–31, 838 characterization 522–6, 530–1, 536, 546, 640, 660–1, 669–70, 673–8 interlayers 90–2, 100–1, 111–12 thermophysical properties 395, 401 amphiphilic gel-type resins 565 analytical theories 49–55 annealing processes 453 Ansatz model 36 antimony trioxide 854–5, 927 antioxidants 803, 806, 820, 824–6, 933–4 applied thermal excitation 786–7 artificial photosynthesis 104–5 aspect ratios 2, 430, 445, 755, 757, 760 atom transfer radical polymerization (ATRP) 99, 592, 600–1, 604–5, 624–6 atomic force microscopy (AFM) 8, 109–10, 142, 202–3, 656 Handbook of Multiphase Polymer Systems, First Edition. Edited by Abderrahim Boudenne, Laurent Ibos, Yves Candau, and Sabu Thomas. © 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

Transcript of Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

Page 1: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index

ABC miktoarm star copolymers 38abrasion characteristics 9absorption cross sections 709acetolysis 928acid-base interactions 615–16acorn morphology 194–5acoustic emission 782–3acrylamide (AAm) 895–62-acrylamido-2-methyl propane sulfonic acid (AMPS)

275–6acrylated epoxidized soybean oil (AESO) 911acrylic acid (AA) 208acrylonitrile-butadiene rubber (NBR) 125, 253–5, 269acrylonitrile-butadiene-styrol (ABS) 377, 565activating interlayers 101active films 764–6active-PAMPS gels 149–50Adam-Gibbs theory 480–1, 492additive flame retardancy 845, 849–62additive migration 803–6, 826, 829adhesion 84–5, 87, 768, 961–3adhesives 458, 609–12, 886–7, 891adsorption–desorption processes 84, 750

see also gas transport mechanismsaerogels 145aeronautics applications 882–91AFM see atomic force microscopyagar microgels 144Agari model 413–14ageing processes 10, 797–841

additive migration 803–6, 826, 829application-related factors 798, 799, 815–16, 832–9associated issues 797–8chemical ageing 798, 806–29classification 798–9definitions 797–8diffusion controlled kinetics 805–6, 831–2elastomers 961end-of-life criteria 798, 799environmental factors 797, 798–9, 836–7, 839

evaporation controlled kinetics 804–5mechanistic schemes 816–29monitoring systems 886multiphase polymer systems 829–32, 837–9physical ageing 798, 799–806, 832–9solvent absorption 802–3structural reorganization 800–2, 829–31superficial layer 815–16

agglomerates 433–5, 437, 672–3aggregates 433–5, 453, 455–6aircraft structural health monitoring (ASHM) 886alloys 251alumina 853–4, 859, 961aluminum fillers 436aluminum nitride 407, 414aluminum tri-hydroxide (ATH) 849–50, 859–61, 881, 932amine crosslinked epoxy (ACE) 823aminolysis 946–73-aminopropyltriethoxysilane 145ammonium persulfate (APS) 144–5ammonium polyphosphate (APP) 379, 851, 855, 857, 859amorphous polymer phases

ageing processes 800–2, 829–31, 838characterization 522–6, 530–1, 536, 546, 640, 660–1,

669–70, 673–8interlayers 90–2, 100–1, 111–12thermophysical properties 395, 401

amphiphilic gel-type resins 565analytical theories 49–55annealing processes 453Ansatz model 36antimony trioxide 854–5, 927antioxidants 803, 806, 820, 824–6, 933–4applied thermal excitation 786–7artificial photosynthesis 104–5aspect ratios 2, 430, 445, 755, 757, 760atom transfer radical polymerization (ATRP) 99, 592,

600–1, 604–5, 624–6atomic force microscopy (AFM) 8, 109–10, 142, 202–3,

656

Handbook of Multiphase Polymer Systems, First Edition. Edited by Abderrahim Boudenne, Laurent Ibos, Yves Candau, and Sabu Thomas.© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

Page 2: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

982 Index

atomistic models 7–8, 58ATRP see atom transfer radical polymerizationattapulgites (ATT) 650–1auto shredder residues (ASR) 931automated tape layer (ATL) process 887automotive applications 866–71avalanche breakdown 834

back small angle light scattering (BSALS) 656–8backscattered neutrons 721–3ballistic protection 879–80barium titanate 403–4, 406–7barrier multiphase materials 749, 752–67barrier properties see gas transport mechanismsbatch mixers 128–9, 166–7Bauer model 289–90Beer-Lambert equation 592BEM see boundary element methodBenveniste–Miloh model 408BGY lattice theory 42BIM see boundary integral methodbinding energy (BE) 587–91binodal stability 40bioactive polymer composites 897, 899, 902,

904–5bioadhesive drug carriers 544bioavailability 81biochemical ageing 797biocompatibilization 93–100biocomposites 375, 939–40biodegradability 764, 895, 898–900, 902–3,

939–40bioelectronics 104–5biomimetic surface engineering 101–3biosilicification 967bipolarons 451bismaleimide (BMI) 628bladder molding 875–6blob models 36–8block copolymer-epoxy (BC/E) blends 280block copolymers

applications 900capillary extrusion rheometry 347–53dynamic viscoelasticity 340–5elastomers 964–5, 966electron spin resonance spectroscopy 561–9flow alignment 345–7flow-induced morphological changes 345–7interfacial properties 99, 110manufacturing techniques 149mechanical properties 261–3, 279–81

microphase-separated 312, 339–40, 343morphological characteristics 176–7, 198–9, 203–4neutron scattering 730, 731–3rheological properties 312–13, 339–54self-consistent field theory 45–52, 68–9solid-state NMR spectroscopy 526–30, 542–3, 545–6X-ray photoelectron spectroscopy 628–9

blowing agents 852bond percolation 427bone prosthesis applications 895–905Born approximation 708–10, 713, 716, 734–5boron-reinforced epoxy composites 875, 882boundary element method (BEM) 171boundary integral method (BIM) 171bovine serum albumin (BSA) 603–4bow-tie probes 376Bragg equation/law 677–8, 707–8, 722Bragg peaks 674–5, 728, 733Bragg reflections 712–13, 717, 728, 734, 737–9Bragg scattering 718, 721bridge decks 878–9broadband dielectric spectroscopy 483–5, 487, 493–4,

496, 503–7brominated bisphenols 843, 850Brownian dynamics 63Bruggeman model 405BSALS see back small angle light scatteringbulk molding compound (BMC) 871, 924, 948–9bulk properties 9–10, 65–6butterfly effect 824butterfly scattering patterns 731butylmethacrylate (BMA) 155

cadmium selenide quantum dots 965Cahn-Hilliard linear theory 647, 650calcium carbonate fillers 922, 923, 931–2, 937calorimetry 392–3capillary extrusion rheometry 347–53capillary instabilities 172, 319, 320–1carbohydrates 530carbon black (CB)

elastomers 966, 970electrical properties 430, 432–5, 453–4, 457morphological characteristics 226responsive interphases 104waste management 922, 932

carbon black filled polyethylene (CBPE) 799carbon black–poly(vinyl pyrrolidone) (CB–PVP) 912carbon dioxide, supercritical 132–3carbon/epoxy composites 867, 872–6, 888–9carbon fiber reinforced plastics (CFRP) 295–6

Page 3: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 983

carbon fiber reinforcementapplications 867–9, 872–9, 885, 892, 898–9, 903waste management 923, 929, 951

carbon fiber sheet molding compound (CFSMC) 868carbon fiber/carbon matrix (C/C) composites 889carbon–glass fiber-reinforced plastic (CFRP) 873–4,

878–9, 882, 885carbon/glass hybrids 877–8carbon molecular sieves 767–9carbon nanofiber nanocomposites (CNF) 142carbon nanoparticles (CN) 143carbon nanotubes (CNT)

applications 892–3, 908, 910characterization 507–12, 561–2elastomers 966electrical properties 443–9endohedral filling 449fire retardancy 853, 859interfacial properties 94mechanical properties 265, 300–1oxidative treatments 447–8surface modifications 446–9

carbonization 836–7, 851–2, 8592-carboxyethyl(phenylphosphinic) acid (HPPPA) 861carboxyl-terminated butadiene acrylonitrile (CTBN)

copolymer 279–80carrier layers 101–2catalytic conversion 931cellulose acetate (CA) 275–6cellulose fibers 451ceramic matrix composites (CMC) 778ceramics 879, 899, 903–4, 908, 960–1cetylpyridinium chloride (CPC) 574CF see linear correlation functionchain correlations 42chain dynamics 38–9chain scission 808–12, 823–4chain welding 808–9, 812–13, 823–5chaotic mixing 221–7Charlesby’s theory 809chemical ageing 798, 806–29

application-related factors 815–16diffusion processes 813–15hydrolytic ageing 826–9intrinsic chemical stability 817–18lateral group changes 806–8macromolecular skeleton changes 808–13mechanistic schemes 816–29oxidation reactions 806–8, 812, 814–15, 818–24, 839superficial layer 815–16

chemical compatibilization 93–100, 102

chemical gels 659chemical interfacial interactions 85chemical recycling 928, 946–7chirality 444–5chitosan 144, 763, 897–8clay nanocomposites 4

electron spin resonance spectroscopy 575–6fire retardancy 852–3, 857–9, 861future developments 11gas transport mechanisms 761–3interfacial properties 94–5, 102light scattering techniques 660mechanical properties 291–3, 299–300, 302–3polymer gels 146, 148waste management 934, 940–1, 943see also polymer–clay nanocomposites

click chemistry 99–100closed loop stabilization 824–5cloud-point curves 651–2CMC see ceramic matrix composites; critical micelle

concentrationco-continuous morphologies 208–11

light scattering techniques 650mechanical properties 253–5, 270–2, 274rheological properties 334, 336–9

coarse-grained models 7–8, 33–4, 56–61, 70coefficient of thermal expansion (CTE) 9, 911coherent scattering function 711, 712coincidence detection ERD 111cold crystallization 829–30Cole–Cole diagrams 491–2, 494colloidal structures 605–8, 714combustibility 846–9combustion of polymers 844–5, 846–9combustion of waste materials 929–32compatibilization

compatibilizer effects 263–5compatibilizer roles 67–8, 198–201droplet breakup and deformation 201–5electrical properties 455–6fire retardancy 857, 860–2gas transport mechanisms 763interfacial properties 87, 93–100, 102mechanical properties 260–5microfibrillar reinforced composites 671, 681–93morphological characteristics 197–208, 213–14polymer blend nanocomposites 207–8, 213–14processing effects 205ternary and quaternary blends 205–7waste management 943

complete encapsulation 193

Page 4: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

984 Index

complex electric moduli 484–5complex flows 221Complex Langevin method 61–2complex permittivity 426compliance 93composition correlations 42compression molding 453computed tomography (CT) 786conducting polymer-coated fillers 451conducting polymers see inherently conducting polymersconductive grafts 600conductive heat transfer 388conductive rubbers 458cone calorimetry 848–9, 857, 860confined copolymer melts 69conformational analysis 522–5construction applications 866–82

automotive applications 866–71ballistic protection 879–80corrosion repair 877energy industry applications 865, 877–8infrastructure 878–9marine applications 871–5mass transit applications 880–2pressure vessels 876sporting goods 875–6

contact angle measurement 142contact resistance 469–72continuous chaotic advection blenders (CCAB) 223continuous mixers 129continuous path models 36continuous wave (CW) ESR technique 559–60, 567continuum Gaussian chains 35continuum modeling 7–8continuum viscoelasticity 13contrast variation 730controlled interface fillers 967controlled interfacial morphology 90–2controlled radical polymerization (CRP) 600convection heat transfer 388converging channels 219converting interphases 102–3cooperativity length 480copolyamide (CPA) 323copolymers

applications 900conformations 53–5elastomers 964–5, 966electrical properties 448, 456electron spin resonance spectroscopy 560–9light scattering techniques 647, 661

manufacturing techniques 124–33, 139, 145, 149, 154mechanical properties 254–6, 261–3, 275, 279–81modeling and simulations 45–52, 67–70morphological characteristics 176–7, 198–9, 203–4neutron scattering 730, 731–3rheological properties 312–13, 339–45solid-state NMR spectroscopy 526–30, 542–3, 545–6structure–property relationships 479–80, 482, 486–7,

493–9waste management 934–5X-ray photoelectron spectroscopy 589–90, 618–19,

628–9copper fillers 436copper ion determinations 601–2Coran–Patel model 268, 275–6core–shell structures

interfacial properties 98–9morphological characteristics 195–7, 210–11thermophysical properties 408–10X-ray photoelectron spectroscopy 605–6

correction functions 463–6, 471corrosion repair 877cost effectiveness 123Couette flow cells 168, 317Cox-Merz rule 323–4CP see cross-polarizationCP-2EPOX additive 128–9crack formation 812, 815–16, 832–5, 890crazing 802creep curves 800–2critical micelle concentration (CMC) 574critical volume fraction (CVF) 429cross-polarization (CP) 519–20, 521–2, 525–36, 537crosslinked proton-conducting membranes (CPM) 531crosslinking

ageing processes 808–9, 812–13, 823–5characterization 376–7, 571, 731elastomers 961interfacial properties 87, 102interpenetrating polymer networks 154–5, 282–3,

286–7mechanical properties 260, 272–3, 277–8, 282–3,

286–7, 290–1morphological characteristics 201polymer blends 260, 272–3, 277–8polymer gels 143–9, 290–1waste management 927, 935

CRP see controlled radical polymerizationcryogenic micronization 935cryogenic properties 901crystal size 676, 677–8

Page 5: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 985

crystallinityageing processes 797, 800–2, 829–31, 838electrical properties 454–5gas transport mechanisms 756light scattering techniques 640, 660–2medical applications 905nanofillers 970–1neutron scattering 726–9, 733–43solid-state NMR spectroscopy 522–6, 530–1, 536, 540,

543, 546thermophysical properties 395, 401waste management 943X-ray scattering 669–70, 673–8, 695

crystallizable polyurethane (CPU) 154crystallization

ageing processes 800–2, 829–31characterization 8–9, 360–9, 373, 640, 660–72,

733–43interfacial properties 87, 90isothermal 361–3manufacturing techniques 124mechanical properties 259, 262–3, 266modeling and simulations 38–9near surface 733–43rheological properties 322

Cussler–Lape model 759, 760–1Cussler’s model 759–60CW see continuous wavecyclam-functionalized poly(glycidyl methacrylate)

chains (CF-PGMA-Cy) 601–2cyclic loading generated thermal excitation 787

Davies model 268, 271, 275–6DDFT see dynamic density functional theoriesde Gennes’ theory 15–16, 41, 51–2deca-bromodiphenyl ether (deca-BDE) 927DEER see pulsed double electron–electron resonancedeformability see compliancedegradation see ageing processesdegree of crystallinity 674–6dehydrochlorination 934dehydroxylation 934delamination 780, 782, 786, 793, 888, 890dense melts 38dense polymer films 749–51density functional theory (DFT) 47, 64–5dental composites 865, 905–7depolymerization reactions 807, 818DFT see density functional theorydiaryl derivatives 554dibutyl phthalate (DBP) 429, 434

4-[(5-dichloromethylsilyl)pentyloxy] cyanobenzene(DCN) 537

DICO method 394dicumyl peroxide (DCP) 260–1, 272–5, 277–8dielectric breakdown 834, 837–8dielectric properties 10, 425–6dielectric relaxation spectroscopy (DRS) 483–5, 487,

493–4, 496,503–7

dielectric spectroscopy 479–517broadband techniques 483–5, 487, 493–4, 496, 503–7carbon nanotubes 507–12copolymers 479–80, 482, 486–7, 493–9dynamic mechanical analysis 480, 487–9, 492–4,

500–1, 504–7, 513electrically conductive polymer nanocomposites

507–12glass transition temperature 480–1, 490, 492, 497interfacial phenomena 499–507interpenetrating polymer networks 479–80, 482,

486–95mixing and phase separation 486–99molecular dynamics 480, 482, 499–500, 513morphological characteristics 480, 482, 499percolation phenomena 507–12polymer blends 479–80polymer composites/nanocomposites 479–80, 482,

499–513responsive interphases 108–9rubber/silica nanocomposites 499–507structure–property relationships 479–80techniques 482–6theoretical background 482–3thermally stimulated depolarization current analysis

481–2, 485–9, 493–507, 512–13diethanolamine (DEA) 6102-(diethylamino)ethyl methacrylate (DEA) 629diethylenetriamine (DETA) 946–7differential scanning calorimetry (DSC) 9, 360, 365–77

ageing processes 801, 825, 829–30glass transition temperature 481, 558manufacturing techniques 133, 145, 151, 153–4molecular dynamics 480, 499–500, 513rheological properties 345temperature modulated 373–7thermophysical properties 392–3

differential scattering cross sections 709–11diffuse reflectance 922diffusion

ageing processes 802–6, 813–15, 823, 826, 831–2gas transport mechanisms 749, 750, 754, 766

Page 6: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

986 Index

diffusion (Continued)interfacial properties 92rheological models 24–5

diffusion controlled kinetics 805–6, 831–2diffusivity 9, 10, 389, 390–2, 393–4diglycidyl ether of bisphenol A (DGEBA) 303, 609–12,

626dipalmitoylphosphatidylcholine (DPPC) 5781,1-diphenyl-2-picrylhydrazyl (DPPH) radicals 567dipolar decoupling 521–2, 525, 536–7direct mixing method (DMM) 300–1discrete Gaussian chain model 34–5discrimination induced by variable angle minipulse

(DIVAM) 537–8dispersion mechanisms 163–4, 178–82, 200, 752–63, 769dispersive mixing 452dissipative particle dynamics (DPD) 60, 63–4dissolution processes 314–15, 924–7distributive mixing 452–3DIVAM see discrimination induced by variable angle

minipulsedivinyl benzene (DVB) 146DLS see dynamic light scatteringDMA see dynamic mechanical analysisDMTA see dynamic mechanical thermal analysisDNA adsorption isotherms 616–18Doi-Edwards reptation model 24–5doping 450–1double-diaphragm forming 887–8double emulsions 253–4double network hydrogels 149double-quantum (2Q) dipolar recoupling 531double reptation 24double vacuum bag (DVB) process 135–6, 157dough molding compounds (DMC) 929–31DPD see dissipative particle dynamicsdrop test 847droplet breakup 165–6, 168–74, 187–92, 201–5, 224–5,

318–22, 338droplet coalescence 165–6, 174–7, 187–8, 214–18,

321–3, 338droplet-matrix morphology 161–2, 254DRS see dielectric relaxation spectroscopydrug delivery systems

applications 895–6interfacial properties 81, 90–2, 101–3microgels 143–4solid-state NMR spectroscopy 535, 543–4

DSC see differential scanning calorimetryDTP see dynamic plane sourcedual fillers 966–7

dual-laminated pipes 877ductility 810, 815–16, 827dynamic density functional theories (DDFT) 64–5dynamic light scattering (DLS) 153, 639, 659–60dynamic mechanical analysis (DMA) 9, 108–9

interfacial phenomena 500–1, 504–7manufacturing techniques 133, 142mixing and phase separation 487–9, 492–4molecular dynamics 480, 500, 513polymer blends 271–6waste management 939

dynamic mechanical thermal analysis (DMTA) 271–6dynamic phase behavior 647–51, 652–5, 729–30, 740–3dynamic plane source (DTP) 394dynamic polymer self-assembly 561–4dynamic viscoelasticity 329–32, 340–5dynamic vulcanization 274dynamical models 62–5

E-glass 138, 874, 876–9, 907–8EBCL see electron beam chemical lithographyeccentric cylinder devices 221eco-composites 297ECRC see European Composites Recycling CompanyEDAX see energy dispersive analysis by X-rayEdwards Hamiltonian 35, 43Edwards models 60EDX see energy dispersive spectrometerseffusivity, thermal 389, 393–4EGA see evolved gas analysisEinstein equation 13, 327–8Einstein parameters 431elastic incoherent structure factor (EISF) 713elastic moduli 85, 98elastic recoil detection (ERD) 111elastic scattering 594–5, 707–8, 710–13elastically active chains (EAC) 812elasticity see viscoelasticityelastomers 959–70

ageing processes 812, 838approximately spherical particles 960–3carbon nanotubes 966controlled interfaces 967dual fillers 966–7glassy deformable ellipsoidal particles 963–4layered fillers 964–5magnetic particles 965modeling and simulations 968–70morphological characteristics 164, 166, 199, 218, 229nanofillers 959–80polyhedral oligomeric silsesquioxanes 965–6

Page 7: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 987

porous fillers 967silicification and biosilicification 967swelling processes 961–3thermal analysis 377waste management 942–3

electric moduli 484–5electrical ageing 797, 835electrical percolation threshold 414electrical properties 425–77

ageing processes 797, 833–9applications 457–8, 866, 887, 899, 907–12carbon black 430, 432–5, 453–4, 457carbon nanotubes 443–9, 507–12characterization 9–10conducting polymer-coated fillers 451conducting polymers 9–10, 449–51, 530–1, 613–19conductivity 425–72, 484–5, 496–8, 507–12, 866, 899contact resistance 469–72crystallinity 454–5dielectric response 425–6dielectric spectroscopy 484–5, 496–8, 507–12fillers 426–7, 430–51, 455–6four-probes method 460–5graphite fillers 438–43metallic fillers 435–7metallized fillers 438modeling and simulation 426–32morphological characteristics 435, 456–7multipercolation effect 456–7percolation models 426, 427–32polymer blends 428polymer composite blends 449, 452–3, 456–7polymer composites/nanocomposites 426, 432–72polymer–filler interactions 455–6processing conditions 452–7resistance measurements 458–72secondary processing 453spreading resistance of contacts 468–70two-probes method 459Van der Pauw method 465–7X-ray photoelectron spectroscopy 600, 613–19

electrical trees 835, 837electromagnetic interference (EMI) 435–6, 438, 457electromagnetic properties 965electromechanical breakdown 834electron affinities 450electron beam chemical lithography (EBCL) 598electron spin echo envelope modulation (ESEEM) 560,

562, 575, 579electron spin echo (ESE) 560electron spin resonance (ESR) spectroscopy 551–84

copolymers 560–9crosslinking 571dynamic polymer self-assembly 561–4grafted copolymers 569mechanical properties 287morphological characteristics 8nitroxyl radical examples 553–4polymer blends 569–71polymer composites/nanocomposites 557–8, 573–6semi-interpenetrating polymer networks 570, 571–3spin probe/spin label techniques 552, 557, 563–5, 574techniques and principles 551–5, 558–60theoretical background 555–60

electronic shearography (ES) 790–3electronic speckle pattern interferometry (ESPI)

788–90electronics industry applications 866, 907–12electrostatic discharge (ESD) 457, 892–3electrostatic interactions 85, 616–18electrostatic separation 922–3ellipsoid models 60–1ellipsometry 109elongation at break (Eb) 9, 260–4, 294, 936, 943elongation processes 810–11, 813elongational flow 218–21elongational stress 453Elshelby tensors 304–5ELV see End-of-Life Vehiclesembrittlement 811–12, 815–16, 823, 827EMI see electromagnetic interferenceemission angle ERD 111emulsions 330–5encapsulated graphite (EG) 402end-of-life criteria 798, 799, 921, 940End-of-Life Vehicles (ELV) 921, 944end-pinching 172, 224end-splitting 202endohedral filling of CNTs 449energy dispersive analysis by X-ray (EDAX) 155energy dispersive spectrometers (EDX) 587energy industry applications 865, 877–8energy recovery 921–3energy transfer 706engineering thermoplastics 276–7entangled systems 14, 21–7entanglement plateaux 340–1environmental factors

ageing processes 797, 798–9, 836–7, 839applications 873–4fire retardancy 843–4, 862see also recycling; waste management

Page 8: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

988 Index

environmental scanning electron microscopy (ESEM)155

environmentally adaptive clothing 144EOS see equation of stateepiradiator test 847epitaxial growth 90–1, 442–3epoxidixed natural rubber (ENR) 127, 214epoxy resins

ageing processes 807, 823, 832, 838applications 610–12, 867, 872–9, 882, 888, 890, 907–8characterization 375, 609–12, 627, 650–1chemical reactions 609–10interfacial properties 98, 103manufacturing techniques 134–6mechanical properties 279–82, 300–3synthesis 609thermophysical properties 397, 404, 407waste management 948–9, 951

equation of state (EOS) theory 42, 59–60, 647ERD see elastic recoil detectionES see electronic shearographyESCA see X-ray photoelectron spectroscopyESD see electrostatic dischargeESE see electron spin echoESEEM see electron spin echo envelope modulationESEM see environmental scanning electron microscopyESPI see electronic speckle pattern interferometryESR see electron spin resonanceethylene-butene copolymers 139ethylene glycol dimethacrylate (EGDMA) 488ethylene-1-hexene (EH) copolymers 124ethylene-methacrylic acid (EMAA) copolymers 578ethylene–octene copolymer (POE) 275ethylene propylene diene monomer (EPDM)

gas transport mechanisms 769manufacturing techniques 126, 130mechanical properties 263–4, 277morphological characteristics 211, 225, 228rheological properties 316waste management 937–8

ethylene-propylene-maleic copolymer (EPM) 205ethylene-propylene rubber (EPR)

light scattering techniques 660–1manufacturing techniques 128, 131–2mechanical properties 277, 279morphological characteristics 174, 183–4, 189, 192–5,

207, 214–17ethylene-vinyl alcohol copolymer (EVOH) 225ethylene vinyl acetate (EVA)

applications 895, 902electrical properties 457

fire retardancy 853, 855, 857–61manufacturing techniques 130, 142mechanical properties 253–4, 265, 269, 272–5morphological characteristics 167, 186, 195, 208, 214,

229rheological properties 329–30, 335thermal analysis 379thermophysical properties 403, 406–9waste management 941

ethylene-vinyl alcohol copolymer (EVOH) 754, 756,763–4

European Composites Industry Association (EuCIA)921, 944

European Composites Recycling Company (ECRC) 921European Directive 2000/53/EC 921europium oxide 142evaporation controlled kinetics 804–5evolved gas analysis (EGA) 378–80exfoliation

characterization 9, 672–3fillers 440, 442–3future developments 11mechanical properties 291morphological characteristics 163–4, 178–82polymer nanocomposites 2, 4

expandable interphases 103expanded graphite (EG) 142, 440extensional flow mixer (EFM) 220–1extrusion

future developments 11interfacial properties 96, 99manufacturing techniques 123, 128, 129–32microfibrillar reinforced composites 671morphological characteristics 162, 164–7, 181–2,

184–7, 207–8, 220–31rheological properties 352–3

fast Fourier transforms (FFT) 656fast scanning rate calorimetry (FSC) 365feedstock recycling 928–9, 945–6FEM see finite element modelFENE see Finitely Extensible Nonlinear ElasticFermi-pseudo potentials 709ferroelectric properties 830ferromagnetism, applications 911Feynman-Kac formula 46FFT see fast Fourier transformsFIB see focused ion beamfiber breakage 780, 785fiber–matrix debonding 779fiber-matrix morphology 161–2

Page 9: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 989

fiber metal laminates (FML) 886–7fiber-reinforced composites (FRC) 10, 100fiber-reinforced plastics (FRP) 921–2fiberglass see glass fiberfibers

ageing processes 831applications 866–9, 872–4, 878–80electrical properties 431, 451interfacial properties 84mechanical properties 253–4, 283, 294–7solid-state NMR spectroscopy 546thermophysical properties 405–6waste management 924–5, 929–33, 935–40, 944–51

Fick’s laws 750–1, 804field-based models 61–2, 64–5field strength 833–5filament winding process 139–40filamentary breakdown 834–5filler-matrix adhesion 302–4fillers 2

ageing processes 826, 838applications 865, 867–8, 907carbon black 430, 432–5carbon nanotubes 443–9, 966compatibilization 455–6conducting polymer-coated 451electrical properties 426–7, 430–51, 452–3, 455–6electrically conductive 432–51fire retardancy 844, 849–50, 852–62gas transport mechanisms 752, 757–63graphenes 441–3graphite 438–43interfacial properties 95life cycling 10manufacturing/processing techniques 434–5, 439–42,

452–3mechanical properties 253, 265–6, 298–304metallic 435–7metallized 438rheological properties 14–27, 329–30thermal analysis 361, 377thermophysical properties 406–19waste management 922, 923, 931–43, 951see also nanofillers

finite element model (FEM) 89, 415–19, 889Finitely Extensible Nonlinear Elastic (FENE) potential

59fire retardancy 843–64

combustion of polymers 844–5, 846–9fillers 844, 849–50, 852–62flame retardancy 845–6, 849–8, 877, 923, 926–7, 932

interfacial properties 95–6, 102laboratory fire testing 846–9, 853–61polymer composites/nanocomposites 844, 849–62synergistic effects 854–61

fire triangle 844flame retardancy 845–6, 849–62, 877, 923, 926–7, 932flammability 846–8flash method 390–1, 393flash pyrolysis 379flax-reinforced polypropylene 138flexural moduli 300–1, 303flexural properties 9float and sink method 922Flory exponent 36–7Flory–Huggins parameter 40, 41–3, 86, 369, 371Flory–Huggins theory 15, 31–2, 39–43, 67

analytical theories 51–3binary blends 39–40characterization 369, 371, 531–2, 647de Gennes’ theory 41, 51–2inhomogeneous systems 41interfacial properties 85–7real systems 41–3, 61

flow alignment 345–7flow behavior see rheological propertiesflow curves 329–30, 349flow field types 218–21flow-induced morphological changes 345–7flow instabilities 350–3flow-light scattering 643–5fluctuation effects 48–9fluidized bed processing 929–31fluorescein 144fly ash 935focused ion beam (FIB) analysis 111forward recoil spectroscopy (FRES) 111four-probes method 460–5four-roll mills 219–20Fourier transform infrared (FTIR) spectroscopy 8,

109–10, 142, 155, 378–80Fourier transform neutron scattering 712–13fractals 14fractionation 927fracture properties 260–1, 264, 284, 300–1free radical polymerization 146free volume theory 751freely jointed chain model 36freeze-drying 126FRES see forward recoil spectroscopyFresnel reflectivity 717, 736friction coefficients 14–17

Page 10: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

990 Index

FSC see fast scanning rate calorimetryFTIR see Fourier transform infraredfuel cells 458, 869, 909full IPNs 150functional graded materials (FGM) 900functionalized CNTs 448functionalized elastomers 164functionalized graphenes 443functionalized polymers 456, 600–2fusion characteristics 9

g-methacryloxypropyl trimethoxy silane (g-MPS) 137gas chromatography (GC) 378gas transport mechanisms 749–75

active films 764–6ageing processes 801, 802–3, 823barrier multiphase materials 749, 752–67definitions of transport parameters 749–51dense polymer films 749–51dispersions within polymer matrix 752–63, 769filler size and orientation 755–60impermeable spheres 752–7, 769lamellar structures 752, 757–63, 769multilayer systems 752, 763–5, 767organic–inorganic membranes 767–9polymer blends 755–7polymer nanocomposites 752, 755–63selective multiphase materials 749, 767–9

Gaussian chain models 34–5, 44, 47GC see gas chromatography; glassy carbongeneric modeling 57geometrical percolation models 430geometrical permeability models 757–63Gibbs-Thomson equation 367Ginzburg-Landau models 62, 65, 69–70Ginzburg parameters 49GISANS see grazing incidence small angle neutron

scatteringglass fiber-reinforced aluminum alloys (GLARE)

882–3glass fiber-reinforced plastic (GFRP) 295–6, 873–4,

878–9, 882glass fibers

applications 871–4, 877–9, 881, 884, 890manufacturing techniques 134, 137, 138, 139waste management 926, 930–3, 937–9, 944–51

glass transition temperature 9ageing processes 801, 805, 813, 829dielectric spectroscopy 480–1, 490, 492, 497,

499–500, 506electron spin resonance spectroscopy 558

interpenetrating polymer networks 284modeling and simulations 38polymer blends 313–14solid-state NMR spectroscopy 528thermal analysis 365–6, 371–2, 375–7unfilled polymer systems 395waste management 936X-ray photoelectron spectroscopy 619–20, 624

glassy carbon (GC) plates 600glassy polymers 970global degradation rate 814glycerol monomethacrylate (GMA) 208, 629gold fillers 437gold nanoparticles 104gold-POEGMA overlayer thickness 592–7graft copolymers

characterization 530, 532, 543, 569, 589–90, 600–5gas transport mechanisms 763mechanical properties 261–3waste management 934–5

graft IPNs 282graphene oxide (GO) 442–3graphenes 441–3graphite fillers 438–43graphite/epoxy composites 888–9grazing incidence small angle neutron scattering

(GISANS) 724–9, 733–43Green Label scheme 921Griffith’s criterion 834–5ground fillers rubber from tires (GTR) 935ground state dominance 53guarded hot-plate method 390guided tissue regeneration (GTR) 900Gusev–Lusti model 759, 760

halogenated flame retardants 843, 850, 855, 927halogenated olefin polymers 397halogenation reactions 806–7Halpin-Tsai equation 268–9, 288–9, 304–6hand layup process 134hardness 9Hartmann-Hahn conditions 521, 526Hashin–Shtrikman model 406Hasselman–Johnson model 408Hatta–Taya model 406Havriliak-Negami (HN) expression 484, 490–1, 499,

503–4heat capacity see specific heat capacityheat flux DSC 365heat release rate (HRR) 846, 848–9, 855, 857–8heat transfer 388

Page 11: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 991

heterophasic propylene-ethylene copolymers (HPEC)565–6

hexabromocyclododecane (HBCD) 843, 850HI see holographic interferometryhierarchic IPs 95high-density polyethylene (HDPE) 132

characterization 526, 661, 672, 681–93electrical properties 437, 451, 457mechanical properties 261–5, 272–5morphological characteristics 175–7, 184–6, 190–9,

208–14, 217, 227–31thermophysical properties 416–18waste management 936–7, 941

high impact polystyrene (HIPS) 573, 927high permeability layers (HPL)high pressure mixing method (HPMM) 299high resolution 13C NMR 521, 523–4, 525–36high resolution electron energy loss spectrometry

(HREELS) 109high structure aggregates 434high-temperature shear deformation (HTSD)

277–8high-temperature thermal protection (TPS) 891–2hindered amine stabilizer (HAS) 565–7HN see Havriliak-NegamiHoffman reactions 941hole formation 225–6hollow fibers 888holographic interferometry (HI) 788–90homopolymer blends 39–40, 51–2, 55–6, 65–7honeycomb defects 786honeycomb structures 136, 867, 882, 885, 891hot radicals 845hot-wire method 390hot-wire parallel technique 394HREELS see high resolution electron energy loss

spectrometryhumid ageing 797humidity-induced recrystallization 90humidity sensors 911–12hyaluronic acid (HA) 900hybrid carbon–glass fiber-reinforced plastic 873–4hydrated fillers 849–50hydrocarbon polymers 397–8hydrodynamic modeling 13–14, 18hydrogels

applications 895–6, 900interfacial properties 104–5manufacturing techniques 148–9mechanical properties 290–5

hydrogenolysis 928

hydrolytic ageing 826–9, 946see also water-induced damage

hydromagnesite 850hydrotalcite 857–8, 860hydroxyapatite (HA) 126, 897–8, 900, 904–5hydroxycarbonates 8502-hydroxyethyl methacrylate (HEMA) 537, 565hydroxypropyl methacrylate (HPMA) 565hydroxypropyl methyl cellulose (HPMC) 124–5hygroscopic effects 889hyperDSC 365hyperfine interactions 555

ICP see inductively coupled plasma; inherentlyconducting polymers

ideal chains 34–6identification of waste materials 922–4IEC see ion exchange chromatographyIED see improvised explosive devicesIGC see inverse gas chromatographyimmiscible polymer blends 2impact properties 9

hollow fibers 888nondestructive testing 779–80polymer blends 276–9, 299

impact strength 938impedance 389, 484–5improvised explosive devices (IED) 880in-flight monitoring 886in-line electron beam treatment 96, 99, 112in situ intercalative polymerization 142in situ monitoring 11incineration 921, 923, 929–32incipient hole formation 225–6inclusion 94–5incoherent scattering function 711, 712–13indium tin oxide (ITO) 892–3inductively coupled plasma (ICP) 601inelastic scattering 707–8inert-PAMPS gels 149–50infrared (IR) spectroscopy 142, 156, 922, 952infrastructure applications 878–9inherently conducting polymers (ICP) 9–10, 449–51,

530–1, 613–19, 909inhomogeneous systems 41injection molding 262, 453, 694–5insulating interlayers 101insulating polymers 9–10insulin delivery/release systems 104–5intensity–time correlation function (ITCF) 660interacting chain models 36–8

Page 12: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

992 Index

interactive hole formation 225–6intercalation

characterization 9fillers 439–40future developments 11manufacturing techniques 141–3, 146morphological characteristics 163–4, 178–82, 230polymer nanocomposites 2, 4X-ray scattering 672–3

interchain correlations 57interchain scattering 731interdiffusion 86, 94, 716, 719interface analysis 105–11interface distribution function (IDF) 678interfacial agents 932–5interfacial hydrolysis 833interfacial properties 1–5, 81–121

basic characteristics 81–3characterisics of interfacial layers 83–9compatibilization 87, 93–100controlled morphology 90–2definitions and classification 82–3dielectric spectroscopy 499–507elastomers 967electrical properties 430, 447fire retardancy 859–60future developments 111–12homopolymer blends 66interactions 84–5interface analysis 105–11kinetic factors 87–8mechanical properties 262–3, 277mobility 84, 92–3, 108–9modeling and simulations 53modifications to IPs 89–100morphological characteristics 8, 175–6, 192–7neutron scattering 733–43phase border regions 106–7reactivity 100–1responsive interphases 101–5, 112rheological properties 323, 335–7structural properties 83, 88–9structure–mechanics relationship 88–9thermal analysis 377, 380thermodynamic factors 85–7

interfacial tension 321intermittent fibers 283internal interfaces 66interparticle distance (IPD) 277, 291interpenetrating blends (IPB) 225interpenetrating polymer networks (IPN) 3–5

future developments 11interfacial properties 94manufacturing techniques 149–57mechanical properties 251, 252, 282–90morphological characteristics 285–6structure–property relationships 479–80, 482, 486–95X-ray photoelectron spectroscopy 627–8

interphases (IP)characterization 83–4, 376–7, 576compatibilization 87, 93–100controlled morphology 90–2definition 82–3future developments 111–12interface analysis 105–11kinetic factors 87–8mobility 84, 92–3, 108–9modifications 89–100non-reversibly adaptive 101–3reactivity 100–1responsive 101–5, 112smart reversibly adaptive 103–5structure–mechanics relationship 88–9thermodynamic factors 85–7

intrinsic chemical stability 817–18intumescent flame retarders (IFR) 857–8, 860inverse gas chromatography (IGC) 108, 615ion exchange chromatography (IEC) 617ion exchange polymer-metal composites (IPMC) 890–1,

900–2ion exchange X-ray photoelectron spectroscopy 616–18ionic liquids 927ionization potentials 450ionomers 456IPN see interpenetrating polymer networkIR see infrarediron fillers 435–6iron (III) oxide 853–4, 859irreversible hydrolysis 826–8isotactic polypropylene (iPP) 143, 360–4, 368–70, 377,

661isothermal crystallization 361–3isotropic scattering 653isotropization 671, 690

Johnson-Kendall-Roberts (JKR) model 108

Kelly-Tyson model 937–8keratin feather fibers (KF) 911Kerner equation 269–70, 334–9ketoprofen 544Kiesseg oscillations 717

Page 13: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 993

Kim–Burns model 371–3kinetic Monte Carlo (MC) methods 62Kivelson theory 557Kramers expression 18Kramers-Kronig relation 426Krieger-Dougherty equation 328–9, 331Kuhn lengths 35, 41, 481Kunori model 270, 288–9

L-TMA see localized thermomechanical analysislaboratory fire testing 846–9, 853–61Lagrangian particle methods 224–5Lambert-Beer expression 715lamellar double hydroxides (LDH) 860–1lamellar structures

gas transport mechanisms 752, 757–63, 769morphological characteristics 161–2, 166–8neutron scattering 732X-ray scattering 695

laminar mixing 452laminar morphologies 253–4laminated object manufacturing (LOM) 137Langmuir-Blodgett (LB) films 83large amplitude oscillatory shear flow (LAOS) 170–1,

345laser flash analysis (LFA) 380laser interferometry 788–90latex blending 2, 125latex IPNs (LIPN) 153–4lattice-Boltzmann models 70lattice chain models 36, 58–9lattice cluster theory 42–3layer-by-layer (LbL) assembly 911–12layer thinning 225–6layered double hydroxides 964–5layered fillers 964–5layered silicates see polymer-layered silicate

nanocompositesLB see Langmuir-BlodgettLbL see layer-by-layerLCA see life-cycle assessmentlead magnesium niobate-lead titanate (PMN-PT) 908Leibler theory 51–2Lennard-Jones potentials 59, 969Lewis–Nielsen model 412, 415, 416LFA see laser flash analysislife-cycle assessment (LCA) 10, 921, 940Lifshitz points 49light scattering techniques 8, 639–68

crystallization 660–72experimental setup 642–3

flow-light scattering 643–5historical development 639–40instrumentation 644–5intensity calibration 645–6methodology and techniques 640–6morphological characteristics 649–51, 656–8multi-scale approaches 655–6phase behavior of multiphase polymer systems 640,

646–56, 661polymer blends 646–7, 651–8, 660–2polymer gels 658–60reaction-induced phase separation 649–51rheology-light scattering 644–5sample preparation 643shear flow conditions 651–5theoretical background 640–2

limiting oxygen index (LOI) 846–7, 853, 855, 861linear correlation function (CF) 678, 680–1linear elastic fracture mechanics 780–1linear low-density polyethylene (LLDPE)

light scattering techniques 660–1mechanical properties 272morphological characteristics 175, 198–9, 216, 220rheological properties 325

liquid crystalline polymers (LCP) 648, 656, 925liquid-to-glass transitions 800–2literature review 5–7living polymerization 112localized thermomechanical analysis (L-TMA) 376–7LOM see laminated object manufacturingLondon forces 613–15long period 677Lorentz corrected SAXS 677–8Lorentz functions 713, 740–1loss moduli 341–2, 346, 353low shear rate steady state (LSRSS) viscosity 19–20low-density polyethylene (LDPE)

electrical properties 437, 451fire retardancy 857–8mechanical properties 275, 277–8morphological characteristics 165, 209, 217, 225,

228–31rheological properties 325waste management 936

lower critical solution temperature (LCST) 104, 646–7,895

lubricants 648Lyapunov exponents 222–4macromolecular interfacial properties 95–8, 100macroscopic coarse-graining 33macroscopic interfacial properties 82, 88–9

Page 14: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

994 Index

macroscopic physical properties 8–10macroscopic rheological properties 18, 24–5magic angle spinning (MAS) 519, 521–2, 525–36magnesium di-hydroxide (MDH) 849–50, 855, 859–61magnetic properties 435–6, 438, 457, 965maleic acid (MAH) 370maleic anhydride (MA)

dielectric spectroscopy 508–9electrical properties 456fire retardancy 860gas transport mechanisms 763manufacturing techniques 131mechanical properties 265, 277, 279morphological characteristics 178–9, 201–2, 205–8,

214, 228–9waste management 934–5, 937, 939, 942–3

manufacturing techniques 123–60batch/continuous mixers 128–9cost effectiveness 123electrical properties 434–5, 439–42, 452–7extruders 128, 129–32filament winding process 139–40fillers 434–5, 439–42, 452–3freeze-drying 126future developments 156–7hand layup process 134in situ intercalative polymerization 142interpenetrating polymer networks 149–57latex blending 125mechanical blending 126–32mechano-chemical blending 132melt intercalation/blending 127–8, 143nanostructured gels 146polymer blends 123–33polymer composites/nanocomposites 123, 133–43, 157polymer gels 143–9, 157pultrusion 138–9reaction injection molding 140, 157resin transfer molding 136–8, 157rotational molding 140–1secondary processing 453solution blending 124–5solution intercalation 141–2spray layup process 134–5supercritical fluids 132–3topological networks 146–7vacuum bag molding 135–6, 157

Marangoni stress 176–7, 204marine applications 871–5MAS see magic angle spinningmass spectrometry (MS) 378mass transfer induced hydraulic actuators (MTIHA) 901

mass transit applications 880–2matching lattice size theory 368material ageing see ageing processesmatrix cracking 779–83, 786matrix deformations 779matrix-dispersed structures 208–9MAXS see middle-angle X-ray scatteringMaxwell equation/law 405–8, 416, 753–6, 768–9Maxwell model for viscoelasticity 18, 27Maxwell relaxation time ratio 189–90, 216Maxwell-Wagner-Sillars (MWS) polarization/relaxation

502, 509MC see Monte CarloMD see molecular dynamicsMDSC see modulated DSCmean field approaches 47mean geometric model 412–13mechanical ageing 798, 799mechanical blending 126–32mechanical compatibilization 100, 102mechanical properties 251–310

alloys 251characterization 9compatibilization 260–5compositional effects 257–60, 273crosslinking 260dynamic 271–6fillers 253, 265–6, 298–304future developments 307impact properties 276–9, 299interfacial properties 85, 88–9, 100interpenetrating polymer networks 251, 252,

282–90manufacturing techniques 140mixing conditions 256–7modeling and simulations 266–71, 275–6, 287–90,

304–6morphological characteristics 253–6, 270–4, 285–6polymer blend nanocomposites 252, 279–81polymer blends 251–2, 253–81polymer composites/nanocomposites 251, 253,

293–306polymer gels 251, 252, 290–5viscoelasticity 251, 269, 272waste management 929–31, 934–43, 949–51see also rheological properties

mechanical recycling 932–43, 947–51mechanical relaxation 343–5mechanical separation of waste 924mechano-chemical blending 132medical applications 866, 895–907

see also drug delivery systems

Page 15: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 995

melamine phosphates 851–2, 855, 857melt blending 671melt intercalation/blending 127–8, 143melt mixing 2, 178–82, 215, 257–8melting temperatures 8–9membranes 767–9, 909MEMS see microelectromechanical systemsmercury porosimetry 903–4Meredith–Tobias model 406–7mesoscopic coarse-graining 33–4metal recycling 924metallic fillers 435–7metallic matrix composites (MMC) 778metallized fillers 438methacrylic polymer (PM) 571–22-methacryloyloxy phosphorylcholine (MPC) 629method of images 463methyl acrylate (MA) 275–6micellar structures 726–8, 730, 733–43microelectromechanical systems (MEMS) 885–6,

901microelectronic sensors 144microfibrillar reinforced composites (MFC) 670, 671–2,

678, 681–93microgels 143–5micromechanical cleavage 442micromechanical testing 108microphase separation 312, 339–40, 343, 565microporosity 434micro-Raman 109–10, 143microscopic coarse-graining 33microscopic interfacial properties 109microscopic order with macroscopic disorder (MOMD)

558microscopic rheological properties 15–17, 22–4microsensors 885–6microspheres 605–8microthermal analysis 376–7middle-angle X-ray scattering (MAXS) 674miscible polymer blends 2Mitsui Silicon Containing Polymer (MSP) 891–2mixing conditions 256–7mixing sequence effects 227–9mobility 84, 92–3, 108–9modeling and simulations 7–8, 31–80

ABC miktoarm star copolymers/selective solvent38

analytical theories 49–55applications 55–6, 65–70atomistic models 58basic concepts of polymer theory 32–9binary blends 39–40, 51–2, 55–6, 65–7

chain dynamics 38–9coarse-grained models 33–4, 56–61, 70concentrated polymer solutions 37copolymer conformations 53–5de Gennes’ theory 15–16, 41, 51–2dense melts 38dynamical models 62–5elastomers 968–70electrical properties 426–32field-based models 61–2, 64–5first order models 404–5Flory-Huggins theory 15, 31–2, 39–43, 51–3, 61fluctuation effects 48–9fundamental properties of polymer molecules 32future developments 70gas transport mechanisms 757–65, 769–70Gaussian chain model 34–5, 44, 47generic modeling 57ground state dominance 53ideal chains 34–6inhomogeneous systems 41interacting chain models 36–8interfacial profiles 53Leibler theory 51–2mean field approaches 47mechanical properties 266–71, 275–6, 287–90,

304–6multiphase polymer systems 39–70multiscale modeling 8, 32nanofillers 968–70numerical prediction models 415–19Ohta-Kawasaki Functional 51–2particle-based dynamics 62–4polymers in solution and blobs 36–8random phase approximation 32, 50–2rheological properties 13–29, 326–39scaling behavior 36–7second order models 405–10self-consistent field theory 7, 31–2, 43–9, 68semi-empirical prediction models 412–15strong segregation theory 32, 41, 46, 52–5strong stretching theory 53–5structural models 58–62systematic bottom-up modeling 57–8theoretical aspects 31–56thermophysical properties 395, 404–19third and fourth order models 410–12weak segregation limit 41, 46, 50–2, 55–6

modulated DSC (MDSC) 9molar absorptivity 807–8molar mass 810–12, 828–9molecular density functionals 62

Page 16: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

996 Index

molecular dynamics (MD) 62dielectric spectroscopy 480, 482, 499–500, 513electron spin resonance spectroscopy 574neutron scattering 729–30, 740–3

molecular sieves 767–9MOMD see microscopic order with macroscopic disordermomentum transfer 706monochromators 718–19, 721–3monomer incompatibility 42monomethoxylated polyethylene glycol (mmePEG) 564Monte Carlo (MC) methods 58, 62, 69, 968–9montmorillonite (MMT) 103–4

elastomers 965fire retardancy 853, 861mechanical properties 267, 298–9, 302, 305–6thermal analysis 367–8X-ray photoelectron spectroscopy 626–7X-ray scattering 678, 679–81, 695–7see also organomontmorillonite

Mori–Tanaka mean field theory 304–6morphological characteristics 8, 161–249

ageing processes 797, 800–2, 829–31block copolymers 339–40chaotic mixing 221–7compatibilization 197–208, 213–14compositional effects 208–12development mechanisms during processing 164–82dielectric spectroscopy 480, 482, 499droplet breakup and deformation 165–6, 168–74,

187–92, 201–5, 224–5droplet coalescence 165–6, 174–7, 187–8, 214–18electrical properties 435, 456–7flow field types 218–21gas transport mechanisms 751, 752, 757–63, 769initial development mechanisms 164–8intercalation, exfoliation and dispersion 163–4,

178–82, 230interfacial properties 175–6, 192–7interpenetrating polymer networks 285–6light scattering techniques 649–51, 656–8material-relevant factors 183–218mechanical properties 253–6, 270–4, 285–6mechanisms of blending 162mixing sequence effects 227–9polymer blend nanocomposites 162–4, 178–82, 187,

207–8, 212–18, 225–31polymer blends 161–231, 253–6, 270–4, 311–18,

323–5, 334–9processing parameters 230–1processing-relevant factors 218–31rheological properties 311–18, 323–5, 334–40

solid-state NMR spectroscopy 537ternary and quaternary blends 205–7, 209–12viscoelasticity 171, 174–6, 187–92, 219viscosity 171, 175, 183–7, 214, 219waste management 943X-ray scattering 694–5

MS see mass spectrometryMTGA see temperature-modulated TGAMTIHA see mass transfer induced hydraulic actuatorsmulti-frequency TMDSC 374–5multilayer gas transport mechanisms 752, 763–5, 767multimandrel filament winding 877multipercolation effect 456–7multiple crazing 277multiscale modeling 8, 32, 655–6multiwall carbon nanotubes (MWNT)

applications 908, 910characterization 508–12, 561–2elastomers 966electrical properties 444, 446–9fire retardancy 853, 859mechanical properties 300–1morphological characteristics 218, 220, 229, 231

multiwall systems 894musculoskeletal applications 895–905MWS see Maxwell-Wagner-Sillars

N-succinimidyl ester-functionalized pyrrole (PyNSE)618–19

n-type conductivity 450–1N-isopropylacrylamide (NIPAM) 145–6, 148–9, 151,

658–60, 895–6N-methacryloyl-L-histidine (MHist) 148nanoclays see clay nanocompositesnanocompatibilization 87, 94nanocomposites see polymer nanocompositesnanofillers 959–80

approximately spherical particles 960–3carbon nanotubes 966controlled interfaces 967crystallinity 970–1dual fillers 966–7elastomers 959–70fire retardancy 844, 852–4, 856–62glassy deformable ellipsoidal particles 963–4glassy polymers 970layered 964–5life cycling 10magnetic particles 965modeling and simulations 968–70naturally-occurring polymers 971–2

Page 17: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 997

polyhedral oligomeric silsesquioxanes 965–6porous 967rigid polymers 972silicification and biosilicification 967thermosets 972–3

nanoplatelets 11nanosized carbon particles (NCP) 507–9nanostructured blends see polymer blend nanocompositesnanostructured gels 146nanothermal analysis 376–7natural graphite (NG) 142natural rubber (NR)

characterization 530, 557–9, 571, 575elastomers 964–5electrical properties 456–7manufacturing techniques 125, 126–7, 151–2mechanical properties 257–8, 265–6, 270morphological characteristics 214waste management 932

naturally-occurring polymers 971–2NDT see nondestructive testingnear surface crystallization of micelles 733–43necking 172, 224negative-deviation blends (NDB) 185–6neutron detectors 719neutron reflectometry (NR) 713, 714–16, 719–20, 724–5,

733–43neutron scattering 8, 705–47

Born approximation 708–10, 713, 716, 734–5contrast variation 730copolymers 730, 731–3crystallinity 726–9, 733–43elastic/quasielastic scattering 707–8, 710–13experimental results 729–43instrumentation 719–24micellar structures 726–8, 730, 733–43near surface crystallization of micelles 733–43polymer blends 729–31production and detection of neutrons 716–19properties of neutrons 705–6shear thinning/dynamics 730–3, 739–43small momentum transfer 713–16techniques and principles 706–8, 713–29, 730theoretical background 705–16time and length scales 707

neutron spin echo (NSE) method 723–4Newman projections 524–5nickel fillers 436–7Nielsen’s law 430–2, 756, 757–60, 763Nishi–Wang plots 369–70, 373nitrile rubber (NBR) 125, 253–5, 269

nitrogen tetroxide (NTO) 893nitroxide mediated polymerization (NMP) 600NMR see nuclear magnetic resonanceN,N’-dicyclohexyl-2,6-naphthalene-dicarboxamide

(NJS) 361, 362noncrimp fabric (NCF) 866nondestructive testing (NDT) 10, 777–96

acoustic emission 782–3electronic shearography 790–3failure mechanisms 779–81laser interferometry 788–90optical deformation and strain measurement 791–5polymer composites 777–96radiography 785–6techniques and principles 777–9thermography 786–8ultrasonic scanning 783–5visual inspection 781–2

non-reversibly adaptive interphases 101–3non-swollen gels 5nonwoven fabric 879–80NR see natural rubber; neutron reflectometryNRA see nuclear reaction analysisNSE see neutron spin echonuclear magnetic resonance (NMR) spectroscopy

manufacturing techniques 156molecular dynamics 480morphological characteristics 8relaxation studies 538–44spin diffusion 544–6theoretical background 520–2see also solid-state NMR spectroscopy

nuclear reaction analysis (NRA) 111nucleating agents (NA) 360–2, 368nucleation and growth 648–9numerical prediction models 415–19nylon blends

manufacturing techniques 131, 133mechanical properties 254–5, 265–8, 279, 306waste management 938

object grating method 791–5OCLV see optimized compaction, low voidoff-lattice chain models 59–60offshore applications 874–5ohmic contacts 469–70Ohta-Kawasaki Functional 51–2Oldroyd model 331–4OM see optical microscopyon-line visualization 165, 170, 174, 190, 317OOT see order–order transitionoptical activity applications 895–6

Page 18: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

998 Index

optical deformation and strain 791–5optical fiber sensors 893optical light microscopy 8optical microscopy (OM) 650, 656optical phase extraction 790optical shear flow cells 171optical transition energies 450optimized compaction, low void (OCLV) 875–6order–disorder transitions (ODT) 48–9, 68, 339order–order transition (OOT) 345–6ordered microphases 253–4organic–inorganic hybrid materials 902organic–inorganic membranes 767–9organomodified lamellar silicates (OMLS) 856, 859, 862organomontmorillonite (OMMT)

fire retardancy 857–9, 861manufacturing techniques 143mechanical properties 275, 298–9, 302waste management 934, 940–1X-ray photoelectron spectroscopy 626–7

oriented polymer blends 755–7orthotropic composites 390osmotic cracking 832–3Ostwald-Buzagh continuity principle 93Oswald ripening 736oxazolidine derivatives 554oxidation induction time (OIT) 825oxidation reactions 806–8, 812, 814–15, 818–24, 839,

934oxygen permeability 752oxygen transport 823

p-type conductivity 450–1packaging applications 764packing volume fraction 408–12, 415, 431paclitaxel 535, 544Pal models 408–10PALF-reinforced polyester composites 296–7Palierne model 333–5palladium fillers 437parallel breakup 172parallel imaging 598parallel model 267–71, 275–6, 288–9, 404–5, 413–14parallel plate devices 168–9partial discharges 835partial encapsulation 193particle-based dynamics 62–4particle size distribution (PSD) 277partly swollen gels 5PCB see printed circuit boardsPCT see percolation-to-cluster transitions

PEFC see polymer electrolyte fuel cellPELDOR see pulsed double electron–electron resonancepenetration depth 715pentaerythritol 851–2, 857percolation models 426, 427–32percolation phenomena 507–12percolation-to-cluster transitions (PCT) 649permeability 9, 749, 751, 753–7, 760–7permittivity 92–3, 426peroxyl radicals 819–25phase angle plots 342phase border regions 106–7phase diagrams 40, 47–9, 640, 652phase orientation studies 676–7phase separation 647–51, 655–6, 661phase-transition properties 9, 10phenolic resins 398phenyl-tert-butyl-nitrone (PBN) 552phosphorated melamine 851–2, 855, 857phosphorus-based flame retardants 850–2, 855, 857–8,

861–2phosphorylated epoxy resin (PEP) 95photoacoustic techniques 393photochemical ageing 797, 812, 815, 818–19, 821–3,

839photogrammetry 791–5photoionization 586–7photolysis 100photopolymerization 906photopyrotechnic techniques 393photostability 102physical ageing 798, 799–806

additive migration 803–6, 826, 829application-related factors 832–9electrical insulations 833–9multiphase polymer systems 837–9solvent absorption 802–3structural reorganization 800–2water-induced damage 826–9, 832–3, 836–7

physical characteristics 1–5, 8–10physical compatibilization 93–100, 102PI see polydispersity index; polyisoprenepiezoelectric properties 830, 897piperidine derivatives 553plastic deformations 779plastic laminates 866plasticization 577, 751, 802–6plastics production and consumption 5–6platelet formation 163–4, 180–2plerospheres 894PLM see polarized light microscopy

Page 19: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 999

PLS see positron lifetime spectrometryPluronics 561–2, 733, 738, 741, 900POEGMA overlayer thickness 592–7polarized light microscopy (PLM) 130, 146, 359–60,

693–5poly(α methyl styrene) (PαMS) 817poly-trans-acetylene 450poly(acrylamide) (PAM) 155, 658poly(2-acrylamido-2-methylpropanesulfonic acid)

(PAMPS) 149–50poly(acrylic acid) (PAAc) 151polyacrylonitrile (PAN) 150, 275–6, 293, 362, 565poly(alkyl acrylates) (PAA) 486–99, 544, 578polyamides (PA)

ageing processes 810–11, 823, 828dielectric spectroscopy 510–11electrical properties 438gas transport mechanisms 756, 761, 763–4manufacturing techniques 128–9, 132mechanical properties 277, 305microfibrillar reinforced composites 671–2, 678,

679–93morphological characteristics 162, 168, 175–6, 181–4,

187, 189, 193, 199–205, 211, 214–18, 225–31rheological properties 322–3solid-state NMR spectroscopy 543thermal analysis 362, 369, 377, 379thermophysical properties 396, 398, 402waste management 922–3, 937–8, 943

poly(anhydrides) 898polyaniline (PANI) 450, 613, 909–10, 912, 965poly(anilinesulfonic acid) (SPANI) 911–12poly[bis(trifluoroethoxy)phosphazene] (PBFP) 537–8polybromo diphenyl ethers (PBDE) 843–4, 850polybutadiene (PB) copolymers 564–5, 567, 653–4, 730,

819, 823–5poly(butyl acrylate) (PBA) 457, 486–95poly(butyl methacrylate) (PBMA) 486–93, 569–70poly(butylene adipate) (PBA) 527–30poly(butylene terephthalate) (PBT) 128–9, 214–17, 229,

265, 527–30, 826poly(caprolactone) (PCL)

applications 903electron spin resonance spectroscopy 564, 573, 575interfacial properties 100light scattering techniques 661–2manufacturing techniques 133, 143mechanical properties 257–60, 277–8rheological properties 313–14solid-state NMR spectroscopy 526–7X-ray photoelectron spectroscopy 588–90

polycarbonate (PC)ageing processes 801, 807, 823, 826interfacial properties 95light scattering techniques 661manufacturing techniques 127–8, 131–2morphological characteristics 165, 184, 205–6, 214rheological properties 316thermophysical properties 396, 404waste management 936, 938, 941

poly(cis-butadiene) rubber (PcBR) 657poly(cyclohexyl acrylate) (PCHA) 564, 570–1poly(cyclohexyl methacrylate) (PCHMA) 570–1poly(dimethyl acrylate) (PDMA) 621–3poly(2,6-dimethyl oxyphenylene) 802poly(dimethyl siloxane) (PDMS)

ageing processes 823applications 908characterization 500–7, 629elastomers 960–6, 969–70manufacturing techniques 156morphological characteristics 171, 174, 184, 190,

202–3, 219, 221, 229poly(2-(dimethylamino) ethylmethacrylate)

(PDMAEMA) 604–5poly(dioxolane) 542polydispersity index (PI) 809polyesters

applications 872–3, 881manufacturing techniques 134–5, 139solid-state NMR spectroscopy 526–30thermophysical properties 396waste management 949

poly(4-ethenylphenolmethylsiloxane) (PEPS) 621–3poly(ether-block-amide) copolymers 542poly(ether-ester) blends 256–7poly(ether ether ketone) (PEEK) 823, 898–9, 904–7poly(ether imide) (PEI) 661polyethers 396poly(ether sulfone) (PES) 650–1, 823poly(ether-urethane) ionomer (PEUI) 154poly(ethyl acrylate) (PEA) 492, 530poly(ethyl methacrylate) (PEMA) 492, 496–8polyethylene (PE)

ageing processes 807, 810–11, 813, 817–19, 823–5characterization 546, 588electrical properties 456–7gas transport mechanisms 762–3manufacturing techniques 139mechanical properties 271morphological characteristics 174–7, 185–6, 192–3,

198, 208, 228

Page 20: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

1000 Index

polyethylene (PE) (Continued)rheological properties 317–18waste management 941

poly(ethylene-co-butene) (PEB) 661, 673, 697–9poly(ethylene-co-hexene) (PEH) 661poly(ethylene dioxy)thiophene (PEDOT) 613poly(ethylene glycol) diacrylate (PEGDA) 153, 531poly(ethylene glycol) (PEG)

characterization 540–1, 578, 590, 661–2manufacturing techniques 124, 146–7, 156morphological characteristics 184

poly(ethylene naphthalate) 830poly(ethylene oxide) (PEO)

electron spin resonance spectroscopy 561–3, 569, 576,578

light scattering techniques 661manufacturing techniques 124–5, 149mechanical properties 282neutron scattering 729–30, 732–3rheological properties 26, 315, 335–8solid-state NMR spectroscopy 532, 534, 544–5

poly(ethylene succinate) (PES) 124poly(ethylene terephthalate) (PET)

ageing processes 807, 817, 826, 830gas transport mechanisms 754, 756light scattering techniques 656, 660–1morphological characteristics 183–4, 199–200rheological properties 322–3solid-state NMR spectroscopy 530, 542thermal analysis 362, 365–6waste management 928–9, 933, 936, 941, 943X-ray scattering 673, 697–9

polyglycidol (PGL) 605–8poly(glycidyl methacrylate) (PGMA) 601–2, 625–6polyhedral oligomeric silsesquioxanes (POSS) 301–2,

853, 965–6poly(hexylene oxide) (PHO) 282polyhydroxyalkanoates (PHA) 530poly-4-hydroxybutyrate (P4HB) 897poly(3-hydroxybutyrate) (PHB) 124, 530poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)

530poly(hydroxyethyl acrylate) (PHEA) 487, 496–8poly(2-hydroxyethyl methacrylate) (PHEMA) 545, 565,

597, 603–4polyimides (PI) 767, 823polyisobutylene (PIB) 190, 202–3, 219, 221, 545, 817polyisoprene (PIP) 47, 343, 819, 823polyketones 396poly(L-lactic acid) (PLLA) 143, 526–7, 903, 939–40poly(L-lysine) (PLL) 533, 536, 540

poly(lactic acid) (PLA) 257–60, 277–8poly(lactic-co-glycolic acid) (PLGA) 126, 589–90, 900poly(lactide) (PLA) 149polymaleic anhydride octyl vinyl ether (PMAOVE) 577polymer blend nanocomposites

mechanical properties 252, 265–7, 279–81morphological characteristics 162–4, 178–82, 187,

207–8, 212–18, 225–31polymer blends 2

analytical theories 49–56applications 65–70blending laws and viscoelasticity models 326–35coarse-grained models 56–8development mechanisms during processing 164–82dispersed phase morphology 3droplet breakup and deformation 165–6, 168–74,

187–92, 201–5, 224–5droplet coalescence mechanisms 165–6, 174–7, 187–8,

214–18electrical properties 428, 449, 452–3, 456–7electron spin resonance spectroscopy 569–71Flory-Huggins theory 39–43future developments 10–11gas transport mechanisms 755–7initial development mechanisms 164–8intercalation, exfoliation and dispersion 163–4,

178–82, 200, 230interfacial properties 86, 94light scattering techniques 646–7, 651–8, 660–2literature review 6–7low frequency viscoelastic behavior 335–9manufacturing techniques 123–33material-relevant factors 183–218mechanical properties 251–2, 253–81morphological characteristics 161–231, 253–6, 270–4,

311–18, 323–5, 334–9neutron scattering 729–31oriented 755–7processing-relevant factors 218–31rheological properties 311–18, 322–39self-consistent field theory 44–9solid-state NMR spectroscopy 531–5, 539–42specificity of blend rheology 322–6structure–property relationships 479–80swelling 325–6thermal analysis 370–3thermophysical properties 396–400, 419viscoelasticity 316, 317, 326–39waste management 932, 936–7X-ray photoelectron spectroscopy 619–24X-ray scattering 670, 693–5

Page 21: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 1001

polymer composites 2acoustic emission 782–3ageing processes 838–9applications 865–920compatibilization 455–6crystallinity 454–5electrical properties 426, 432–72electron spin resonance spectroscopy 557–8, 573–5electronic shearography 790–3failure mechanisms 779–81fire retardancy 844, 849–52, 854–62interfacial properties 81, 94laser interferometry 788–90literature review 5–7manufacturing techniques 123, 133–41, 157mechanical properties 251, 253, 293–7multipercolation effect 456–7nondestructive testing 777–96optical deformation and strain measurement 791–5production and consumption 5–6radiography 785–6resistance measurements 458–72solid-state NMR spectroscopy 543structure–property relationships 479–80, 482, 499–503thermal analysis 375thermography 786–8thermophysical properties 387–8, 390,

394–420ultrasonic scanning 783–5visual inspection 781–2waste management 921–57X-ray photoelectron spectroscopy 624–7X-ray scattering 670, 671–2, 681–93

polymer conformation 522–5polymer electrolyte fuel cell (PEFC) 909polymer gels 3

applications 895–6, 900future developments 12inhomogeneities 658–9light scattering techniques 658–60literature review 6–7manufacturing techniques 143–9, 157mechanical properties 251, 252, 290–5sol–gel transition 659–60swelling behavior 3, 5, 12

polymer melts 27polymer microcomposites 298polymer nanocomposites

compatibilization 455–6crystallinity 454–5dielectric spectroscopy 479–80, 482, 499–507

electrical properties 426, 432–72electron spin resonance spectroscopy 575–6fire retardancy 844, 852–4, 856–62future developments 11gas transport mechanisms 752, 755–63interfacial properties 81, 94literature review 5–7manufacturing techniques 141–3, 157mechanical properties 298–306morphologies 2–4multipercolation effect 456–7preparation 2, 4production and consumption 5–6resistance measurements 458–72rheological properties 14solid-state NMR spectroscopy 538, 543waste management 940–3X-ray photoelectron spectroscopy 624–7X-ray scattering 670, 672–3, 678–81, 683, 695–9

polymer networks see elastomers; interpenetratingpolymer networks; thermosets

polymer–clay nanocomposites (PCN)fire retardancy 857mechanical properties 265–6, 305–6morphological characteristics 163–4, 178–82, 207–8,

212–18, 220, 226–31X-ray scattering 672–3, 678–81, 695–9

polymer–layered nanocomposites 141–2polymer–layered silicate nanocomposites (PLSN)

characterization 499–507, 538mechanical properties 303–4morphological characteristics 163–4, 178–82, 207–8,

212–18, 226–31waste management 940–1, 943

polymeric matrix composites (PMC) 778poly(methacrylic acid) (PMAA) 532, 569, 573, 600, 602poly(methyl acrylate) (PMA)

characterization 486–99, 564, 567, 575, 577electrical properties 457manufacturing techniques 142

poly(methyl methacrylate) (PMMA)ageing processes 803, 817, 823applications 904dielectric spectroscopy 493–5electrical properties 457electron spin resonance spectroscopy 564, 569–70,

576–7fire retardancy 853–4, 859interfacial properties 95manufacturing techniques 125, 132, 156mechanical properties 257–8, 280–1, 284–90, 293

Page 22: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

1002 Index

poly(methyl methacrylate) (PMMA) (Continued)morphological characteristics 162, 176, 188, 192,

195–8, 201–2, 205–6, 211–14, 219–20, 226neutron scattering 729–30rheological properties 323, 333solid-state NMR spectroscopy 542thermal analysis 372–3waste management 932X-ray photoelectron spectroscopy 595, 601–4, 615–16,

620–2poly(methyl vinyl oxazoline) (PSox) 179, 202poly[methylene (polyphenyl isocyanate)] (PMPPIC)

935poly(methylphenylsiloxane) 649poly(N-isopropyl acryl amide) 542poly(N-isopropylacrylamide) 104poly(N-isopropylacrylamide) (PNIPA)

characterization 569, 577–8, 658–60manufacturing techniques 146, 148–9, 151, 157mechanical properties 290–2

poly(N,N-dimethylacrylamide) (PDMAA) 290, 292,659–60

polyolefins 526, 763–4poly(oxy methylene) (POM) 130–1, 183, 323, 456–7,

817–18, 823poly(p-dioxanone) (PPDO) 124poly(p-phenylene) 450polypeptides 536poly(phenylene sulphide) (PPS) 831, 938poly(propionylethylenimine-co-ethylenimine) (PPEI-EI)

448poly(propylene carbonate) (PPC) 569–70poly(propylene fumarate) 898poly(propylene oxide ) (PPO) 534, 545, 561–3, 730,

732–3polypropylene (PP)

ageing processes 807, 819, 823–4applications 875, 903–4dielectric spectroscopy 508–9, 512electrical properties 455, 457fire retardancy 858, 860interfacial properties 90, 95light scattering techniques 656–7, 660–1manufacturing techniques 124, 127–32, 138–40mechanical properties 254–6, 261–5, 272–5, 279, 296,

303–4morphological characteristics 165, 168, 172–4, 178–9,

184–6, 189, 192–200, 207–8, 214, 217–18, 225–8rheological properties 316, 335thermal analysis 360–4, 367–70, 377thermophysical properties 402, 404, 412–13

waste management 922–3, 925–6, 931–6, 939–40,949–50

X-ray photoelectron spectroscopy 588, 613–15X-ray scattering 670, 693–7

polypyrrole (PPy) 450–1, 613–19, 621, 626polyrotaxanes 146–7polysaccharides 398–9, 523polysiloxanes 96, 98, 102, 104, 399polysilsesquioxanes 146polystyrene (PS)

ageing processes 807elastomers 963–4, 970electrical properties 437electron spin resonance spectroscopy 564–5, 567,

575fire retardancy 857interfacial properties 95light scattering techniques 649, 652–4, 656manufacturing techniques 128, 132, 151–4mechanical properties 254–7, 271, 277–8, 280modeling and simulations 42, 47morphological characteristics 162, 165, 167, 172–9,

188–201, 205–6, 209–14, 219, 225neutron scattering 730–1rheological properties 313–14, 317–18, 323, 333, 343thermal analysis 372–3, 379thermophysical properties 414waste management 927, 937X-ray photoelectron spectroscopy 588–9, 605–8, 620X-ray scattering 670, 693–5

polystyrene-block-polybutadiene-block-poly-(methylmethacrylate) (SBM) 281–2

poly(styrene-co-methacrylic acid) (STMAA) 570poly(styrene-co-methyl methacrylate) (SMMA) 647–8poly(styrene-co-4-vinyl phenol) (STVPh) 569–70polysulfides 399polysulfones (PSU) 132–3, 399poly(tetrafluoroethylene) (PTFE) 416, 417–19, 569, 817,

823, 909–10poly(tetrahydrofuran) 542polythiophenes 450, 613polyurea 571polyurethanes (PU)

applications 898electron spin resonance spectroscopy 567, 571–3manufacturing techniques 142, 153, 155mechanical properties 284–5thermophysical properties 399waste management 928, 935

poly(vinyl acetate) (PVAc) 125poly(vinyl acetate-co-vinyl alcohol) (PVA-VA) 448

Page 23: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 1003

poly(vinyl alcohol) (PVA) 155, 763, 766poly(vinyl benzene) (PVB) 605–8poly(vinyl chloride) (PVC)

ageing processes 803–6, 807, 817–18applications 871–2characterization 372–3, 620–1electrical properties 457morphological characteristics 175, 198–9rheological properties 314, 343waste management 924–5, 934, 936, 939

poly(vinyl ethylether) (PVEE) 620poly(vinyl isobutyl ether) (PVIBE) 533, 535, 540poly(vinyl methyl ether) (PVME) 42, 652–4poly(vinylidene fluoride) (PVDF)

ageing processes 830mechanical properties 265–8, 293morphological characteristics 162rheological properties 315, 335–8thermal analysis 362, 364, 368–70

poly(vinylphenol) (PVPh) 532–3, 534, 542poly(4-vinylpyridine) (PVPy) 621–4poly(vinylpyrrolidione) (PVPr) 621–3poly(vinylpyrrolidone) (PVP) 88, 532–3, 534, 542Porod’s law 642porosity 434porous fillers 967position-sensitive detectors (PSD) 724positive-deviation blends (PDB) 185–6positive-negative-deviation blends (PNDB) 185–6positron lifetime spectrometry (PLS) 110–11power compensated DSC 365press forming 868–70pressure vessels 876printed circuit boards (PCB) 839, 907–8probability distributions 22–3, 35, 224processing agents 803processing techniques see manufacturing techniquesprosthetic applications 895–905proteins 603–4PSD see particle size distribution; position-sensitive

detectorspseudo-IPNs 156PtBMA grafts 600, 602pulse-echo scanning 783–5pulsed double electron–electron resonance (PELDOR)

560–1, 567–8, 575, 579pulsed ESR techniques 560pultrusion 138–9pyrolysis 929–32, 945–6pyrrolidine derivatives 553pyrroline derivatives 553–4

quantitative analysis of surfaces by electron spectroscopy(QUASES) 595–7

quantum dots 965quasielastic behavior 741–2quasielastic scattering 708, 710–13

R-cyclodextrin macrocycles (R-CD) 146–7radiative heat transfer 388radiochemical ageing 797, 809, 815, 818–21, 839radiography 785–6RAFT see reversible addition–fragmentation chain

transferRaman spectroscopy 922random chain scission 808–12random copolymers 261–3, 567, 628–9, 647random phase approximation (RPA) 32, 50–2rapid heat cooling (RHC) DSC 365RAPRA standard scheme 819Ratcliffe model 412–13Rayleigh model 408Rayleigh scattering 640RBS see Rutherford backscattering spectrometryreaction-induced phase separation 649–51reaction injection molding (RIM) 140–1, 157reactive compatibilization 95–8, 197–8, 261reactive coupling 94, 95–6reactive diffusion 813reactive flame retardancy 845reactive grafts 600reactive surfactants 96reactor neutron sources 716–18rear face temperature 391recrystallization 90, 361, 373, 685–6rectifying contacts 469–70recycled thermoplastics 935–40, 949–51recycling 10

feedstock 928–9, 945–6mechanical 252, 296, 932–43, 947–51polymer blends 11, 123waste management 921–2, 924, 932–43, 945–51

red phosphorus 851, 855, 858REDOR see rotational echo double resonancereflectometers 720reinforced RIM (RRIM) 140–1reinforcement see fibers; fillersrelative hygrometry (RH) 828relative permeability 754–7, 760–2relaxation modulus curves 301–2reptation chain dynamics 38

see also sticky reptation modelresin dissolution 924–7

Page 24: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

1004 Index

resin transfer molding (RTM) 136–8, 157, 867–8, 889resistance measurements 458–72

contact resistance 469–72four-probes method 460–5spreading resistance of contacts 468–70two-probes method 459Van der Pauw method 465–7

responsive interphases 101–5, 112reversible addition–fragmentation chain transfer (RAFT)

polymerization 99–100, 600reversible adsorption theories 15–16, 27reversible hydrolysis 828–9RH see relative hygrometryRHC see rapid heat coolingrheological properties 9, 13–29, 311–57

ageing processes 810–13, 815–16, 827blending laws 326–35block copolymers 312–13, 339–54capillary extrusion rheometry 347–53concentrated suspensions 327–9dilute suspensions 327droplet breakup and deformation 318–22, 338droplet coalescence 321–2, 323, 338emulsions 330–5entangled systems 14, 21–7entanglement plateaux 340–1experimental results 19–21, 25–7flow-induced morphological changes 345–7glass transition temperature 313–14hydrodynamic modeling 13–14, 18low frequency viscoelastic behavior 335–9macroscopic characteristics 18, 24–5microscopic characteristics 15–17, 22–4miscible liquids 326modeling and simulations 13–29, 326–39morphological characteristics 311–18, 323–5,

334–40polymer blends 311–18, 322–39reinforcement mechanisms 14shear and stress 317–18shear-induced segregation 322–3specific mechanical relaxation 343–5specificity of blend rheology 322–6sticky reptation model 22–5, 27strain non-uniformity 322–3suspensions of rigid particles 327, 333–5swelling 325–6thermorheological complexity 341–3unentangled systems 14–21uniform description of flow curves 329–30viscoelasticity 316, 317, 326–39

viscosity ratio 315–17, 319–21, 322waste management 933–6, 951

rheology-light scattering 644–5rigid polymers 972RIM see reaction injection moldingrobotic in-mold fiber reinforcement (RIMFIRE) 872Rocking curves 734–5, 738–9rope-like nanotubes 445–6rotational echo double resonance (REDOR) 525rotational molding 140–1Rouse chain dynamics 38RRIM see reinforced RIMRTM see resin transfer moldingrubber blends/composites

characterization 499–507, 657, 660–1elastomers 964–5electrical properties 456–7, 458mechanical properties 253–5, 257–9, 265–6, 269–70,

276–9morphological characteristics 185–6, 195, 201, 214waste management 922, 924, 932, 937–8

rubber modified thermoplastics 9rupture point 969Rutherford backscattering spectrometry (RBS) 111

S-glass 880Saito’s theory 808–9SALS see small angle light scatteringSANS see small angle neutron scatteringSAXS see small angle X-ray scatteringSBA-15 562–3SBSS see short beam shear stressesscaling behavior 36–8scanning electron microscopy (SEM)

elastomers 963–4electrical properties 432–3, 437–41, 451manufacturing techniques 130, 133, 142–3, 146, 151,

155mechanical properties 255, 257, 280, 300morphological characteristics 8, 165neutron scattering 733rheological properties 334waste management 939X-ray scattering 672, 681–3, 693–6

scanning near-field optical microscopy (SNOM) 109–10scanning thermal microscopy (SThM) 376scanning tunnel microscopy (STM) 8SCBA see self-contained breathing apparatusSCF see self-consistent fieldSchottky barrier diodes 910–11SCL see shell crosslinked; space-charge-limited

Page 25: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 1005

SCMF see single chain in mean fieldSCORIM see shear controlled orientation in injection

moldingscrap rubber tires (SRT) 130SD see spinodal decompositionSDM see shear-induced demixingSEC see size exclusion chromatographysecant moduli 260secondary ion mass spectrometry (SIMS) 109, 610–11,

619–21, 627secondary structure 523segmental mobility 84, 92–3, 108–9selective dissolution 314–15selective multiphase materials 749, 767–9self-assembly 39, 561–4self-avoiding chains 36–7self-concentration model 481self-consistent field (SCF) theory 7, 31–2, 43–9

analytical theories 52, 55fluctuation effects 48–9mean field approaches 47real systems 45–9, 68theoretical application 43–5

self-contained breathing apparatus (SCBA) 876self-correlation functions 712self-similar grid structure theory 17SEM see scanning electron microscopysemiconducting polymer composites 450–1, 458, 899semi-empirical prediction models 412–15semi-interpenetrating polymer networks (SIPN) 3–4,

570, 571–3semi-IPNs 154–5separate dispersions 193separation of waste components 924–7sequential elimination reactions 807, 818sequential IPNs 151–2series model 269–71, 275–6, 288–9, 404–5, 413–14SFFT see single fiber fragmentation testshear controlled orientation in injection molding

(SCORIM) 695–7shear flow 168–72, 218–21, 651–5, 779shear rates 70, 322–3shear stress 317–18, 453shear thinning/dynamics 730–3, 739–43shear viscosity 19–20shear-induced demixing (SDM) 651–2shear-induced phase mixing (SIM) 651–2shear-induced segregation 322–3sheet molding compounds (SMC) 922, 924, 929–31,

944–51sheeting formation mechanism 166–8, 172–4, 224–5

shell crosslinked (SCL) micelles 629short beam shear stresses (SBSS) 296shrinkage 806, 830, 906silane coupling agents 96, 98, 102silica elastomers 962, 970silica fumes 935silica nanoparticles 26, 500–7silicate layers see polymer-layered silicate

nanocompositessilicification 967silicon carbide 889silicon containing polymers 891–3silicone fillers 838silk composites 136silver fillers 437silver ion determination 588, 600SIM see shear-induced phase mixingSIMS see secondary ion mass spectrometrysimulations see modeling and simulationssimultaneous interpenetrating networks (SIN) 152–3single chain in mean field (SCMF) simulations 64single-chain partition functions 45–6single fiber fragmentation test (SFFT) 88single pulse excitation (SPE) MAS 531single screw extruders (SSE) 129–31, 162, 164–5, 167,

184–5, 223–31single vacuum bag (SVB) process 135–6single-wall carbon nanotubes (SWNT) 227

applications 910elastomers 966electrical properties 444, 446–7electron spin resonance spectroscopy 561–2fire retardancy 859

SIPP see surface-initiated photopolymerizationSIST see stepwise isothermal segregation techniquesite percolation 427size exclusion chromatography (SEC) 156skin–core interface 136, 816SLS see static light scatteringsmall angle light scattering (SALS) 640, 642–3, 646–57,

662small angle neutron scattering (SANS) 8, 660, 670,

713–14, 719–20, 724–33small angle X-ray scattering (SAXS) 670, 672–4,

677–87, 693–5, 697–700manufacturing techniques 146morphological characteristics 8rheological properties 345

smart reversibly adaptive interphases 103–5Snell’s law 715SNOM see scanning near-field optical microscopy

Page 26: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

1006 Index

sodium bis(2-ethylhexyl) sulfosuccinate (AOT) 613–15sol-gel process 145, 659–60, 960solid-state NMR spectroscopy 110, 519–49

carbohydrates 530chemical shifts 525–6conducting polymers 530–1copolymers 527–30, 542–3, 545–6cross-polarization 519–20, 521–2, 525–36, 537dipolar decoupling 521–2, 525, 536–7drug delivery systems 535, 543–4high-resolution 13C NMR 521, 523–4, 525–36magic angle spinning 519, 521–2, 525–36morphological characteristics 537NMR relaxation studies 538–44other nuclei 536–8polyesters 526–30polymer blends 531–5, 539–42polymer composites/nanocomposites 538, 543polymer conformation 522–5polymer–LMW compound interactions 535–6polyolefins 526polypeptides 536solid polymers 525–36spin diffusion 544–6theoretical background 520–2

solid-state shear pulverization (SSSP) 162solubility coefficients 749, 751soluble-insoluble (SIS) polymers 104solution blending 124–5solution casting 257–8solution intercalation 141–2solvent absorption 802–3solvolysis 928–9, 946–7sorting of waste materials 922–4space-charge-limited (SCL) emission 910space charges 835–6space intersection 792spacecraft applications 891–4spallation neutron sources 718SPE see single pulse excitationspecific heat capacity 9

definition 389measurement techniques 392–3polymer blends 396–400polymer composites 395–404temperature-dependence 395–401unfilled polymer systems 395–400

specific mechanical relaxation 343–5spin-coated humidity sensors 911–12spin diffusion 544–6spin probe/spin label techniques 552, 557, 563–5, 574

spin trapping agents 552spinodal decomposition (SD) 40, 647–8sporting goods 875–6spray layup process 134–5spreading resistance of contacts 468–70spring-bead chain model 36, 59SRIM see structural RIMSSA see successive self-nucleation and annealingSSSP see solid-state shear pulverizationSST see strong stretching theorystabilizers 102, 933–4starch/cellulose acetate (SCA) 902starch/ethylene vinyl alcohol (SEVA) 902starch/poly(acrylic acid) blends 544static light scattering (SLS) 639statistical percolation models 428–30step-strain experiments 168, 170stepwise breakup mechanism 318–20stepwise crystallization 361, 364stepwise isothermal segregation technique (SIST)

365SThM see scanning thermal microscopysticky reptation model 7, 22–5, 27stimuli-responsive polymers (SRP) 104–5STM see scanning tunnel microscopystorage moduli

interpenetrating polymer networks 284–5, 289–90polymer blends 269, 273–5, 336, 338, 341, 346–8rheological modeling 20–1, 25–7

strain non-uniformity 322–3strain-at-failure 258, 301strain-induced crystallization 259, 262–3strength-to-weight ratios 883–4stress-induced crystallization 322stress relaxation function 24stress–strain behavior 9

elastomers 962, 964, 969interpenetrating polymer networks 285polymer blends 261–3, 268polymer gels 292–5X-ray scattering 694–5, 697–9

strong segregation limit (SSL) 561strong segregation theory 32, 41, 46, 52–5strong stretching theory (SST) 53–5structural models 58–62structural reorganization 800–2, 829–31structural RIM (SRIM) 140–1structure-oriented percolation models 430structure–property relationships 479–80, 640styrene-acrylonitrile copolymer (SAN) 95, 202–3, 211,

214, 565, 621–3, 647–8, 661

Page 27: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 1007

styrene-butadiene rubber (SBR)elastomers 964–5electron spin resonance spectroscopy 559, 574manufacturing techniques 126–7, 128mechanical properties 259, 265–6, 270morphological characteristics 167, 209

styrene-butadiene-styrene (SBS) block copolymers 132,254–6, 279, 312, 339–40, 347–50, 542

styrene copolymerization 146styrene crosslinked polyesters (UP) 807styrene-ethylene/butylene-styrene triblock (SEBS)

copolymersmorphological characteristics 185–6, 198–9, 205–6,

211, 228–9rheological properties 313, 339–53waste management 937

styrene-isobutylene-styrene (SIBS) 535, 544successive self-nucleation and annealing (SSA) 365sulfonation reactions 806–7sulphur vulcanized polyisoprene (SVPIP) 799, 817supercapacitors 910supercritical carbon dioxide extraction 927supercritical fluids 132–3superficial degradation 815–16surface discharges 836–7surface energies 107–8surface erosion 165–6, 172surface-initiated photopolymerization (SIPP) 603surface modified carbon nanotubes (CNT) 446–9surface properties 67, 434, 592–7, 716–18surface specificity of XPS 587suspensions 327–9, 333–5swelling processes 325–6, 961–3synthetic metals see inherently conducting polymerssystematic bottom-up modeling 57–8

tactoid formation 180–1, 220Taffy process 609Takayanaki model 288–9targeted reactive interphase modifiers 96Taylor theory 168–70, 187–8, 316–17, 319, 331TCL see transcrystalline layersTDGL see time-dependent Ginzburg-LandauTDR see time domain reflectometryTDS see time domain spectroscopytear properties 9TEM see transmission electron microscopytemperature modulated DSC (TMDSC) 373–7temperature-modulated TGA (MTGA) 378temperature programmed desorption (TPD) 610temperature-sensitive microgels 145

tensile strength 9interpenetrating polymer networks 284–6, 288–9polymer blends 254–5, 260–4, 269–70polymer gels 292–4polymer nanocomposites 298–9waste management 929–31, 934–6, 939–40

tetrabromobisphenol A (TBBPA) 843, 850, 927tetrabromophthalic anhydride (TBPA) 850tetraethoxysilane (TEOS) 537, 541, 960tetramethoxy orthosilane (TMOS) 562–3, 659–60tetramethyl bisphenol A polycarbonate (TMPC) 656textile industry applications 866TGA see thermal gravimetric analysisthermal ageing 797, 818–19, 821–3, 838thermal analysis 359–85

differential scanning calorimetry 360, 362–77evolved gas analysis 378–80localized thermomechanical analysis 376–7micro- and nanothermal analysis 376–7polarized light microscopy 359–60polymer blends 370–3polymer composites 375temperature modulated DSC 373–7thermal gravimetric analysis 378–80thermal optical microscopy 359–64

thermal conductivity 9definition 388–9measurement techniques 389–90, 393modeling and simulations 404–19polymer blends 396–400, 404polymer composites 395–419temperature-dependence 395–401unfilled polymer systems 395–400

thermal degradation 531, 533, 834thermal diffusivity

definition 389measurement techniques 390–2, 393polymer blends 396–400polymer composites 395–404temperature-dependence 395–401unfilled polymer systems 395–400

thermal effusivity 389, 393–4thermal gravimetric analysis (TGA) 151, 378–80, 625–6thermal interfacial interactions 85thermal mapping 109thermal optical microscopy (TOM) 359–64thermal waste management processes 929–32, 945–6thermally stimulated conductivity (TSC) 154thermally stimulated depolarization current (TSDC)

analysis 88, 154, 481–2, 485–9, 493–507, 512–13thermography 786–8

Page 28: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

1008 Index

thermomechanical analysis (TMA) 154, 376–7thermo-optical properties 892–3thermophysical properties 1–5, 387–423

definitions 388–9fillers 406–19future developments 419–20macroscopic 8–9measurement techniques 389–94modeling and simulations 395, 404–19polymer blends 396–400, 419polymer composites 387–8, 390, 394–420simultaneous measurement of parameters 393–4unfilled polymer systems 394–400, 419

thermoplastic elastomers (TPE) 312thermoplastic IPNs 154thermoplastic olefin (TPO) nanocomposites 216–17,

942–3thermoplastics

applications 868–9, 877, 879–80, 886, 907characterization 9, 615–16, 670life cycling 10recycled 935–40, 949–51waste management 924, 928, 932–43, 949–51

thermorheological complexity 341–3thermoset adhesives 886–7thermoset IPNs 282–3thermosets

ageing processes 812applications 895, 907nanofillers 972–3thermal analysis 375waste management 924, 927–8, 944–51

Thiele moduli 765thiodipropionates 825–6third harmonic (3ω) method 390thread breakup 318three-dimensional (3D) numerical modeling 417–19three-point parameters 411THS see transient hot stripsTHW see transient hot wiretime-dependent Ginzburg-Landau (TDGL) theories 65time domain reflectometry (TDR) 483time domain spectroscopy (TDS) 483time-of-flight (ToF) spectrometers 610–11, 619–21, 627,

720–1, 741time-resolved dynamic light scattering (TR-DLS) 659–60time resolved-SALS (TR-SALS) 640, 650–1, 656tip-streaming 172, 202tip-stretching 202, 224–5tissue engineering 105, 898–900titanium dioxide 853–4, 859, 961–2

TMA see thermomechanical analysisTMDSC see temperature modulated DSCToF see time-of-flightTOM see thermal optical microscopyTomotika model 321topological networks 146–7Torquato model 410–12torque ratio see viscosity ratiotortuosity factors 754, 755–8, 761–2Tougaard theory 595–6toughness 810TPD see temperature programmed desorptionTR-DLS see time-resolved dynamic light scatteringTR-SALS see time resolved-SALStrain-loop-tail structures 82transcrystalline interlayers 90–1, 111–12transcrystalline layers (TCL) 361, 363–4, 684, 692–3,

831transient hot strips (THS) 394transient hot wire (THW) 394transient plane source (TPS) 393–4transmission electron microscopy (TEM)

dielectric spectroscopy 500elastomers 961, 963–4electrical properties 446manufacturing techniques 142–3, 145–6mechanical properties 266–7, 281–3, 286morphological characteristics 8, 187rheological properties 334, 339, 345–7waste management 942–3

transport properties 10transporter interphases 101–2triaryl phosphates 851, 861triboelectric separation 922–3tricalcium phosphate (TCP) 903–4triethyleneglycol methacrylate (TREGMA) 145triethylenetetramine (TETA) 609, 611–12, 626trimethylene carbonate (TMC) 564trimethylolpropane trimethacrylate (TMPTM) 565triphenyl phosphate (TPP) 861triple axis spectrometers 721–3Tsao model 407TSC see thermally stimulated conductivityTSDC see thermally stimulated depolarization currenttungsten oxide 912turbine blades 877–8twin-screw extruders (TSE) 131–2, 164–7, 181–2, 186–7,

207–8, 220–31two-dimensional (2D) numerical modeling 415–17two-dimensional NMR spectroscopy 522two-parameter Edwards model 36

Page 29: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

Index 1009

two-probes method 459two-roll mixing 126–7

UL 94V flammability test 848, 853, 855, 860–1ultra small-angle X-ray scattering (USAXS) 674ultrasonic scanning 783–5ultrathin polymer coatings 600–1ultraviolet (UV) absorption spectroscopy 807–8ultraviolet (UV) resistance 877ultraviolet (UV) spectroscopy 8unentangled systems 14–21uniformly swollen gels 5unsaturated polyesters (UP) 137, 139, 283, 826upper critical solution temperature (UCST) 94, 646

vacuum bag molding 135–6, 157vacuum-assisted resin infusion molding (VARIM) 877–8vacuum-assisted resin transfer molding (VARTM) 136Van der Pauw method 465–7VE resins 283vinyl polymers 399–400Vinyloop process 924–5viscoelastic emulsion model 333–5viscoelasticity

mechanical properties 251, 269, 272modeling and simulations 7morphological characteristics 171, 174–6, 187–92, 219rheological modeling 13–14, 18, 22, 25–7rheological properties 316, 317, 326–39

viscosityblock copolymers 349–53morphological characteristics 171, 175, 183–7, 214,

219polymer blends 323, 328–32rheological modeling 13, 19–20waste management 933

viscosity ratio 315–17, 319–21, 322, 331viscosity-shear rate 9visual inspection 781–2Vogel-Tammann-Fulcher (VTF) equation 484, 490voltage stabilizers 837–8volume fractions 331, 755, 962vorticity elongation/breakup 172vulcanized elastomers 812

waste hierarchy 922waste management 921–57

feedstock recycling 928–9, 945–6identification and sorting 922–4interfacial agents 932–5International context 944–5

mechanical recycling 932–43, 947–51polymer blends 932, 936–7polymer composites 921–57polymer nanocomposites 940–3separation of components 924–7thermal processes 929–32, 945–6thermoplastics 924, 928, 932–43, 949–51thermosets 924, 927–8, 944–51

water-induced damage 826–9, 832–3, 836–7, 891water trees 835water vapor permeability 752wavelength dispersive spectrometers (WDX) 587weak segregation limit 41, 46, 50–2, 55–6weight average molar mass 810–12, 828–9wetting processes 452wide angle X-ray scattering (WAXS) 8, 670, 672–7,

680–2, 687–97, 699–700wide-angle X-ray diffraction (WAXD) 124, 187Wiener measure 35Wilhelmy-plates 108wind turbine blades 877–8wobbling 190Wollaston probes 376wollastonite–silver (W-Ag) 408–9, 439wormlike chain model 35–6wormlike micelles 282, 283wrapping 449

X-radiography 785–6X-ray diffraction (XRD) 142, 155X-ray fluorescence correlation spectroscopy (XFCS) 110X-ray photoelectron spectroscopy (XPS) 109, 585–637

applications to polymeric materials 599–630binding energy values 589, 591chemical shifts 588–91colloidal particles 605–8conducting polymers 613–19copolymers 589–90, 618–19, 628–9data acquisition and processing 599elemental analysis 588epoxy resins 609–12, 627grafted polymers 589–90, 600–5instrumentation 597–9interpenetrating polymer networks 627–8manufacturing techniques 142morphological characteristics 8overlayer thickness 592–7photoionization 586–7polymer blends 619–24polymer composites/nanocomposites 624–7principles of technique 586–99

Page 30: Handbook of Multiphase Polymer Systems (Boudenne/Handbook of Multiphase Polymer Systems) || Index

P1: JYS Trim: 189mm × 246mm

JWST068-IND JWST068-Boudenne July 15, 2011 14:37 Printer: Yet to come

1010 Index

X-ray photoelectron spectroscopy (Continued)quantification 592spectral examination and analysis 587–91spectrometer design 597–8surface specificity 587

X-ray scattering (SAXS/WAXS) 669–703crystallinity of polymers/polymer systems 669–70,

673–8, 695microfibrillar reinforced composites 670, 671–2, 678,

681–93morphological characteristics 8polymer blends 670, 693–5polymer composites/nanocomposites 670, 671–3,

678–93, 695–9rheological properties 345SCORIM molded nanocomposites 695–7stress-strain curves 694–5, 697–9techniques and principles 669–71theoretical background 671–8

xerogels 145–6

yield strength 9yield stress 259, 281, 801–2Young’s moduli

ageing processes 801, 830, 835interpenetrating polymer networks 284,

288–9polymer blends 256, 260–5, 271waste management 930, 936, 951

YP compatibilizers 681–93

Zeeman interactions 555zeolites 90–2, 767–9, 967zero injection pressure resin transfer molding (ZIP RTM)

872zeta potentials 108Zimm chain dynamics 38zinc borates 850, 855zip elimination reactions 807, 818zirconia 961