Handbook for Marine Geotechnical Engineering

257
* Handbook fo r 00 Marine Geotechnical Engineering L/' D5 I Technical Editor LI Karl Rocker, Jr. * March 1985 !6 DEEP OCEAN TECHNOLOGY NAVAL CIVIL ENGINEERING LABORATORY PORT HUENEME, CA 93043 85 8:6 043 Approed for public release; distribution unlimited. 'I

Transcript of Handbook for Marine Geotechnical Engineering

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    1/257

    *

    Handbook for

    00

    Marine

    Geotechnical

    Engineering

    L/'

    D5

    I

    Technical

    Editor

    LI Karl

    Rocker,

    Jr.

    *

    March 1985

    DEEP OCEAN TECHNOLOGY

    NAVAL CIVIL ENGINEERING LABORATORY

    PORT HUENEME, CA 93043

    85 8:6

    043

    Approed for

    public release; distribution

    unlimited.

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    2/257

    PrCoTOt-At'.."HIS

    SHEET

    r

    ' i

    LEVEL

    IN,'vENfO-R

    S~~~DOCUMENTr IDENTICIO

    -idocl

    nnt

    hasboen

    apprxod

    I

    public

    releoaa

    cd

    gala;

    lt.

    dlUibudon

    Is

    unlimited.

    DISTRIBUTION

    STATEMENT

    ACCESSION

    FOR

    NTIS

    GR.i-4

    D c

    DTIC

    UNAOINOUNt2ED

    QT

    I

    JUSnFICATnON

    AIELECTE

    S..

    .. . . ....

    -

    AU

    1 2' 198

    BY

    DIS'llBDrTION/

    AVAILABILrYc

    ODES

    D,r

    AVAIL

    AND/OR

    SPECIAL

    DISTRIBUT1ONVSAIMP

    (Y-

    ,

    __DATE

    RETURNED

    DATE

    RECEIVED

    INDTIC

    REGISTERED

    OR

    CERTIFIED

    NO

    PHOOGRAPH

    THIS SHEET

    AND

    RETURN

    TO DTICDDAC

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    3/257

    L

    Unclassified

    SECURITY

    CLASSIFICATION

    OF

    THIS

    PAGE

    Wkw

    DWO

    .I.Ened)REDIS

    UC

    ON

    REPORT

    DOCUMENTAT;ON

    PAGE

    BEFORECOPLTIG

    OR M

    N-ro"6161

    2. GOVT

    ACC2SSION NO. 3. MECIPICNT'S

    CATALOG

    MU&IUER

    DN

    987083

    4.

    TITLE

    tods Wbitio)

    C. TYPE

    OF REPORT 6

    P919100 COVERED

    Handbook

    for Marine GeqL

    echnical

    .

    Final

    Engineering-Deep Ocean

    Technology

    -Oct 1979

    -

    Dec

    1983

    6

    PEaRFORMIN

    ORG.

    REPOrT NummnR

    7. AUT MO(.j

    6.

    CONTRACT 0OR

    GRANT

    NUMOER(.J

    Kar~l Rocker,

    Jr., Technical

    Editor

    9.

    PERFORMING ORGANIZATION

    NAME

    AND.00CtESS

    to. PROGRAM ELEMEINT.

    PRO ECT. TASK

    AREA &

    WORN

    UNIT NUNSERSI

    Naval

    Civil

    Engineering

    Laboratory PE

    637 13 N

    Port Huenieme,

    CA 93043

    2.11001

    11I.

    CONTROLLING

    OFFICE MNAM

    AND ADDRESS

    IS.

    REPORT OATE

    Naval Sea

    Systems Command

    March 1985

    Washington,

    DC

    20362

    '3

    IVNE~%4AO

    14.

    MONMITORING

    AGENCY

    NAMCE& ADORESUIP1

    Ififfter.

    NInl C..te..jiin

    Off-C.)

    IS. SECURITYV

    CLASS.

    (of

    060

    .pMtj

    Unclassified

    IS. CLASSIVICATION'DOWNGRAOINd

    SCHEDULE

    19. OISTRIUUTION STA'?CMENT

    lotI thll

    R*p.fI

    Approved

    for

    public

    release;

    distribution

    is

    unlimited.

    17.

    DISTRIBUTION STATEMENT

    (04

    Me

    obeftec

    owo,

    inBlock

    M.

    At

    -dlofo...

    Anfi

    ASPA9)

    IS9.

    SUPOLEMENKTARYNOTIES

    IS. KEY WORDS

    (COg.U... M IOf.. 5155

    IlRt . 555I

    SHr

    104

    #~#(Y AV

    N0

    geotechnics,

    marine

    soils, sediments,

    engineering

    properties

    ocean

    technology,

    ocean

    engineering,

    3ite

    surveying,

    seiamic

    profiling,

    penetrometers-,

    side-scan~

    sonar,

    foundations,

    anchors,

    sampling,

    coring.

    gilea.

    Mang

    q~~e

    tptgmanl~

    OSTMSYACT Coem...r

    an

    ro.aw.

    *Ad*

    H

    "etteOSWt

    Red5559Ip

    bflockEw

    This

    handbook

    discusses the application

    of

    engineering

    tetdh-

    niques

    and

    scientific

    knowledge

    to the' investigation

    of

    sea-

    floor

    materials,

    'their

    characteristics,

    and

    theirresponses

    to foundation

    and

    mooring

    loads.

    Its

    prim~ary

    thrust

    is

    with.

    problems

    engineers

    will

    encounter

    beyond

    the

    continental

    shelf

    or

    below

    600

    feet

    but

    the information

    is

    also

    applicable

    to

    shallow

    water

    tasia.

    *

    00

    ','OM1473

    EYU@IN@Sil@SIt3Unclassified

    SSCURITY

    Cl.AUfCBjAIOU 00

    TNIS VAE39 w

    9

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    4/257

    ACKNOWLEDGMENTS

    Much of

    the

    background material for the

    Handbook for Marine

    Geotechnical Engineering

    was developed by

    the Naval

    Civil

    Engineering

    Laboratory (NCEL).

    These materials were updated

    and supplemented

    with

    experience

    from

    the

    private

    sector by a number of

    contractors.

    Initial

    ,-diting

    and

    consolidation of the chapters

    was carried out by

    Brian

    Watt

    Associates, Inc.

    Technical

    review

    of

    the Handbook

    was also made by

    Dr. Robert H.

    Mayer, Jr.

    (U.S.

    Naval

    Academy) and

    Mr.

    Homa

    J. Lee. The

    primary contributor

    for

    each of the

    chapters

    is as

    follows:

    Chapter

    Primary Contributor

    1 Brian

    Watt Associates,

    Inc., Houston,

    TX

    2 The Earth

    Technology Corporation,

    Long Beach, CA

    3 Prof. I. Noorany, San

    Diego

    State Univ.,

    San

    Diego,

    CA

    4 The

    Earth

    Technology

    Corporation,

    L6ng

    Beach,

    CA

    5

    Woodward-Clyde Consulta nts,

    Santa Ana, CA

    6 Brian

    Watt

    Associates, Inc., Houston,

    TX

    "7 Brian Watt

    Associates, Inc., Houston,

    TX

    8 Brian Watt

    Associates,

    Inc., Houston, TX

    9

    Mr. H.J. Lee, U.S.

    Geological Survey, Menlo

    Park, CA

    10 Mr.

    N.J. Atturio, Naval

    Civil

    Engineering

    Laboratory,

    Port Hueneme, CA

    11 Dr.

    D.A. Sangrey, Carnegie-Mellon

    Univ. , Pitts.

    PA

    :::i:

    -. -i

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    5/257

    CONTENTS

    Page,

    Chapter

    1- INTRODUCTION ...................... .....................................

    1-1

    1.1 OBJECTIVE .............................................................

    .. 1-1

    1.2 HANDBOOK

    ORGANIZATION .

    ......................................................

    1-1

    1.3

    SELECTION OF

    FOUNDATION/ANCHOR

    TYPE

    ........... ........................... .. 1-3

    1.4

    REFERENCES

    .............................................................

    1-6

    Chapter

    2 -

    SITE SURVEY

    AND IN-SITU TESTING

    ................

    ............................ 2-1

    "2.1 INTRODUCTION 2-1

    2.11.uros.....................................................-

    2.1.1 Purpose .

    . . . . . . . . . . .

    . . .

    2-1

    " 2.1.2 Factors Influencing the Site Survey

    ..........

    ....................... .. 2-1

    2.2

    PRELIMINARY

    STUDY ......... ..... ... ....... ................... ......... 2-3

    2.2.1

    Information

    Sources

    ..................

    ...............................

    2-3

    "2.2.2 Typical Ocean Soils . .

    ..................

    .............................

    2-4

    2.3 REGIONAL

    SURVEY

    ................. ......................................

    2`12

    2.3.1

    General ..................

    ..................................... ..

    2-12

    2.3.2

    Seismic

    Profiling ................

    ................................. 2-12

    2.3.3

    Limited

    Sampling ............................................ ....... 2-14

    2.3.4 Side-Scan Sonar ..... ................................. 2-14

    2.3.5

    Visjal

    Observation

    .............. ................................ ..

    2-14

    2.3.6

    Survey

    Line

    Spacing.

    .............. ........................

    ........ 2-14

    2.4

    SITE-SPECIFIC

    SURVEY .....................................................

    2-1s

    2.4.1

    General

    ........ .............................. ......... ........ 2-15

    2.4.2 Shallow

    Sampling ......

    ........................................... 2-16

    2.4.3 Deep

    Sampling

    ......................... ........................... 2-19

    2.4.4 Sample Handling ........... ..................... .

    .............. ..

    2-20

    S,2.5 IN-SITU

    TESTING ...........................................................

    2-21

    2.5.1 General ............................................. . ...........

    2-21

    2.5.2

    Vane

    Shear Tests ................. ...................... ........ 2-22

    2.5.3 Cone Penetration Tests

    (CPT)

    ...... ............................ . .

    .2-23

    2.5.4

    Pressuremeter Tests

    ........

    ....................................... 2-25

    2.5.5 Dynamic Penetrometer .............................

    ..........

    ...... 2-25

    2.5.6 Borehole

    Logging Techniques

    . .......................................... 2-25

    2.6

    SEISMICITY

    SURVEY

    .......

    ......

    ......

    ....

    . .

    ............

    .........

    225

    -.- ..7 REFERENCES

    . .

    .

    ...

    .............................................

    .........

    2-26

    2.8

    SYMBOLS

    ............................................................

    2-27

    * .

    Chapter 3

    - LABORATORY DETERMINATION

    OF SOIL

    PROPERTIES

    ...........

    .................

    -1

    3.1

    INTRODUCTION

    ......................................................

    .....

    3-1

    3. .1

    Sc p

    . . . . . .

    .

    . . ..

    . ...

    . . .

    .

    . .

    ... .

    .

    .. . . .

    . 3-

    "-'" 3.1.1 Scop ........

    m

    r"""............

    .... 3"1I

    3.1.2 Special Considerations

    ...............................................

    3-1

    3.2 SOIL CLASSIFICATION

    ......

    .................... ........................ 3-1

    3.2.1 Classification by Origin

    ..............................................

    3-1i

    "3.2.2 Classification by

    Grain

    Size

    1.....

    3.2.3 Classification by Grain Size and B'eav*ier

    '..

    . ....

    3-2

    "3.3 INDEX

    PROPERTY TESTS

    ............

    ......................... . . . 3-4

    3.3. 1 Gener&l

    ......

    .....................................

    3-4

    3.3.3 2 Sample Preparation . . . . . .. . . . ... . . . . . ... . . . . . . . . . . . . . 3-4

    ' ' 3.3.3 Water Content

    ..................

    .....................

    .............

    3-4

    * ; 3.3.4 Unit Weight ......................................................... 3-?

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    6/257

    Page

    3.3.5 Specific Gravity ............................. ..........

    37

    3.3.6 Liquid

    Limit,

    Plastic Limit, and Plasticity Index ...... ................

    3-7

    3.3.7 Grain Size

    Analysis

    ................... ............................. 3-9

    3.3.8 Carbonate and

    Organic

    Carbon

    Content

    .......

    ....................... ..

    3-9

    3.4

    ENGINEERING PROPERTY TESTS ..................................................

    3-9

    3.4.1

    General

    ...................

    .....................................

    .. 3-9

    3.4.2

    Vane

    Shear

    Test

    ..............

    .................................

    3-10

    3.4.3 Unconfined Compression

    Test .............................

    .. 3-12

    3,4.4

    Unconsolidated,

    Undrained Triaxial Compression

    Test

    ........

    ............... 3-13

    3.4.5

    Consolidated-Undrained

    and

    Consolidated-Drained

    Triaxial

    Compression

    Tests . . . 3-13

    3.4.6 Consolidated-Drained

    Direct

    Shear

    Test ......... ......................

    .. 3-13

    3.4.7

    Considerations

    for Triaxial

    Testing of

    Marine

    Soils

    ........

    ............... 3-13

    3.4.8

    One-Dimensional

    Consolidation

    Test ...............................

    3-13

    3.5 PROPERTY

    CORRELATIONS

    ......................................................

    3-14

    3.5.1 General .... ......

    ............. ................

    .................

    3-14

    3.5.2

    Nearshore

    Sediments

    ..................

    ...............................

    3-14

    3.5.3 Deep Sea

    Sediments

    ..............

    ................................

    .. 3-16

    3.6

    REFERENCES

    ......

    ................

    .........

    .......................

    3-17

    3.7 SYMBOLS .......................

    .........................................

    3-18

    Chapter

    4 - SHALLOW FOUNDATIONS

    AND DEADWEIGHT ANCHORS.

    .

    ..................... 4-1

    4.1

    INTROCUCTION

    ....................

    ......................................

    4-1

    4.1.1

    General ..................................................

    ......

    .

    4-1

    4.1.2

    Definitions/Descriptions

    ................

    .............................

    4-1

    4.2 DESIGN CONSIDERATIONS

    ................

    ..................................

    4-3

    4.2.1

    General ..............................................

    ..........

    4-3

    4.2.2 Site

    .......

    ..........................

    .

    ........

    ...............

    4-4

    4.2.3

    Structure

    .................. ......................................

    4-4

    4.2.4

    Loading .................

    ............................

    . ..........

    4-4

    4.2.5

    Geotechnical ....................

    . .

    .........................

    4-4

    4.2.6 Factor of Safety

    .................

    ......................

    4-5

    4.3 DESIGN

    METHODOLOGY AND

    PROCEDURE ........... .......................

    . ....... 4-5

    4.3.1

    General

    ............................

    ....... .4-5

    4.3.2

    Bearing Capacity

    . ..............................................

    . ...

    4-7

    4.3.3' Lateral

    Load Capacity ...........

    ..................................

    4-11

    4.3.4

    Overturning

    Resistance

    ............ . .......

    ....................

    4-13

    4.3.5

    Shear

    Key Design ..............

    .................................

    ..

    4-14

    4.3.6

    Foundation

    Settlement ................................................

    4-15

    4.3.7

    Installation and

    Removal

    ........... ...........................

    .. .

    4-17

    4.4 EXAMPLE

    PROBLEMS .......... ......

    .................................

    4-17

    4.4.1

    Problem 1 - Simple Foundation

    on ohesive Soil ..... .....

    ..............

    4-17

    4.4.2 Problem

    2 -

    Simple Foundation

    on Ohesionless Soil

    ..................... 4-24

    4.5

    REFERENCES

    ..... .....................

    .. ............

    .................. 4-28

    4.6 SYMBOLS ............. . ........... ...................

    ................. 4-28

    Chapter 5 - PILE FOUNDATIONS AND ANC14CRS

    .................

    ............................

    5-1

    5.1

    INTRODUCTION

    ....................................

    5-1

    5.2

    PILE DESCRIPTIONS .

    . . . . . . . . . . . . . . . . . . 5 "1

    5.E ECITIN....................

    ...........

    ....

    ...... .. . o... ..

    5.2.1 Pile Types

    ................. . ....

    ...................

    ....

    5-1

    5.2.2

    Mooring Line

    Connections . . . . . ........

    . ..........

    ...... 5-1

    5.2.3 Modifications for

    Increasing Lateral Load

    Capacity..-...........

    .....

    5-1

    5.3

    DESIGN PROCEDURES

    FOR

    SIMPLE

    PILES

    IN

    SOl SEAFLOORS . ........................

    5-1

    5.3.1 General . .........................

    ..........

    .............

    51

    5.3.2

    Soil

    Properties .... ....... ....... ................. .... .... . . ...-5

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    7/257

    Page

    5.3.3

    Pile Design

    Loads

    .....

    ......... ........ ....................... ..5-6

    5.3.4 Lateral

    Load

    Analysis

    .................. .............................. 5-7

    5.3.5

    Axial

    Load

    Analysis ..................

    .......................... . . 5-9

    5.3.6

    Steel

    Stress Analysis

    ............. ........ ....................

    5-11

    5.3.7 Special

    Cases ................

    ..................................

    .. 5-12

    5.4 DESIGN OF PILE ANCHORS IN

    ROCK

    SEAFLOORS

    ........... ........................ ..

    5-13

    5.4.1 Lateral

    Capacity ....... .

    ...........

    ............................. .. 5-14

    5.4.2

    Uplift Capacity .................... ................................. 5-15

    5.5 PILE

    INSTALLATION.5-15

    5.5.1 Driven

    Piles ............................ .....

    ................. .. 5-15

    5.5.2

    Drilled and

    Grouted Piles

    .......... .........................

    5-17

    5.5.3 Jack-in

    Piles

    .......................................................

    5-18

    "5.5,4

    Jetted

    Piles ................ ...................................

    .. 5-18

    5.6 EXAMPLE

    PROBLEMS

    .....................

    ....................................

    5-18

    "5.6.1

    Problem

    1--Pile

    Design

    in

    a

    Cohesive

    Soil

    ........

    ....................

    ..

    5-18

    "5.6.2

    Problem

    2--Pile Design

    in a Cohesionless Soil ..........

    .................. 5-25

    5.7 REFERENCES

    ................................................................

    5-29

    5.8

    SYMBOLS

    ............. . ............... ..............................

    5-30

    Chapter

    6 - DIRECT-EMBEDMENT

    ANCHORS .... ...........

    ........... ................... 6.1

    6.1 INTRODUCTION

    ....................

    ......................................

    6-1

    6.1.1 Purpose ...........

    .....................

    . .....

    .......... ......

    6-1

    6.1.2 Function . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . 6-1

    6.1.3

    Features

    . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .

    6-1

    6.2

    DIRECT-EMBEDNENT

    ANCHOR TYPES

    AND SIZES .............. ......................

    6-1

    6.2.1

    Propellant-Oriven Anchor ...........................

    6-1

    6.2.2 Vibratory-Driven

    Anchors

    ............... .......................... 6-6

    6.2.3

    Impact-Driven

    Anchors 6-6

    6.2.4 Jetted-In Anchors

    .................. ................................

    6-7

    6.2.5 Auger Anchors ......................

    ...............................

    6-7

    6.3

    SITE DATA

    NEEDED ......................................................

    .... 6-8

    6.3.1

    General

    .......... ................................

    ...............

    6-8

    6.3.2 Preliminary

    Penetration Estimate

    .......................................

    6-8

    a.3.3 Topography,

    Strata Thicknesses, Type. . ......................

    6-8

    . - .6.3.4 Engineering Propetties

    . . . . . . . . .

    . . . . . . . . . .. . . . . . . . .

    .. 6-8

    6.3.5 Complicating or Hazardous

    Conditions ..... ..............................

    6-10

    6.3.6 Specialized Survey

    Tools........ .......................

    6-11

    6.4

    FLUKE PENETRATION AND KEYING

    ......

    ....................................-

    11

    "6.4.1

    Penetration

    Prediction

    .

    ...

    ......................

    ...

    ... 6-11

    6.4.2

    Keying

    Prediction

    ............. ..................... ..

    ............ 6-11

    6.5

    STATIC

    HOLDING

    CAPACITY

    ........................... ................

    6-12

    6.5.1

    Loading

    Conditions.

    . .....................

    6-12

    6.5.2

    Deep

    and Shallow Anchor

    Failure ..... ...............

    . ...... .........

    6-12

    6.5.3

    Short-Term

    Capacity in

    Cohesive Soils ..............

    .... .............. 6-13

    6.5.4 Long-Term

    Capacity in

    Cohesive Soils

    .......

    ....................... .. 6-14

    6.5.5

    Short-

    and

    Long-Term Capacity

    in Cohesiofess

    Soils

    .. .......

    ............

    6-15

    6.5.6 Disturbance Corrections

    .......... .............

    ..........

    . ....... 6-15

    "6.5.7 Factors ef Safety

    ..

    ..............

    ...........................

    . ..

    6-16

    "6.6 DYNAMIC HOLDING

    CAPACITY...................................

    .......... 6-16

    ..

    ._ 6.6.1

    Loading

    Conditions

    . . . . .

    . . .

    . . . ... .

    . . .

    . . . I

    . . . . . .

    . . .

    . . -1

    .-..

    6.6.2 Cyclic Loading .........

    . ....... .

    .......

    .....................

    6-16

    vii

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    8/257

    Page

    6.6.3 Earthquake Loading

    ................

    .............................

    .. 6-19

    6.6.4

    Impulse Loading

    ....................

    .................................

    6-19

    6.7 OTHER INFLUENCES ON

    HOLDING

    CAPACITY

    ..................................

    ....

    6-23

    6.7.1

    Holding Capacity

    on

    Slopes ............

    ............................

    .. 6-23

    6.7.2

    Creep

    Under

    Static

    Loading

    ............

    ............................

    .. 6-24

    6.8 HOLDING CAPACITY

    IN CORAL AND

    ROCK

    . ..........................

    6-24

    6.8.1 Coral

    ....................

    ......................................

    6-24

    6.8.2 Rock... ....... .

    ..........

    ..... .. .... ........ ........

    ..

    ..

    6-24

    6.9 EXAPLIE

    PROBLEMS .............. .. ......................

    6-24

    6.9.1 Problem

    1--An Embedment

    Anchor

    Used in Cohesivei

    Soil

    ......................

    6-24

    6.9.2 Problem 2--An Embedment

    Anchor

    Used

    in Cohesionless

    Soil

    ..................

    .. 6-28

    6.10

    REFERENCES

    ..................

    .........................................

    .

    6-31

    6.11 SYMBOLS .................................................................

    6-32

    Chapter 7 -

    DRAG-EMBEDMENT ANCHORS

    ................

    .................................

    7--1

    7.1

    INTRODUCTION

    ................

    ...........................................

    7-1

    7.1.1 Purpose and Scope

    ..................

    ................................

    7-1

    7.1.2 Drag

    Anchor

    Description ..............................................

    7-1

    7.1.3

    Types

    of

    Drag Anchors

    ..................

    ..............................

    7-2

    7.1.4

    Application

    of Drag

    Anchors ...........

    ............................

    7-3

    7.2

    FUNCTIONING OF A DRAG

    ANCHOR ..................

    ..............................

    7-3

    7.2.1 General .

    7-3

    7.2.2 Tripping

    ... .....................................

    7-4

    7.2.3

    Embedment

    ....................

    ..............

    ......................

    7-5

    7.2.4

    Stability

    ...........

    ..........................................

    .. 7-6

    7.2.5 Soaking ............... ......................... . ................ 7-8

    7.3

    SITE

    INVESTIGATION

    ......

    ... .. ..........................

    ...

    ..

    .. . .

    ...

    7-B

    7.3.1 Site Data Needed

    .......

    ..... .......................

    .......... ..

    ,7-

    7.3.2

    Topography

    and Layer

    Thickness ...........................

    ............ 7-8

    7.3.3 Sediment

    Type and Strength ...

    ..................

    7-9

    7.3.4 Site

    Investigation Summary ..... ....

    ..........

    . ..... .............

    . 710

    7.4 SELECTING A

    DRAG ANCHOR ...................................

    7-11

    7.4.1

    General . . . ............

    ..............

    .......... ...

    7-11

    7.4.2 Tripping and Penetration

    Performance ..............................

    .. 7-12

    7.4.3 Stability

    Performance

    .... .............

    ........

    ..................

    7-12

    7.4.4

    Holding Capacity

    Performdnce ............

    ................ ...........

    7-12

    7.4.5 Selection

    of

    Anchor

    Type .........

    .

    ......

    .....

    ..................

    ...

    7-12

    7.5

    SIZING-A DRAG

    ANCHOR ......................................

    7-12

    7.5.1

    Efficiency Ratio

    Method....................................

    ......

    7-12

    7.5.2

    Power

    Law

    Method

    ............

    ...................

    ................

    7-13

    7.5.3

    Analysis Based

    on

    Geotechnical

    Considerations ......

    .... ..............

    .. 7-17

    7.5.4 Factor

    of Safety ............ ..... ........................ . . .7-18

    7.6 TROUBLESHOOTING. ..

    .. ........ ............ ........ ... ........ ............

    .... 7-19

    7.6.1

    Soft

    Sediments ..............................

    7-19

    7.6.2

    Hard Sediments .............................................

    7-20

    7. IB X N

    . . . . ..

    . . . . . . . . . . . . . . .

    . . . . . .. . .

    . . . . . . 7

    7.7

    PIGGYBACKING......................................................7-20

    7.7.1 Field

    Practice . . .

    ...............

    ..........................

    ...

    7-20

    7.7.2 Results

    and Field Problems.

    . ........................

    ...... 7-22

    7.7.3 Recommended

    Practice .... ..........................

    . .

    ...

    , ....... ..

    7-23

    viii

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    9/257

    Page

    7.8

    REFERENCES .........................................................

    7-23

    h

    7.9

    SYMBOLS

    ..................

    .........................................

    ..

    7-24

    Chapter

    8 - PENETRATION

    OF OBJECTS

    INTO

    THE SEAFLOOR ............

    ....................... 8-1

    8.1 INTROOUCfION ................... ......................................

    .. 8-1

    "8.1.1

    Purpose ..................

    .....................................

    .. 8-1

    8.1.2 Scope ......... . .... .................................. 8-1

    8.2 STATIC PENETRATION ................... ...................................

    8-1

    8.2.1 Application ................. ...........................

    ....... 8-1

    8.2.2 Approach

    ..................

    ..................................... 8-1

    - 8.2.3

    Method

    ,for

    Predicting

    Shallow Static

    Penetration

    .......... ...... ......... 8-2

    8.2.4

    Methods

    for Predicting Deep

    Static

    Penetration ...... .................. ..

    8-5

    8.3

    DYNAMIC

    PENETRATION

    ......................................................

    8-7

    8.3.1

    Application

    ................

    ...................................

    .. 8-7

    8.3.2 Approach . .......................................................... 8-7

    8.3.3 Method for Predicting Dynamic Penetration ...... .....................

    .. 8-7

    8.4 EXAMPLE PROBLEMS ..................... .................................... 8-11

    8.4.1

    Problem 1--Slow

    Penetration of a

    Long

    Cylinder

    ...... .................. .. 8-11

    8.4,2 Problem 2--Rapid

    Penetration of a

    Long Cylinder

    ....... .................

    8-14

    "

    8.5 REFERENCES ............................................................. 8-19

    8.6

    SY B L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . .

    8 2

    - 8.6 SYMBOLS........................................................ 8-20

    Chaptar 9 - BREAKOUT

    OF

    OBJECTS FROM

    THE SEAFLOOR ..................................... 9-1

    9.1

    INTRODUCTION..................

    . .......................................

    9-1

    9.1.1 Applications

    . . . . . . .

    ..............

    ............................ 9-1

    9.1.2

    General Concepts

    .............

    ................................. .. 9-2

    9.1.3

    Definitions

    ................

    .............

    .....................

    ..

    9-2

    9.2

    REQUIRED INFOR14ATION ................ ................... ...............

    9-4

    L 9.2.1

    Object Embedment

    Characteristics

    ............ .........................

    9-4

    9.2.2 Sediment

    Chardcteristics

    ............. ................ ........ ..... 9-4

    "9.2.3

    Bearing

    Capacity

    (Cohesive Sediments)

    .......

    ...................... ... 9-5

    9.3 SHORT-TERM (IM4EDIATE)

    BREAKOUT

    .......

    .................................... 9-5

    "9.4

    LONG-TERM BREAKOUT

    TIME

    PREDICTION

    .... ........ .................. ........ .9-6

    9.5 BREAKOUT AIDS

    .................................... . .................. 9-7

    9.5.1 Jetting

    and Drainage Tubes

    ...... .....................

    9-8

    9.5.2

    Eccentric

    Loading

    ................................................... 9-9

    -'" 9.. 3

    Cyclic Loading

    ..... .

    ..............................

    9-9.

    9.5.4 Rocking or

    Rolling ..........................................

    9-9

    -

    9.5.5 Breakaway

    Parts .........................

    .....................

    . 9`9

    9.5.6

    Altering

    Buoyant Weight

    .......... ........

    ......................

    .

    .

    9-9

    9.6 OTHER

    FACTORS

    ....

    ........................................

    .. . 9-10

    "*

    9.6.1 Irregular Shape or Neauniform Embedment Depth.

    .

    ........ .................. 9-10

    9.6.2 Waiting

    Time

    ........................................................

    9-10

    9.6.3

    Foundation Skirts

    .... ........................................... 9-10

    9.7 EXAMPLE PROBLEMS . . ...... ....... ..................... ... . ............ 9-10

    -

    9,7.1 Problem

    I - Recovery of a Large Long Cyliiler .................. .........

    9-10

    9.7.2

    Problem

    2 " Recovery of a Skirted Foundation

    .........

    ........ 9_13.

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    10/257

    Page

    9.8 REFERENCES ......................

    ......................................

    9-16

    9.9

    SYMBOLS .................................. .......... 9-17

    Chapter

    10 -

    SCOUR ..... .....................

    .................................

    .. 10-1

    10.1 INTRODUCTION

    . . . . . . . . . . . . .. . . . . . . . . . . . . 10-1

    10.1~

    TOUTO............................................

    ,........10-1

    ~

    10.1.1 Objectives ..................

    ....................................

    10-1

    10.1.2 Theory

    .....................

    ...................................... 10-1

    10.1.3

    Modeling

    ..................

    ..................................... .. 10-1

    10.2

    SCOUR

    TYPES ...................

    ....................................... .. 10-2

    10.2.1 Seasonal and

    Local

    Scour ......... .................................. 10-2

    10.2.2 Deep Water Wave-Induced Scour

    .......................................... 10-2

    10.3

    ESTIMATING

    SEASONAL

    SCOUR...........

    .......................

    ln-2

    10.4

    ESTIMATING

    LOCAL SCOUR

    AT,

    SEAFLOOR STRUCTURES

    ......... ...................... .. 10-3

    10.4.1

    Effect

    of

    Seafloor Factors

    on

    Scour

    ...................................

    10-3

    10.4.2-Structures Piercing the Water

    Surface

    ...........

    ....................... 10-5

    10.4.3 Structures Resting

    on the

    Seafloor ......................................

    10-9

    10.4.4

    Time for Scour Development

    ................

    ............................ 10-11

    10.5 MINIMIZING SCOUR . ... ..............

    ..

    .

    . . ........ 10-12

    10.5.1

    Scour-Resistant Structures

    ..........................................

    10-12

    10.5.2

    Sco-ir

    Protection

    Measures .................

    ............................ 10-12

    10.6 REFERENCES ....................

    .......................................

    ..

    10-16

    10.7 SYMBOLS

    ...................................................................

    10-18

    Chapter 11 - SLOPE STABILITY ASSESSMENT ......

    .............................. ...... .11-1

    11.1 INTRODUCTION .................

    ......................... .

    ....

    ............ 11-1

    11.2

    FORMS OF INSTABILITY ....................

    .................................. 11-2

    11.2.1

    Translational

    Slides.........

    . . .

    .............................

    ..

    11-3

    11.2.2 Rotational

    Slides ..........

    ..................................... .. 11-3

    11.2.3 Flow Slides ....................................

    11-3

    11.2.4

    Turbidity Currents

    ...................................................

    11-5

    11.3

    LOADING ..........

    .............. ...............................

    11-5

    11.3.1 Loading Mechanisms .............................

    ... 11-5

    11.3.2

    Probabilistic

    Preaoction

    of Load ........................ . .

    ..........

    11-5

    11.4 IMPORTANT SOIL PROPERT!SS .............. ................................

    .. 11-6

    11.4.1 Gene-al

    .................... ....................... ..

    .U11-6

    11.4.2

    Special Conditions:

    Underconsolidated

    Sediments

    ..................

    11-6

    11.4.3

    Repetitive

    and Dynamic Loading

    Response of

    Sediments .....................

    11-7

    11.5

    LEVEL OF

    ANALYSIS ................................................

    11-7

    11.6

    SITE ,INVESTIGATION ................. ................. .

    .................

    11-7

    11.6.1

    General ...................

    ..............................

    ....... 11-7

    11.6.2 Preliminary

    Studies

    ..................

    ...............................

    11-8

    11.6.3

    Ar.oustic

    Surveys

    ..............

    ................... ...............

    11-9

    11.6.4 Sampling

    of

    Sediments . . .... . ... ...................

    ................

    11-11'

    11.7

    EVALUATION PROCEDURES ..................................

    11-12

    11.6

    REFERENCES

    .... ................... ................ .... . 11-15

    11.9

    SYMBOLS .....................

    ......................................

    .

    .. 11-16

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    11/257

    LIST

    OF TABLES

    Table

    Page

    1.3-1 Features

    of

    Shallow

    Foundations

    and Deadweight

    Anchors

    ....... .................

    ..

    1-3

    1.3-2 Features

    of Pile Foundation

    and

    Anchor

    Systems . .. .. ......

    ..................

    ..

    1-4

    1.3-3

    Features

    of

    Direct-Embedment

    Anchors..........

    ... ..........................

    1-5

    1.3-4

    Features of Drag-Embedment

    Anchor Systems

    .........

    ........................

    .. 1-5

    1.3-5

    Performance

    of

    Foundation

    and

    Anchor

    Types

    as a

    Function of Seafloor

    and

    Loading

    Conditions

    ........ ..... ... .................................. ..1-6

    2.1-1

    Site

    Data

    Requirements

    for

    Categories of

    Geotechnical

    Engineering

    Applications .....

    ... 2-2

    2.1-2

    Soil

    Engineering Parameters

    Normally

    Required

    for Categories

    of

    Geotechnical

    Engineering

    Applicatiolis..

    ............ .....

    .............................

    2-2

    2.1-3 Historical

    Environmental

    Information

    Needed

    to

    Assess

    Geotechnical Hazards

    .........

    .. 2-3

    2.3-1

    Steps

    in a Typical Regional

    Survey

    ..........

    ...

    ...........................

    .. 2-12

    2.4-1

    Steps in

    a

    Typical

    Site-Specific

    Survey

    .........

    .......

    ........................

    2-1b

    2.4-2

    Shallow Soil

    Sampler

    Types and

    Applications .........

    .......................

    2-16

    2.4-3

    Characteristics

    of

    Some Free-Fall

    and Lowered

    Corers

    .......

    .... ....... 2-19

    2.5-1

    In-Sitqi Tests,

    Applications,

    and

    Some.Equipment

    Characteristics

    ....

    .............

    .

    2-22

    3.2-1

    Size

    Range Limits

    for

    Two Soil Classification

    Systems ....

    .......

    ................

    3-2

    3.3-1

    Requirements

    for

    Indtx

    Property Tests

    .........

    .....

    ........................ ..3-5

    3.3-2

    Some Index

    and

    Engineering

    Properties

    of Ocean

    Sediments

    (Most Data Limited

    to

    Upper

    2

    Meters

    of

    Seafloor)

    ...........

    ......................

    ...........

    3-6

    3.4-1

    Requirements

    for Engineering

    Property

    Tests

    ...........

    ......................

    .. 3-11

    4.2-1

    Soil Properties

    Required

    for

    f.maysis

    and

    Recommended Factors

    of, Safety

    .........

    ...

    4-5

    4.3-1-

    Suimary

    of Steps

    in

    the

    Design

    of Shallow

    Foundations

    and Deadweight

    Anchors ........

    4-7

    4.3-2

    Coefficient

    of Friction

    Between

    Cohesionless

    Soils

    and

    Some Marine

    Constructicn

    Materials ........

    .........

    ................................

    4-12

    5.2-1

    Pile Types ..........

    ............

    .......................................

    5-2

    5.2-2

    Mooring Line Connections

    ..........

    .....

    .....

    ................................

    5-3

    5.2-3

    Techniques

    to Improve Pile

    Lateral

    Load Capacity

    ........

    ....................

    ..

    5-3

    5.3-1

    Properties

    of

    CohESionless

    Soil Useful in

    Pile Design

    ......... ..................

    5-5

    5.3-2

    Properties

    of

    Cohesive

    Soils Useful

    in

    Pile Design ........

    ..... ..............

    5-5

    5.3-3 Properties

    of

    Calcareous

    Soil Useful in

    Pile Design ......

    ...................

    .. 5-6

    5.3-4

    Bearing

    Capacity

    Factors for Chain

    Lateral Force

    in Sand

    ......

    ................

    5-7

    5.3-5

    Recommended

    Limiting

    Values

    for Unit Skin

    Friction

    and End Bearing

    for

    Cohesionless

    Soils.

    .......

    ............

    ..................................

    5-9

    5.4-1

    Rock Properties

    .........

    ..... ...

    .....................................

    ..

    5-14

    6.2-1

    Propellant-Driven

    Embedment Anchors

    for Ocean

    Use

    .....................

    6-3.

    6.2-2

    Parameters

    for

    Navy

    Propellar..-Embedded

    Anchors

    .....................

    6-4

    6.3-1 Conditions

    Complicating

    or

    Hazardous

    to Direct-Embedment

    Anchor

    Use ...............

    .

    6-10

    6.5-1 Values

    for

    Strength Reduction

    Factor for

    Use in Equation

    6-3 .....

    .............

    .. 6-16

    6.6-1 Average

    Values

    of Soil Permeability

    ......... ...

    ..........................

    ..

    6-18

    6.7-1

    Factors

    Associated

    With

    Direct-Embedment

    Anchors

    Which Can

    Influence Submarinp:

    Slope

    Stability

    . . . . . . .

    . . .

    . . . . . . .

    . . .

    . . .

    . . .

    6-24

    7.3-1

    Estimated

    Maximuo Fluke

    nip

    Penetrattou

    of

    Some

    Drag Anchor

    Types

    in

    Hard

    ,and Soft

    Soils

    .......

    ...........

    . ..........

    ..........

    7-9

    7.4-1

    Rating

    of Drag

    Anchor Types

    Based on Tripping

    and Dig-In,

    Roll

    Stability,

    and Holding Capacity

    Efficiency

    ......... .......

    ............................

    7-11

    .7.6-1

    Parnmeters

    HR

    and

    b Used

    in Equation

    7-2

    .

    .............

    . .....

    ..............

    7-14

    7.5-2

    Parameters

    N

    and

    f

    Used for

    Clays

    and Cohesive

    Silts

    in

    Equation

    7-3

    .............

    ..

    7-18

    7.6-1

    'Troubleshooting

    Procedures

    for

    Correcting

    Drag Anchor

    Performance

    Problems

    ....

    ....... 7-19

    &.2-1

    Correlation

    Coefficients

    Between Dutch

    Cone Penetration

    Resistance

    and Thin-Walled

    Skirt and

    DowlPenetration

    Resistance

    ........ .....

    ..................

    .....

    8-6

    8.3-1

    Values

    of Constants

    Used

    in Equation

    8-12

    .........

    ........................

    .. 8-9

    8.4-1

    Summary of

    Calculations

    for

    Problem

    1

    ....

    . .........

    ......................

    .

    8-14

    8.4-2

    Sumary

    of

    Calcuiations

    for Proolem

    2

    .........

    ..... .....

    .......

    ..... .....

    .....

    .8-19

    11.2-1

    Movement Models for

    Submarine

    Slides in

    Soft and

    Loos* Sediment

    .........

    .....

    11-2

    11.7-1

    Level I Slope

    Stability

    Survey

    ..........

    .....

    .............................

    .. 11-13

    11.7-2

    Level

    II Slope Stability

    Survey ...........

    ..... .........................

    .. 11-14

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    12/257

    LIST OF

    FIGURES

    Figure

    Page

    1.3-1

    Simplified

    anchor types

    ..............

    ........... .......................

    3

    2.2-1 Ocean sediment distribution

    ......... ....... ............................... 2-6

    2.2-2

    Topography

    of the carbonate

    compensation depth (CCD) .

    ..... ..........

    ..... .... 2-7

    2.2-3

    Marine geological

    provinces

    probable soil types

    ....... ..................

    2-8

    2.2-4

    Typical

    strength

    profile for

    hemipelagic

    terrigenous

    silty

    clay

    . . ... .......... 2-9

    2.2-5 Typical

    strength profiles

    for proximal

    and

    distal turbidites ...

    ..................

    2-9

    2.2-6

    Typical

    strength profiles

    for

    calcareous

    ooze

    .

    ... .. .. .....................

    .. 2-10

    2.2-7

    Typical

    strength profiles for

    pelagic clay .......... .......................

    .. 2-10

    2.2-8

    Typical

    strength

    profile

    for

    siliceous

    ooze .......

    ...

    ............

    ..... ......

    2-11

    2.3-1 Acoustic profiling

    systems

    ... .............................................

    2-13

    2.4-1 Grab

    samplers

    and

    dredges .... .....

    .... .........

    .......................

    .

    -16

    2.4-2

    Box corer and

    its

    operation

    sequence ..............

    ........................

    .. 2-17

    2.4-3

    Long piston corer operation sequence with

    a short corer used

    as

    a

    trigger weight

    . . .. 2-18

    2.4-4

    Alpine vibracore

    sampler .......... .....

    .. ...............................

    2-20

    2.5-1 Correction factor for

    vane determined shear strength

    . . ;

    '..............

    2-23

    2.5-2 Electric

    friction-cone

    penetrometer

    tip .

    ..

    ....... .......................

    .. 2-23

    2.5-3 Correlation

    between cone

    tip resistance and sand relative

    density .................

    .. 2-24

    2,5-4

    Estimation

    of

    sand

    friction angle,

    *, from material

    relative densitj ..............

    . ..

    -2 4

    2.6-1

    Seismic

    risk

    map of United

    States coastal

    waters

    ...

    ........................... 2-26

    3.2-1

    Trilineal soil classification

    plot -

    normally

    used

    with Wentworth grade

    limits . ...

    .

    3-2

    3.2-2

    Unified soil classification

    chart........

    .....................

    3-3

    3.4-1 Miniature vane blade geometry

    .......... ..............

    .... .. .... -12

    3.5-1

    Relationship

    between

    s

    /P and

    P1

    for

    normally consolidated

    late glacial

    clay

    ... ....

    3-14

    3.5-2 Relationship between

    fIiclton angle and

    P1 for normally

    consolidated

    fine-grained soils

    . ......... .....

    .... ...... .. .... .... ......

    .... ..

    3-15

    3.5-3

    Correlation between

    coefficient of consolidation

    and liquid

    limit .........

    ..... ...

    3-15

    ,3.5-4 Range of

    PI

    values

    for pelagic clay .....

    : ......................

    3-16

    3.5-5

    Correlation

    between

    water content and

    C

    /(I

    + e

    )

    for

    pelagic

    clay

    and

    calcareous ooze

    .c.. . . .

    . . .

    .

    .

    ,

    . . . . . . . . . . . . . . . . . .

    . . . . 3-17

    4.1-1

    Features

    of

    simple shallow

    foundation .....

    .....................

    4-1'

    4.1-2 Types

    of

    shallow

    foundations .............................

    4-2

    4.1-3

    Types and significant

    characteristics

    of deadweight anchors

    ...... ...............

    4-3

    4.3-1

    Flow

    chart for

    the

    design

    of shallow foundations

    and

    deadweight

    anchors

    ....

    ......... 4-6

    4.3-'2 Bearing

    capacity

    factors

    N , N , and N as

    a function of the

    snil friction angle . .

    .. 4-8

    4.3-3

    Area

    reductior,

    factors

    forqeccintr~ca]Yy

    loaded

    foundations

    .....

    ................. 4-10

    4.3-4

    Possible

    failure modes, when sliding

    resistance

    is

    exceeded

    ..... ............ .....

    4-11

    4.3-5

    Forces considered

    in

    the overturning

    analysis

    ...............................

    4-14

    4.3-6 Soil stress

    increase beneath

    a rectangular

    foundation ........

    ....... ......

    416

    4.4-1 Foundation

    sketch for example problems

    I

    and

    2 ......

    ........................

    .. 4-18

    4.4-2

    Forces

    considered

    in the overturning

    analysis for example

    problem 1.... ...........

    4-23

    4.4-3

    Forces considered

    in the overturning

    analysis for-example

    problem2 .... ......... 42 7

    5.3-'1

    Flow

    chart for

    the

    pile design procedure

    ... ..... ...........

    . ... ..........

    ..5-4

    5.3-2

    Design values

    for nh

    for cohesionless

    soils . . ....... ..

    ....................

    5-7

    5.3-3 Design

    values for n

    for

    cohesive

    soils

    ........ .. ..... ..............

    .......

    5-8

    5.3-4

    Deflection coefficients A

    and B at the nround surface

    .................

    ....... .

    5-8

    5.3-5

    Influence values

    for a

    piYe

    withyapplied

    lateral load

    or

    moment

    .... .............

    .5-11

    5.4-1

    Failure modes

    for pile anchors in'a

    rock

    seafloor

    ...........

    . ................

    5-13

    5.5-1

    Pile installation

    techniques ... .....................

    .....

    ...............

    5-16

    5.5-2 Drilled~and

    grouted

    pile

    ......... .......

    ..............................

    .. 5-17

    5.6-1 Problem

    sketch

    for

    example problems

    1

    and

    2

    ....... .......................

    ..

    5-19

    5.6-2 Soils

    data for example

    problem I ............

    ..... .................

    ......... 5419

    6.2-1

    Installation sequence for a propellant-embedment

    anchor ....... .......

    . ........ 6-2

    6.2-2

    NCEL 10K propellant-embedment

    anchor showinq

    sand and clay flukes

    ..........

    .........

    6-5

    6.2-3

    Coral

    and

    rock flukes

    for NCEL propellant-embedment

    anchor systems

    . . .

    ..

    ...... .6-5

    6.2-4 Impact-driven

    anchors

    .

    . .............

    ..... .....

    ..... ..........

    6-6

    6.2-5 Jetted-in

    anchors

    ......... ... ..............................

    ......

    . . 6-7

    6.3-1

    Flow chart for

    predicting the holding

    capacity of a direct-embedment

    anchor ..........

    6-9

    6.5-1 Failure

    modes

    for

    shallow and deep

    embedded plate

    anchors .....

    . . . . . .

    .......

    6-12

    6.5-2

    Short-term

    holding capacity

    factors

    for cohesive

    soil where

    full

    suction

    develops

    beneath

    the

    plate..

    . . ...........

    ..............

    . ........ ..

    6-13

    6.5-3 Long-term holding

    capacity factors and

    short-term no-suction

    factors for

    cohesive

    soils . . . .................

    ..................

    6-14

    6.5-4

    Holding

    capacity factors for cohesionless

    soils

    ..........

    ........ .

    ...... . 6-15

    xi.

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    13/257

    Figure

    "" 6.6-1

    Nomenclature

    for types

    of

    non-steady

    loading .

    . . ...................

    6.6-2

    Time

    required

    for

    dissipation

    of

    stress-induced

    excess

    pore

    pressure

    .....

    ..........

    S6.6-3

    Maximum

    cyclic load

    capacity

    without

    soil strength

    loss .

    ...........

    .....

    ..... ...

    6.6-4 Maximum

    (lifetime) cyclic

    load capacity

    without

    development

    of cyclic creep

    ....... .

    "6.6-5 Strain-rate

    factor,

    1, for

    cohesive

    soil ...... .........

    ........................

    6.6-6

    Inertial factor, If,

    for cohesive

    and

    cohesionless

    soils

    .

    . . ........

    . .........

    6.6-7

    Strain-rate factor,

    I,

    for

    cohesionless

    soil ........ ......

    ...............

    ..

    6.9-1

    Mooring

    sketch for

    example problem

    1

    ........................................

    6.9-2

    Soil strength profile for example problem 1

    ........ ..... . ... .............

    .6

    6.9-3 Mooring sketch for

    example problem 2 ...... .......

    ...........................

    4..

    7.1-1

    Features

    of a

    drag anchor .......

    .......................

    ....

    ..........

    ,...- 7.1-2

    Example

    of a movable fluke anchor: STEVIN cast .......

    ....... ..............

    7.1-3 Example

    of a fixed fluke

    anchor:

    BRUCE cast .

    ... .. . ...............

    7.1r4 Examples

    of

    bilateral

    fluke

    anchors

    .

    . .

    . ......

    .. ........

    .................

    7.1-5

    Example of

    a

    soft soil

    anchor: STEVMUD.

    ...........

    .................

    .......

    7.2-1 Development

    of

    a tripping problem

    in

    soft

    seafloors

    with an improperly

    set

    anchor .

    . . .

    7.2-2

    Proper

    anchor setting

    sequence

    using two

    floating

    platforms

    . ......

    ..............

    7.2-3

    Development

    of a

    tripping problem

    in

    hard

    seafloors.......

    . ..................

    7.2-4

    Penetration

    and orientation

    behavior of

    ananchor

    in hard

    and soft

    seafloors

    .........

    S-

    7.2-5

    Forces on unstabilized

    and

    stabilized

    anchors in sand

    7.2-6 Anchor

    in soft

    soil, after

    balling-up

    and pullinC-out

    . .

    ............

    ....

    7.3-1 Site

    survey plan

    decision flow

    chart .........

    .

    .

    ....

    ...... .................

    7.5-1

    Anchor

    chain system

    holding

    capacity

    at the

    mudlinein soft

    soils

    .....

    .............

    7.5-2

    Anchor chain

    system holding

    capacity

    at

    the

    mudline

    in

    hard soils ....

    ,.......

    ...

    7.6-1

    Typical

    perforaance

    of drag

    anchors

    when operating

    properly

    and improperly

    ....

    .......

    7.7-1

    A pendant

    line and

    buoy arrangement

    for semisubmersibles

    .........

    .............

    ..

    7.7-2

    Chain

    chaser used

    to

    assist

    anchor

    deployment and

    recovery

    ..... ...............

    ..

    7.7-3

    Tandem/piggyback

    anchor

    arrangements

    ......

    .....

    ... ..........................

    7.7-4 Parallel anchor

    arrangement ............ ..... .... ....

    .... ...... .... ....

    8.2-1

    Shallow

    static penetration

    model ......

    .....

    ..................

    .......

    .

    .

    . .

    8.2-2 Relationships

    for

    calculating

    sinkage

    resistance

    in-cohesionless

    soils;

    for =

    30

    and

    40

    .....

    ..................................

    8.2-3

    Flow chart

    of the

    calculation

    procedure for

    predicting

    static

    penetration

    .... ........

    8

    .2-4

    Location

    of the

    critical

    shear

    strength

    zone

    B for

    blunt and

    conical

    penetrators

    . .

    .

    8.3-1 Forces

    acting

    on~a

    penetrator before

    and after

    contact with

    the

    seafloor ...........

    .

    8.3-2

    Flow

    chart

    of

    the

    calculation

    procedure

    for

    predicting

    dynamic

    penetration

    ....

    .......

    8.4-1

    Problem

    sketch

    and

    soils

    data for

    example

    problem

    1 .........

    ...................

    "8.4-2

    Plot of predicted

    soil resistance to EPS penetration

    ...... ..... .... .... ......

    8.4-3 Sketch for

    example problem 2 ........

    .................

    . . . ...

    9.1-1

    Flow chart

    for procedures

    to determine

    immediate

    breakout

    force and

    time required

    for long-term breakout under a lower

    force ..

    .......

    ... ....... .......

    ""

    9.3-1

    Normalized immediate

    breakout

    force

    as a

    function

    of

    relative

    embedment

    depth

    .........

    9.4-1

    Normalized long-term

    breakout force

    as

    a function

    cf breakout

    time

    parameter

    .. ......

    9.7-1 Problem

    sketch

    and data

    for

    example problem

    I .

    . ...... ..

    ...........

    .........

    9.7-2

    Problem sketch

    and-data

    for

    example

    problem 2

    ........

    ....... .... ....

    ......

    10.4-1

    Clear

    water

    scour

    and general

    sediment

    transport

    near

    a pile .....

    .

    . . ..

    10.4-2

    Variation

    of maximum

    clear water

    scour

    depth with

    seafloor material

    diameter

    04

    ,at a

    cylindrical pier

    ..........

    ............

    ....

    .....

    ............ ...

    "

    0.4-

    Idealized wave-induced

    flow and

    scour

    patterns around a vertical

    cylinder ........

    " 10.4-4

    Summary

    plot of field

    and

    model scour

    depth

    data at

    single piles and

    pile

    groups .

    . .

    10.4-5

    Scour

    comparison

    for

    very

    large

    circular,

    square

    and

    hexagonal

    cylinders

    of equal

    1046

    cross-sectional area

    where

    a/D

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    14/257

    Chapter

    1

    INTROOtkTION

    1.1

    OBJECTIVE

    aspects of

    engineering problems

    associated

    "*

    the

    facilities

    are

    difficult

    for

    Navy eng

    "Marine

    geotechnical

    engineering

    is

    the

    to address

    because of the highly

    speci

    application

    of

    scientific

    knowledge and engi-

    nature

    of

    most

    geotechnical topics.

    Also

    neering

    techniques to

    the

    investigation

    of

    to

    a general

    lack

    of

    historical

    precedenc

    seafloor

    materials and the

    definition

    of

    their

    seafloor construction,

    a

    low level of

    .

    physical properties The responses of these standing of seafloor soil behavior

    exists.

    seafloor materials

    to

    foundation

    and mooring of

    what does exist Is

    published

    in documen

    "elements

    are the

    engineering

    aspects

    of

    marine

    widely distributed. The Handbook

    brings

    - geotechnology which are addressed in this

    docu-

    information together.

    It is

    intended

    for

    ' ment.

    This Handbook for Marine Geotechnical Navy

    engineers

    who do not have an

    ext

    Engineering

    brings

    together

    the

    more important background

    in

    geotechnical

    engineering.

    - aspects of 5eafloor behavior for application to Ha 'ook

    Is

    not an all-inclusive design m

    . Navy

    deep ocean

    ungineering

    problems.

    Rather,

    the

    objective

    of the

    Handbook

    ' The Navy installs,

    or

    may

    require installa- famillariz engineers

    with

    geotechnical a

    * tion

    of,

    a variety

    of facilities fixed to the of problem,

    serve

    as a design guide for

    *4, continental shelves

    and slopes, to the submarine

    tively unc

    licated. problems,

    and

    be

    a

    -

    slopes

    of seamounts

    and

    islands,

    and

    to the deep nical

    directo

    to

    more

    complete discussio

    ocean floor.

    Some of

    these facilities rest on

    to more

    sophi ticatedanalysis and

    design

    shallow foundations resebling a

    spread

    footing dures. Alt ugh i t is intended for us

    or on pile*-like

    foundations.

    Others rmy

    be deep ocean p llef

    (nominally beyond th

    Ssurface-

    r

    subsurface-moored types

    where a

    tinental

    she f

    or

    below

    about 600 feet)

    buoyant

    element

    is

    tethered to the seafloor by information tained in

    the

    Handbook is

    uplift-reSisting foundations or piles or by cable to p lem

    in

    shallow

    water

    as

    propel*,ant-embedment or drag-ebedeent anchors.

    Behavior

    of

    the mooring

    elements

    lying

    on

    or

    "embedded

    in the

    seafloor

    is

    dependent

    on the 1.2

    HANDOOK ORGANIZATION

    physical properties of the

    materials making

    up

    the

    'seafloor

    In the

    imesdiate

    area. In addi- This Manlfok has 11 chapters;

    an Int

    "

    tion, .cour

    and

    slope

    stability problems

    may tion, and 1 technical

    chapters

    grouped

    exist or

    my

    be

    created

    by the placement of

    three major tions: PROPERTIES DETERMIN

    these elements.

    DESIGN OF F )UE0ATIONS AND ANCHORS, and

    Navy military and ivilian engineer's will SEAFLOOR

    LEKS.

    . be

    required

    to

    plan

    for, design,

    supervise

    The

    Int

    odu:tion

    serves

    as a guide

    construction

    of, or

    have

    -technical

    respondt- remaining

    ch pters. It lists

    ginhalizd

    .

    bilitty

    for 'these facilities.

    Geotechnical tuo for each

    type of foundatioa and

    a

    7 f@ e

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    15/257

    and can assist the reader in selection

    of

    an

    In

    the Other Seafloor Problems section

    appropriate

    foundation

    or anchor type based on

    other aspects

    of marine geotechnical engine

    environmental

    conditions and

    structural require-

    are

    discussed. Chapter 8

    describes

    techni

    ments.

    for

    predicting the

    depth of penetration

    The Properties

    Determination section,

    objects

    into

    the seafloor.

    The

    techniques

    "consisting of Chapters

    2

    and

    3, discusses on- be used

    for penetration

    prediction% with

    -

    site

    and

    laboratory determination of soil prop- and small

    objects of

    various

    shapes (suc

    erties and presents physical

    property

    models

    for

    lost hardware, instrument packages, or

    fou

    major seafloor soil types.

    Chapter

    2

    describes

    tion

    elments)

    impacting

    the

    seafloor at hig

    the

    various

    aspects

    of surveying

    a site,

    includ- low

    initial velocities.

    The procedures

    ing

    preliminary reference information

    gathering Chapter 8

    can also be

    used

    to

    predict

    the

    " and survey

    planning

    through

    brief descriptions

    required

    to

    embed

    a given

    object

    to

    a spec

    of remote survey equipment,

    shallow

    and deep

    subbottom depth (shear keys below

    a

    bo

    sampling equipment, and

    in-situ soil properties resting

    foundation,

    for

    example). Chap

    "testir.g

    equipment.

    Additional

    information on

    prescnts

    techniquesi

    .dar predicting the

    forc

    .

    site surveying for

    the assessment of

    slope

    tim required

    for breakout of objects emb

    ""

    stability is given in

    Chapter 11. Chapter

    2

    in

    the seafloor and discusses conditions

    *

    also contains a section on

    estimating soil

    prop-

    can have

    a significant effect on brea

    erties

    for use

    in a

    preliminary design when no

    Analytical techniques are

    given

    for two sig

    ,

    field

    data

    are

    available. Chapter

    3

    describes

    cantly different

    cases--full-suction and

    ""

    the laboratory tests

    performed

    on

    recovered soil

    suction--along with a discussion

    of

    mecha

    - samples

    to generate

    index

    and

    engineering prop-

    techniques

    that can reduce

    the

    breakout

    f

    "" erties

    data required

    for analysis and design of and

    time requirements.

    Chapter

    10

    desc

    seafloor structures. Use of index properties to scour prediction

    techniques.

    It

    is

    dire

    classify the soil and

    to

    correlate with

    engi-

    primarily toward

    scour problems around

    ob

    nearing

    properties is

    also described,

    on the seafloor (Tocal

    scour), but

    includ

    The

    Design

    of Foundations

    and

    Anchors

    discussion of nearshore

    seasonal seafloor

    -

    section, consisting of Chapters 4

    through 7, file

    changes. Most

    information on scou

    describes the

    use

    of

    topographic, stratigraphic, drawn from

    historical observations and

    and soil

    properties information

    necessary

    to

    studies

    of nearshore and

    river

    condit

    "predict

    capacities

    of

    foundation and anchor Insight

    from

    these studies

    is

    extrapolate

    *

    systems.

    Chapter

    4

    covers the

    design

    of founda- conditions

    more likely to exist

    in deeper

    m

    *"tions

    and deadweight anchors

    bearing on the enviianme-ts.

    Chaptcr

    11

    discusses

    "

    seafloor

    surface.

    Design of piles

    for use

    as stability

    in qualitative

    terms. 'Techniques

    foundations or

    anchors

    is

    discussed in described for surveying a site

    to determine

    Chapter

    S. Plate-shaped anchors

    embedded

    in

    the potential

    for slope instability. The metho

    seafloor are

    treated in

    Chapter 6, with emphasis

    stability analysis are

    described but are

    "given

    to the

    propellant-embedment

    anchor

    systems presented in detail.

    Considerable

    tech

    recently incroduced

    into the

    Navy's

    Ocean Con- interoretiv skills

    are

    required

    for

    evalu

    struction Equipment

    Inventory.

    Chapter

    7

    covers of site information and

    application

    of

    the selection

    and sizing

    of

    drag-embedment

    analytical procedures.

    anchors;

    only the resistance developed

    from Each chaoter has a list,

    of references

    " anchor and

    chain interaction with

    seafloor symbols visd

    In that chapter. Example prob

    materials is

    discussed

    and

    not

    the design

    of

    a which

    outline

    design or

    calculation proced

    complete

    mooring

    system. References 1-1, 2-Z,

    are presented

    at

    the

    end of each chapter

    and 1-3 can be

    consulted for

    information

    regard-

    Inchlaes

    design

    procedures.

    Ing complete

    mooring

    systems..

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    16/257

    "1.3 SELECTION

    OF FOUNDATIOM/ANCHOR TYPE

    SChapters

    ,

    5,

    6,

    and 7

    each describe

    a

    idfferent

    type of foundation

    or

    anchor--

    . .

    .

    ...

    .

    . .

    .

    =

    .': ::::'.."

    deadweight, drag-embedment,

    pile, and direct-

    embedent

    (Figure 1.3-1].

    Each of

    these

    founda-

    (a)deadweight

    tion

    and

    anchor

    types

    has

    strong

    points or

    features. This

    section summarizes

    these fea-

    tures

    [Tables

    1.3-1

    through

    1.3-4]

    to

    provide

    .

    ....

    guidance on

    selecting the

    optiomu foundation

    or

    -

    ..

    .

    ...............

    anchor

    type

    for a given

    set of problem

    condi-

    tions. (b) drag-ebedment

    Shallow

    foundations

    and deadweight anchors

    are

    widely

    used

    in

    the

    deep ocean environment

    because

    they are simple

    and readily

    sized for

    most

    seafloor

    and loading

    conditions. However,

    they do

    not

    perform

    well on

    steep sloping sea-

    floors.

    In addition,

    deadweight

    anchors

    are not

    verj

    efficient (that is,

    the rstio of lateral

    %

    -

    '.'-

    load

    resistance

    to

    anchor

    weight

    is

    very

    low

    "-.

    compared to other lateral-load-resisting

    anchor

    types). Table

    1.3-1 lists

    these and other

    features

    of

    the shallow

    foundations and

    deaar-

    kc)

    pifon(aiso

    us(d asdideep"

    weight anchors. foundation) (d) directembedment

    Figure

    1.3-1. Simplified

    anchor types.'

    Table

    1.3-1. Features of Shallow Foundations

    --

    and

    Deadweight Anchors.

    Features

    of Shallow Foundations

    and Deadweight

    Anchors

    1. Simple,

    on-site

    construction feasible, can be

    tailored to

    task.

    2.

    Size limited

    only

    by

    load-handling equipment.

    3. Reliable on

    thin

    sediment

    cover over

    rock.

    4. Lateral

    load resistance

    decreases rapidly with

    increase in

    seafloor

    slope.

    Addktional

    Features

    of

    Deadweight

    Anchors

    1.

    Vertical

    mooritng

    component can be

    large, permitting shortermooring

    line scope.

    2. No

    setting distance

    required.

    3. Reliable

    resisting force, because most

    resisting force

    is

    directly due to anchor

    mess.

    4.

    Material

    for

    construction

    readily available and economical.

    5.

    Mooring line

    connection

    easy to

    inspect

    and service.

    6. A good

    energy absorber

    when

    used

    as a

    sinker

    in

    conjunction

    with

    nonylelding

    anchors

    (pile and plate

    anchors).

    7. Works

    well as

    a

    sinker in combination

    with

    drag-lebedient

    Qnchors

    to

    permit shorter mooring

    line scopes.

    Lateral

    load resistance is

    low

    compered

    to

    other anchor

    types.

    9.

    In

    shallow

    water, the large

    mass

    can

    be an

    undesirable

    obstruction.

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    17/257

    p/

    I

    Ple foundations and

    anchors

    are

    used

    where Direct-embedment anchors can be

    driven

    into

    ,

    less expensive

    types of shallow

    foundations and

    seafloor

    soils

    by propellant,

    vibratory,

    or

    anchors cannot.

    mobilize

    sufficient

    resistance.

    hsmer-driving

    systems.

    The

    propellant-

    A

    principal drawback of piles

    for the deep

    ocean

    embedment

    systems

    are

    particularly amenable

    to

    is

    the

    highly

    specialized equipment

    needed

    foy

    use

    in

    the

    ocean because

    of

    the

    relatively

    short

    installation and the associated

    very high

    mobil-

    time peried

    required

    for installation

    and the

    tzation and installation

    costs.

    Table

    1.3-2

    few

    limitations

    on operating

    depth. Other

    "lists

    features

    of piles used

    for foundations and features of

    direct-embedment anchors are

    listed

    anchors

    on

    the

    seafloor,

    in Table

    L3-3.

    Table

    1.3-2. Features of Pile

    Foundation

    and Anchor

    Systems

    Features of Pile Foundations

    and Pile

    Anchors

    J

    1.

    Requires

    highly

    specialized

    installation equipment.

    2. Transmits high axial

    loads

    through

    soft s-rficial

    sells

    down

    to competent

    bearing

    soil

    or rockL

    3.

    Can

    be designed to

    accomodate scour

    and

    resist

    shallow

    mudflows.

    4.

    Can be

    installed

    and performs well

    on stbstantial

    slopes.

    5.

    Can be

    installed

    in hard

    seafloors (rock

    and

    coral)

    by

    drill-and-grout

    technique.

    6.

    Orilled-and-groutod

    piles

    require more specialized

    skills

    P

    and

    installation equipment

    and incur high

    Installation

    7. Vide range

    of sizes

    and shapes are

    possible

    (pipe,

    structural

    shapes).

    8.

    Field modifications

    permit

    piles to be tailored

    to suit

    requirements

    of particular

    applications.

    9.

    Costs are high

    and

    increase rapidly

    in

    depe-

    water

    or

    exposed

    locations where more

    specialized

    Installation

    vessels

    and

    driving

    equipment

    are

    required.

    10.

    Accurate soil

    properties are

    required

    far design.

    Additional

    Features of Pile

    kAncbr

    *

    1.

    High

    lateral capacity (greater than

    10),0

    lb)

    achievable.

    2.

    Resists

    high

    uplift

    as well as

    lateral leads,

    permitting

    use with

    short mooring line

    scopes.

    3. Anchor setting not

    required.

    4. Anchor dragging eliminated.

    5.

    Short mooring line scopes

    permit

    use I* areas

    of

    limited

    sea

    room or where

    vessel excursions must

    be irmiimzed.

    6. Pile

    anchor

    need

    not protrude

    above seaflor.

    7. Driven piles

    art cost

    competitive with

    ethe hfgh-capacity

    anchorslwhen

    driving

    equipment

    Is available.

    8. Special equipment

    (pile

    extractor)

    my

    be

    required to

    retrieve

    or

    refurbish

    the

    mooring,

    or

    raw

    pile

    and pendant

    must be installed.

    9.

    More

    extensive

    and better quality

    site data

    are required

    than the data required for

    other

    anchor types.

    10. Pile capacity goes to

    zero when its capacity

    as an anchor

    is exceeded

    and pullout occurs

    (is

    a

    nsmyielding'

    anchor).

    It

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    18/257

    Table 1.3-3.

    Features of Direc'-Embedment Anchors

    Features of All

    Direct-Embedment

    Anchors

    1.

    High

    capacity

    (greater

    than 100,000

    lb)

    achievable.

    S2.

    Resists

    uplift as well

    as

    lateral

    loads, permitting

    moorings

    of short scope.

    3.

    Anchor

    dragging eliminated.

    4. Higher

    holding-capacity-to-weight

    ratio

    than other

    anchor

    types.

    S.

    Handling

    is

    simplifiad

    due to

    relatively

    light

    weight.

    6. Accurate

    anchor

    placement

    is

    possible; no

    horizontal

    "-

    setting

    distance

    necessary.

    7. Does

    not

    protrude above

    the

    seafloor.

    8.

    Possibly

    susceptible

    to

    strength

    reduction accompanying

    cyclic

    loading

    Yhen used in taut

    moorings

    in

    loose

    sand

    and

    "coarse

    silt

    seefloors.

    9.

    For

    critical

    moorings,

    soil engineering

    properties

    required.

    10.

    Anchor

    typically not

    recoverable.

    11.

    Anchor

    cable

    may be

    susceptible to

    abrasion or'

    fatigue.

    Features

    Unique

    to

    Propellant-Driven

    Plate Embedment

    Anchors

    1.

    Can be placed

    on

    moderate

    slopes, and in rock and

    coral

    * A-.'. seafloors.

    S2.

    Installation

    is simplified

    as

    compared

    to

    other

    typei

    because

    they

    can

    be embedded immediately

    on seafloor

    contact.

    3.

    Special

    consideration

    neemed for

    ordnance.

    "4. Gun' system

    not

    generally

    retrieved

    in water

    deeper than

    approximately 1,000

    ft.

    Features Unique

    to

    ScreowIn,

    Vibrated-In,

    and Hammer-Driven

    Plate

    Anchors

    1.

    Can better

    accommodate

    loyered

    seafloors (seafloors

    with

    variable

    resistance) because

    of continuous power

    expenditure

    during

    penetration.

    ..".-.-

    2.

    Penetration

    is

    controlled

    and

    can be monitored.

    3. Surface vessel

    must

    maintain position

    during installation.

    "4. Operation

    with

    surfaced-powered

    equipment

    limited

    to

    shallow

    depths by power and strength

    umbilicals as

    well

    as

    .

    the

    mooring line.

    5.

    Operation limited

    to sediment

    seafloors.

    Table

    1.3-4.

    Features

    of

    Drag-Embedment

    Anchor

    Systems

    -

    1.

    Wide range

    of

    anchor

    types

    and

    sizes

    available.

    *

    2. High

    capacity

    (greater

    thean

    100,000 lb)

    achievable.

    3. Nest

    anchors

    are standard off-the-shelf

    equipment.

    '

    4.

    Broad

    experience

    with use.

    S*..--.

    S.

    Can

    provide

    continuous

    resistance

    even though

    maxim.um

    capacity

    has

    been ecceeded.,

    .

    ,,.

    6. Is recoverable.

    7.

    Does

    not

    function well in

    rock seafloors.

    8.

    Behavior

    is

    erratic

    in

    layered

    seafloors.

    *

    z*,"9.

    Low

    resistance

    to

    uplift

    loads;

    therefore, large

    line scope

    required

    to cause

    near horizontal

    loading at

    seafloor.

    "10.

    If

    dragging is

    not

    acceptable, anchor must

    be

    pulled

    horizontally at

    high loads

    to

    properly penetrate

    and

    set.

    11. Oragging

    of anchor

    to

    achieve

    penetration

    can damoge

    pipelines,

    cables, etc.

    12.

    Loading must

    be limited

    to one direction

    for most anchoer

    types

    and

    applications.

    13. Exact

    anchor

    plact-ent

    limited

    by

    ability to

    estimate

    .setting

    distance.

    (

    4 J

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    19/257

    Table 1.3-5. Performance of Foundation and

    Anchor Types as a

    Function

    of Seafloor

    and

    Loading Conditions

    Performancea

    for

    Following Types--

    Item Dirct

    Deadweight

    Pile Embedment

    Brag

    Seafloor Material Type

    Soft clay,

    mud ++

    + 4+ +4

    Soft

    clay

    layer (0-20 ft

    +

    +4

    +.

    thick)

    over hard

    layer

    Stiff clay

    44

    ++

    ++

    ++

    Sand

    ++

    ++

    ++

    ++

    Hard

    glacial

    till

    +

    ++

    ++

    +

    Boulders

    ++ 0

    0 0

    Soft

    rock

    or

    coral

    ++

    a4

    4

    Hard, monolithic rock ++

    +

    +

    0

    Seafloor

    Topography

    Moderate slopes,

    10 deg

    o

    ++ 44 o

    Loadina Direction

    Downward

    load

    component

    +4

    ++

    o

    o

    (foundations)

    Omni-directional (not down) 4+

    ++ 0

    Uni-directional

    (not down)

    ++

    4+ 44

    4.

    Large uplift

    component 4+

    +4 a

    Lateral

    Load

    Range

    To 100,000

    lb

    .+

    + + 44

    100,000 to

    1,00C,000

    lb + +4

    +

    Over

    1,000,000 lb o +4

    0 a

    "a

    4

    - functions

    well

    * s normally is not the preferred

    choice

    o

    does

    not

    function well+

    Table' 1.3-4 l ists features of

    drag- 1.4

    REFERENCES

    embedment

    anchors.

    Although

    these anchors can

    develop

    high capacities,

    the

    load on a drag 1-1. Design

    manual, harbor

    and coastal

    facili-

    anchor 1s usually limited

    to

    one direction,

    and ties, Naval

    Facilities Engineering

    Command,

    the mooring-

    line

    angle at the seafloor

    must be

    ,NAVFAC

    DN-26. Washington. D.C.

    Jul

    1968.

    virtually horizontal.

    The holding capacity

    of

    drag

    anchors

    decreases very

    quickly

    as mooring 1-2. AF

    recoimmmded practice

    for the analysis

    line

    angles

    exceed

    approximately

    6

    degrees. To

    of spread

    mooring

    systems

    for floating

    drilling

    assist in

    understanding the advantages

    and

    units, American Petroleum Institute,

    API RP

    2P.

    disadvantages of the various anchor

    types, Dallas,

    Tex.,

    .My

    1981.

    Table

    1.3-5

    compares

    how

    well

    they

    function

    under different conditions.

    Judgments

    of

    1-3. Rules

    for

    building

    and clessing mobile

    expected performance

    have

    been made primarily

    on offshore

    drilling units,

    American

    Bureau

    of

    the basis

    of holding

    capacity

    'and relative cost.

    Shipping. New York,

    N.Y., 1980.

    It

    should

    be

    noted that Table 1.3-5 is

    an

    expeditious

    guide, for general

    use,

    and

    special

    ci-cumstances

    can shift the

    performance ratings.

  • 7/23/2019 Handbook for Marine Geotechnical Engineering

    20/257

    fI

    Chapter 2

    SITE SURVEY

    AND

    IN-SITU TESTING

    2.1 INTRODUCTION

    topography on drag anchor

    performance

    or

    (2)

    a

    technical

    inability to use

    this

    data

    element

    in

    S-2.1.1

    Purpose

    design

    because

    analysis techniques are no t

    developed,

    as

    in the inability

    to use

    dynamic

    This

    chapter sumarizes considerations

    and

    soil properties

    in

    drag anchor design due to an

    "methods

    for

    selecting and

    characterizing

    a site absence

    of

    a

    performance-related

    model.

    for

    bottom-resting

    or

    moored

    platforms

    in the

    Table 2.1-2 lists geotochnical parameters

    deep

    ocean.

    requirad for each of the

    applications.'

    &.1.2 Factors Influencing

    the Site Survey

    2.1.2.3

    Regional

    Versus

    Site-Specific

    Surveys.

    Some

    projects

    or project

    phases

    2.1.2.1

    Constraints.

    The

    type and

    detail

    require

    general Information

    from a

    large region,

    of

    site

    data sought will

    be

    a

    function of: wt.reas

    others

    require more accurate

    data

    from a

    small geographic

    area. For example, a manned

    ""

    Value

    and

    replacement

    cost

    of platform

    habitat

    installation

    may

    require

    low-precision

    Impact

    of platform failure (primarily) date resulting

    from

    a

    regional survey over

    a

    on

    human life

    -

    Purpose of

    the

    platform

    large area to determine

    an adequate or a

    best

    .Topography and

    seafloor

    materil

    type

    location

    for

    Its placement, while design

    for the

    "' Any presurvey

    requirements for an exact

    geographical location habitat's

    foundation requires high-precision

    Types

    of

    man-induced

    and environmental

    date

    frU

    e select

    ste.

    '',loadi

    ngs$=t

    sletdst*

    a Type and size

    of the

    foundations

    or Since regional

    surveys compare