Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of...

78
Hadrons and Nuclei : Single Hadrons Lattice Summer School Lattice Summer School Martin Savage Summer 2007 University of Washington
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    218
  • download

    2

Transcript of Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of...

Page 1: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Hadrons and Nuclei : Single Hadrons

Lattice Summer SchoolLattice Summer School

Martin Savage

Summer 2007

University of Washington

Page 2: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Mass Spectrum of Mesons| - M esons S=C=B=T =0, qq

¼§ m¼§ = 139:57MeV ¿ = 2:6£ 10¡ 8 s J ¼= 0¡

¼0 m¼0 = 134:96MeV ¿ = 0:83£ 10¡ 16 s J ¼= 0¡

´0 m´ = 548:6MeV ¿¡ 1 = 0:9keV J ¼= 0¡

´00 m´0 = 957:6MeV ¿¡ 1 = 0:3MeV J ¼= 0¡

½0;§ m½= 770MeV ¿¡ 1 = 154MeV J ¼= 1¡

! 0 m! = 783MeV ¿¡ 1 = 9:9MeV J ¼= 1¡

Á0 mÁ = 1020MeV ¿¡ 1 = 4:2MeV J ¼= 1¡

A1 mA 1 = 1275MeV ¿¡ 1 » 300MeV J ¼= 1+

J =Ã mJ =Ã = 3:1GeV ¿¡ 1 = 88keV J ¼= 1¡

¨ m¨ = 9:5GeV ¿¡ 1 = 52keV J ¼= 1¡

Page 3: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Mass Spectrum of Light Baryons| - Baryons S = C = B = T = 0, qqq

p mp = 938:28MeV ¿ > 1033yrs J ¼ = 12

+

n mn = 939:57MeV ¿ = 898§ 16 s J ¼ = 12

+

¢ m¢ » 1230MeV ¿¡ 1 » 120MeV J ¼ = 32

+

| - Baryons S = 1 C = B = T = 0, sqq

¤ m¤ = 1115:6MeV ¿ = 2:6£ 10¡ 10s J ¼ = 12

+

§ § m§ § = 1197:3MeV ¿ = 1:5£ 10¡ 10s J ¼ = 12

+

§ 0 m§ 0 = 1192MeV ¿ = 6£ 10¡ 20s J ¼ = 12

+

Page 4: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

SU(2) Flavor Symmetry : Isospin

u u u

d d d

SU(3)C

SU(2)

Local color transformations

Global flavor transformationsIsospin

If mu = md then SU(2) would be an exact symmetry of QCD

mu - md << so SU(2) is an approximate symmetry of QCD

Page 5: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

SU(3) Flavor Symmetry

u u u

d d d

SU(3)C

SU(3)

Local color transformations

Global flavor transformationss s s

If mu = md = ms then SU(3) would be an exact symmetry of QCD

mi - mj << so SU(3) is an approximate symmetry of QCD

Page 6: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Mesons : SU(2)

qa = ud( ) q V q

Vector symmetry : L = R = V

M ba = qb°5qa ¡ 1

2±b

a qc°5qc

M =

µ¼0=

p2 ¼+

¼¡ ¡ ¼0=p

2

= 1p2¼a¿a

M V M V

Page 7: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Mesons : SU(3)

qa = uds( ) q V q

M V M V

M =

0

@¼0=

p2+´=

p6 ¼+ K +

¼¡ ¡ ¼0=p

2+´=p

6 K 0

K ¡ K 0 ¡ 2=6

1

A

M ba = qb°5qa ¡ 1

3±b

a qc°5qc

( Lectures by Claude Bernard )

Page 8: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Meson Correlation Functions and Interpolating Fields

d-quark propagator u-quark propagator

hd(x)°5u(x)¡d(y)°5u(y)

¢yi = hTr [ D(x ! y) °5 U(y ! x) °5 ]i

= hTr£

D(x ! y) Uy(x ! y)¤i

hO(x;y)i »

ZDq Dq DA¹ O(x;y) ei

Rd4z L (q;q;A ¹ )

e.g. ¼+

Zd3xhd(x)°5u(x)

¡d(y)°5u(y)

¢yi ! Z¼

e¡ m¼tE

2m¼+ ::

Page 9: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Baryons : SU(2)

B°i j k »

hq®;a

i q¯ ;bj q° ;c

k ¡ q®;ai q° ;c

j q¯ ;bk

i²abc (C°5)®

spin

flavor

Babc =1

p6

( ²ab Nc + ²acNb )

N =

µpn

B ! VVVB

Va®Vb

¯ ²ab ! ²®

Page 10: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Baryons : SU(3)

B°i j k »

hq®;a

i q¯ ;bj q° ;c

k ¡ q®;ai q° ;c

j q¯ ;bk

i²abc (C°5)®

spin

flavor

Babc = 1p6

¡²abd Bd

c + ²acdBdb

¢

B =

0

@§ 0=

p2+¤=

p6 § + p

§ ¡ ¡ § 0=p

2+¤=p

6 n¥¡ ¥0 ¡ 2=6¤

1

A

B ! VVVB

Va®Vb

¯ ²abc ! ²® ° Vy°c

Page 11: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Light Baryons : SU(3)

S=0, I=1/2

S=-1, I=0,1

S=-2, I=1/2

S=0, I=3/2

S=-1, I=1

S=-2, I=1/2

S=-3, I=0

J ¼ = 32

+

J ¼ = 12

+

Page 12: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Charmed (or Bottom) Baryons :SU(3)

Mixing / ms ¡ mmQ

Sl=1, I=1

Sl=1, I=1/2

Sl=1, I=0

Sl=0, I=0

Sl=0, I=1/2

Page 13: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Light Quark Masses and Spurions

L = q i°¹ @¹ q ¡ qmqqSU(3) invariant breaks SU(3)

mq =

0

@mu 0 00 md 00 0 ms

1

A

BUT : let mq ! VmqV y and then both terms are SU(3) invariant

Then we can simply use the Wigner-Eckhart Theorem to constructinvariant matrix elements.

Page 14: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

, K, Masses : Gell-Mann—Okubo Mass Relation

Construct all possible group invariants that can contributeMore insertions of M and mq

m2K = ®(m+ms) + 2 (2m+ms)

m2´ = 2

3®(m+ 2ms) + 2 (2m+ ms)

m2¼ = 2®m+ 2 (2m+ ms)

L = ®Tr [ M M mq ] + ¯ Tr [ M M ]Tr [ mq ] + ::

= ¡ m2¼ ¼+¼¡ + ::

4m2K ¡ m2

¼ = 3m2´

Page 15: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

p, n, Masses : Gell-Mann—Okubo Mass Relation

L = ¡ M0 Tr£

BB¤

¡ ®Tr£

Bmq B¤

¡ ¯ Tr£

BB mq

¤¡ ° Tr

£BB

¤Tr [ mq ] + ::

MN = M0 + (2m+ms)° +m®+ms¯

2MN + 2M¥ = M§ + 3M¤

Page 16: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Quark Masses from Lattice( Claudes lectures )

mu=md = 0:43§ 0§ 0:01§ 0:08

M s=m = 27:4§ 0:1§ 0:4§ 0:0§ 0:1

MILC collaboration , ¹ = 2 GeV

Page 17: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Homework 1 : Check the validity of GMO mass relation

amongst the pseudo-Goldstone bosons using Particle Data group compliations.

What is the violation as a percent of the pion mass?

Derive the masses of the at one-insertion of the light quark mass matrix

Page 18: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Latest Lattice results : LHPC : DW on Staggered

LHPC, Negele et al

m=350 MeV

Page 19: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Lattice Result for GMO

Page 20: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Electromagnetism

j ¹em =

23u°¹ u ¡

13d°¹ d ¡

13s°¹ s

= q Q °¹ q

Q =

0

@+2

30 0

0 ¡ 13

00 0 ¡ 1

3

1

A

Octet of SU(3)Singlet plus Triplet of SU(2)

Q = spurion field Q ! VQVy

Page 21: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Magnetic Moments in SU(3): Coleman-Glashow Relations

L = ¹ F Tr£

B¾¹ º F ¹ º [Q;B]¤

+ ¹ D Tr£

B¾¹ º F ¹ º fQ;Bg¤

Limit of exact SU(3) symmetry…. mu=md=ms

¹ N = ¹ F + 13

¹ D

¹ p ; ¹ n ; ¹ ¤ ; ¹ § + ; ¹ § ¡ ; ¹ ¥0 ; ¹ ¥ ¡ ; ¹ § ¤

Page 22: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Magnetic Moments : Coleman-Glashow Relations

Works as well as can be expected for SU(3) symmetry

¹ § + = ¹ p : 2:42§ 0:05 NM = 2:7928 NM

2¹ ¤ = ¹ n : ¡ 1:226§ 0:008 NM = ¡ 1:9130 NM

¹ ¥0 = ¹ n : ¡ 1:25§ 0:01 NM = ¡ 1:9130 NM

¹ § ¡ + ¹ n = ¡ ¹ p : ¡ 3:07§ 0:03 NM = ¡ 2:7928 NM

¹ ¥ ¡ = ¹ § ¡ : ¡ 0:6507§ 0:0025 NM = ¡ 1:16§ 0:03 NM

2¹ ¤ § 0 =p

3¹ n : 3:22§ 0:16 NM = 3:31 NM

L =e

4MN¹ i B¾¹ º F ¹ º B

Page 23: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Homework 2 : Explore the validity of the Coleman-Glashow

relations between the magnetic moments of the baryon octet.

Find analogous relations between the baryon decuplet, and find relations between the EM transition rates between the decuplet and octet assuming M1 transition.

Page 24: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Matrix Elements in Nucleon (1)

CONSTRAINTS

Similarly for the neutron

@¹ j ¹ = 0 ! F (p)3 (q2) = 0

F (p)1 (0) = +1

F (p)2 (0) = · p = ( 2:79 ¡ 1 ) NM

GE = F1 ¡ jQ2 j4M 2

NF2 GM = F1 + F2

hpjqQ°¹ qjpi = Up

·F (p)

1 °¹ + F (p)2 i¾¹ º qº

2MN+ F (p)

3 q¹

¸Up

F (p)i ´ F (p)

i (q2)

Page 25: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Proton : Q4 G(p)M / p

Perturbative QCD :

G(p)M / Q4

Perdisat et al

Page 26: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Dipole Form Factors for Nucleon !!GDipole(Q2) = 1

(1+Q2=0:71)2 Perdisat et al

Page 27: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Recent Comprehensive Lattice Study : S. Boinepalli et al., hep-lat/0604022

Clover on Quenched Not QCD (unfortunately), likely close to

nature from all previous experiences. Clover gives (a2) errors in the quarks Good step toward fully-dynamical

Disconnected diagrams evaluated phenomenologically…..computationally expensive

Page 28: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Lattice Contractions

Page 29: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Baryon Charge Radii

hr2E i = ¡ 6 d

dQ2 GE (Q2)¯¯Q2=0

Zanotti et al

Larger m¼ the smaller lattice can be !!

Page 30: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Baryon Magnetic Moments

Zanotti et al

Page 31: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Baryon Magnetic Radii

Zanotti et al

Page 32: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Alexandru et al ,hep-lat/0611008

Domain-Wall on Staggered Wilson on Quenched

Isovector-Vector Form Factors : Lattice

¹ GE =GM

GM (0)

Page 33: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Isovector-Vector Form Factor( George Fleming, LHPC )

Domain-Wall on Staggered

Page 34: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Just how Strange is

the Proton ?

Page 35: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Flavor Structure of the Nucleon : Tree-Level

°;Z0

q

eV¹ and A¹

Page 36: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Relevant parts of the Standard Model

tanµw = g1g2

D¹ = @¹ + ieQA¹ + i esw cw

¡T3 ¡ Qs2

w

¢Z¹

D¹ = @¹ + ig2Wa¹ Ta + ig1

12Y B¹

YÁ = +1 hÁi =

µ0

v=p

2

B¹ = 1pg2

1 +g22

(g1Z¹ + g2A¹ )

W3¹ = 1p

g21 +g2

2

(g1A¹ ¡ g2Z¹ )

Page 37: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Z0-couplings

Z0

u u

L int: = ¡ e4cw sw

u£¡

1¡ 83s2

w

¢°¹ ¡ °¹ °5

¤u Z¹

Page 38: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Flavor Structure of the Nucleon : EM

I = 0

I = 1

j ¹em =

23u°¹ u ¡

13d°¹ d ¡

13s°¹ s

= q Q °¹ q

=12

q

0

@1 0 00 ¡ 1 00 0 0

1

A °¹ q

+16

q

0

@1 0 00 1 00 0 ¡ 2

1

A °¹ q

Transforms as an octet under SU(3)

Page 39: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Flavor Structure of the Nucleon : Z0

I = 0I = 1

Vector Current

Axial-Vector Current

j ¹Z0 =

12

µ1¡

83s2

w

¶u°¹ u ¡

12

µ1¡

43

s2w

¶d°¹ d ¡

12

µ1¡

43s2

w

¶s°¹ s

+12u°¹ °5u ¡

12d°¹ °5d ¡

12s°¹ °5s

=12

¡1¡ 2s2

w

¢q

0

@1 0 00 ¡ 1 00 0 0

1

A °¹ q ¡13

s2wq

0

@1 0 00 1 00 0 ¡ 2

1

A °¹ q

¡12s°¹ s

+12q

0

@1 0 00 ¡ 1 00 0 0

1

A °¹ °5q ¡ s°¹ °5s

Page 40: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Matrix Elements in Nucleon (2)

CONSTRAINTS

hpjq

0

@1 0 00 1 00 0 ¡ 2

1

A °¹ qjpi = 3 Up

· ³F (p)

1 + F (n)1

´°¹ +

³F (p)

2 + F (n)2

´i¾¹ º qº

2MN

¸Up

hpjs°¹ sjpi = Up

·F (s)

1 (q2)°¹ + F (s)2 (q2)i¾¹ º qº

2MN

¸Up

hpjq

0

@1 0 00 ¡ 1 00 0 0

1

A °¹ qjpi = Up

· ³F (p)

1 ¡ F (n)1

´°¹ +

³F (p)

2 ¡ F (n)2

´i¾¹ º qº

2MN

¸Up

Isovector

Isoscalar

strange

F (s)1 (0) = 0

Page 41: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Tree-Level

°;Z0

q

eg(e)V » 1¡ 4s2

w , g(e)A » 1

Page 42: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Radiative Corrections

°;Z0

q

ee.g.

Page 43: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Hadronic Corrections

°;Z0

qq

e

Z0

Parity-violating vertex

Page 44: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Liu, McKeown and Ramsey-Musolf, arXiv:0706.0226v2

hN js°¹ sjN i is small !!

Q2 = 0.1 GeV2

G(s)E = F (s)

1 ¡ jQ2 j4M 2

NF (s)

2

G(s)M = F (s)

1 + F (s)2

Jlab and Bates

Page 45: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Strange Vector Form Factors

Page 46: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Axial-Current Matrix Elements in Nucleon (1)

CONSTRAINTS

hpju°¹ °5djni = Up

·g1(q2)°¹ °5 + g2(q2)i¾¹ º °5

2MN+ g3(q2)°5q¹

¸Un

T and I ! g2(q2) = 0

g1(0) = gA ¯ ¡ decay

Page 47: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Neutron -decayn p

W-

e

g3 comes with a factor of me

gA = 1:26O » u°¹ (1¡ °5)d

¹ ¡ +p! n +º¹ sensitve to g3

Page 48: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

PCAC

Aa¹ (x) = q°¹ °5Taq(x)

h0jAa¹ (x)j¼b(q)i = ¡ i f ¼ q¹ e¡ iq:x ±ab

h0j@¹ Aa¹ (x)j¼b(q)i = ¡ f¼ m2

¼ e¡ iq:x ±ab

@¹ Aa¹ (x) = ¡ f¼ m2

¼ ¼a(x)

A

Therefore @¹ A¹ is a good interpolating ¯eld for the pion.

Page 49: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

PCAC : Goldberger-Treiman (1) (1958)

In chiral limit,

hN jAa¹ (x)jN i = U [ g1°¹ °5 + g3 q¹ °5 ] Ta U e¡ iq:x

hN j@¹ Aa¹ (x)jN i = ¡ iU

£g1q¹ °¹ °5 + g3 q2°5

¤Ta U e¡ iq:x

@¹ Aa¹ = 0 hence 2MN g1(q2) + q2g3(q2) = 0

Page 50: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

PCAC : Goldberger-Treiman (2)

L = i g¼N N N°5TbN¼b

hN jAa¹ (x)jN i = ¡ U

·g¼N N f¼

q2°5

¸Ta U e¡ iq:x

In chiral limit,

g3(q2) = ¡g¼N N f ¼

q2 + non-pole

Page 51: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

PCAC : Goldberger-Treiman (3)

In chiral limit,

g3(q2) = ¡g¼N N f ¼

q2

2MN g1(q2) + q2g3(q2) = 0

g1(q2) =g¼N N f ¼

2MN

Away from the chiral limit, g3(q2) = ¡

g¼N N f¼

q2 ¡ m2¼

g1(q2) =g¼N N f¼

2MN+ O(

m2¼

¤2Â

)

Page 52: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

PCAC : Goldberger-Treiman (4)

g3(q2) = ¡g¼N N f¼

q2 ¡ m2¼

g1(q2) =g¼N N f¼

2MN+ O(

m2¼

¤2Â

)

At the physical point,

gA = 1:2654§ 0:0042

g¼N N = 13:12 ; 13:02

1¡2MN gA

f¼g¼N N= 0:023 ; 0:015

Sid Coon,Nucl-th/9906011

Page 53: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

gA from Lattice QCD

Page 54: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Axial Charges : D.I.S.(Deep Inelastic Scattering)

2

~

Large Q2

N

N NOperator-Product Expansion

Page 55: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Axial Charges (2)

Related by Isospin to gA Related by SU(3) to Hyperon Decays

Measure 12

³1 ¡ ®s (Q2)

¼

´hpjq Q2 °¹ °5qjpi in DIS

R10

dx g1(x;Q2)

Q2 =16

0

@1 0 00 ¡ 1 00 0 0

1

A +118

0

@1 0 00 1 00 0 ¡ 2

1

A +29

0

@1 0 00 1 00 0 1

1

A

Page 56: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Axial Charges (3)Including SU(3)-breaking

¡ 0:35< ¢ s < 0

¡ 0:1< ¢ u+¢ d+¢ s < +0:3

2 ¢ q Up s¹ Up = hpjq°¹ °5qjpi

Page 57: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Nucleon -Term (1)H (mq) jN (mq)i = E(mq)jN (mq)i

hN(mq)jH (mq) jN (mq)i = E(mq)

mq@

@mqE (mq) = hN(mq)jmq

@@mq

H (mq) jN (mq)i

L QCD (mq) = L QCD (0) ¡X

i

mi qi qi

mi@

@miH (mq) = mi qi qi

H (mq) = H (0) +X

i

mi@

@miH (mq)

Feynman-Hellman Thm

Page 58: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Nucleon -Term (2) : SU(2)

Note that : hN (mq)jN (mq)i = 1 : conventional to use = 2MN

See later

¾N » 45 MeV from scattering

¾N =X

i

mi@MN

@mi= m2

¼@MN

@m2¼

+ ::

= hN (mq)j muuu + mddd jN (mq)i

= m hN (mq)j uu + dd jN (mq)i

Page 59: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Nucleon -Term (3) : SU(3)

SU(3) Singlet

¾N = hN(mq)j muuu + mddd + msss jN (mq)i

=13

(2m+ms) hN (mq)j uu + dd + ss jN (mq)i

+13

(m¡ ms) hN (mq)j uu + dd ¡ 2 ss jN (mq)i

SU(3) Octet

Page 60: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Nucleon -Term (4) : strangeness

Using¾N » 45MeV gives

m hN(mq)juu+dd¡ 2ssjN (mq)i » 35§ 5 MeV

=34

m2¼

m2K ¡ m2

¼

·(M¥ ¡ MN ) ¡

12

(M § ¡ M¤ )¸

2hN (mq)jssjN (mq)ihN (mq)juu+ddjN (mq)i

» 0:2! 0:4

Page 61: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Nucleon -Term (5)

Strange quarks (non-valence) play a nontrivial role on the structure of the Nucleon

hN (mq)j H (0)jN (mq)i » 764 MeV

hN(mq)j ms ss jN (mq)i » 130 MeV

Page 62: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

-Term from the Lattice

Two methods used presently :1. Compute MN and take numerical derivatives … poor

precision…many configs (QCD)

2. Compute 3-pt function

Page 63: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Lattice Results: MN vs m

StaggeredClover

Physical value used in fit not included in fit

Page 64: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

MN (GeV)

M2 GeV2

m ~ 235 MeV

Physical point

Galletly et al, hep-lat/0607024

Lattice Results: MN vs m

Overlap fermions

Page 65: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Lattice Results (2): MN vs m

N is derivative of curve--- Much larger uncertainties

Page 66: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Dilatations

Energy-Momentum Tensor

T¹ º (y) = 2p¡ g

±±g¹ º (y)

Rd4x

p¡ g L

Page 67: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Improved Energy-Momentum Tensor and Scale (Dilatation) Current

O¹ º = T ¹ º + surface terms

@¹ O¹ º = 0

Scale-CurrentS¹ = O¹ º xº

@¹ S¹ = O®®

Page 68: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Scale Transformation

x ! x0 = e® x

S =

Zd4x j@¹ Á(x)j2 !

Zd4x j@¹

¡e®dÁ Á(e®x)

¢j2

= e2®(dÁ ¡ 1)Z

d4x0 j@0¹ Á(x0)j2

S0 = e2®(dÁ ¡ 1) S

dÁ = 1 ; dà = 32

Require scale-invariant when massless

Page 69: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Masses Break Scale-Invariance

¡Z

d4xm2¼jÁ(x)j2 ! ¡ e®(2dÁ ¡ 4)

Zd4x0m2

¼jÁ(x0)j2

@¹ S¹ = 2m2¼ jÁj2

¡Z

d4x mN N N ! ¡ e®(2dÁ ¡ 4)

Zd4x0 mN N N

@¹ S¹ = mN N N

Page 70: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Gauge FieldsRenormalization Scale ¹ related to coordinates via ¹ » 1=x

x ! x0 = e® x

QCD -function

L = ¡1

4g2Tr

£G2

¤

±L±® =

¯2g3

Tr£G2

¤= @¹ S¹

g = g(Q2=¹ 2) ! g(e¡ 2®Q2=¹ 2))

g(¹ ) ! g(e®¹ )

Page 71: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Nucleon Mass

Anomalous dimension = quantum corrections

hN jO®® jN i = MN

= hNj¯

2g3Tr

£G2

¤jN i +

hN j(1¡ °u)muuu + (1¡ °d)mddd + (1¡ °s)msssjN i

Page 72: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Ademollo-Gatto Theorem (1964) Corrections to the matrix elements of a

charge operator between states in the same irreducible representation first occur as the square of the symmetry breaking parameter True if matrix element is analytic function of

breaking parameter NOT valid for vector current matrix elements in light

hadrons due to IR behavior of QCD True for heavy quark symmetry..Luke’s Theorem

Vector Current Matrix elements between members of SU(3), SU(2) irreps are protected from symmetry breaking effects,

since they are the charge operators

Page 73: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Ademollo-Gatto Theorem (1964)

Qab =

Zd3x qa(x)°0qb(x) =

Zd3x qay°0qb

hQus ; Qsu

i= Quu ¡ Qss

hK 0jh

Qus ; QsuijK 0i = hK 0jQuu ¡ Qss jK 0i

Pn

³hK 0jQusjnihnjQsu jK 0i ¡ hK 0jQsujnihnjQus jK 0i

´= 0 ¡ (¡ 1)

Pn

³jhnjQsu jK 0i j2 ¡ jhnjQus jK 0i j2

´= 1

1¡ h¼¡ jQsujK 0i = O(¸2) = SU(3) breaking parameter

= 0AND transitions outsideoctet are O(¸)

Page 74: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Baryon Resonance Spectrum So far just discussed extracting the ground states

from lattice calculations. What about excitations

If stable, the correlation function has simple exponential form If unstable, volume dependence required…

(see later)

Page 75: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Flavour, Orbital and RadialStructure

• States classified according to SU(2) Flavor• Spatial and radial structure explored using displaced-source (sink) quark propagators

Classified wrt transformation under hypercubic group … the symmetry group of the lattice

Page 76: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Methodology: Luscher-Wolff

min ( En – Ei)

• Eigenvalues ! Energies = masses of stable particles, (or energy of scattering state for unstable particles)

• Eigenvectors ! “wave functions”

Compute correlation matrix from the r sources and r sinks

C® (t;t0) = h0jO®(t) O¯ (t0)j0i

The eigenvalues of

are

A =1

pC(t0)

C(t)1

pC(t0)

¸ i ! e¡ E i (t¡ t0)³1 + e¡ ¢ E (t¡ t0)

´

Page 77: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Glimpsing nucleon spectrum

Adam Lichtl, PhD 2006

Spectroscopy Group ... JLab

Page 78: Hadrons and Nuclei : Single Hadrons Lattice Summer School Martin Savage Summer 2007 University of Washington.

Summary Huge amount of phenomenology … traditionally the

domain of nuclear physics (t > ~ 1970…QCD) Flavor structure Interactions Excitations

Far fewer lattice calculations than for mesons Correlator falls much faster Signal degrades exponentially faster Requires significantly more effort … people-power and

computers Relatively straighforward procedure to follow

Go forth and compute the properties of the building blocks of nuclei from QCD !