H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

19
H Al M t th H. Alan Mantooth Professor of Electrical Engineering Executive Director NSF Center on GRid-connected Advanced Power Electronic Systems University of Arkansas University of Arkansas ARPA-E & EERE Joint Workshop on Power Electronics in Photovoltaic Systems Power Electronics in Photovoltaic Systems February 8, 2011

Transcript of H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

Page 1: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

H Al M t thH. Alan Mantooth

Professor of Electrical EngineeringExecutive Director

NSF Center on GRid-connected Advanced Power Electronic SystemsUniversity of ArkansasUniversity of Arkansas

ARPA-E & EERE Joint Workshop on Power Electronics in Photovoltaic SystemsPower Electronics in Photovoltaic Systems

February 8, 2011

Page 2: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

High Temperature 50 kW Motor Drive

600 V >150 A 250+°C

High Temperature 50 kW Motor Drive

Team

Single Phase Inverter Modules

• APEI, Inc(Circuit Design, Packaging)

• University of Arkansas(Device Modeling, Packaging)

• Rohm, LtdIntegrated gate drive and power stage

Rohm, Ltd.(SiC Devices)

• Sandia National Labs(Energy Storage Systems-Imre Gyuk)

R&D100 AwardR&D100 Award

2

R&D100 AwardR&D100 AwardSelected as one of the top 100 global technology

breakthroughs for 2009 by R&D Magazine

Page 3: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

• Demonstration Module 16 SiC DMOS (30A each) half-bridge power topology Integrated power moduleg p High temperature operation (> 250 °C) MCM gate drive boards MMC baseplate

MCM Gate Driver Board

MMC Baseplate

DBA Power Board

Page 4: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

Design ConsiderationsMaterial Selection

• CTE• Thermal Conductivity• Weight• Machinability• Cost• Cost

Geometry• Thickness• Thermal performance

4

Page 5: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

Thermal ResistanceThermal Resistance vs. Device Dimensions

Thermal Path Optimization• Thermal spreading• Layer thickness• High thermal cond. materials• Void-free solder bondsce

2.5Void free solder bonds

Dominating factors• Die size• Die attach

S b t t ial R

esist

anc

°C /

W)

1

1.5

2

• Substrate ceramic

Current Die Size• 2.4 mm x 4.8 mm• 0.375 – 0.40 °C/W @ 250°C (per die)

Ther

ma (°

0

0.5

1

0 W (p )

Desired Die Size• ≥ 7.5 mm x 7.5 mm• 0.10 – 0.20 °C/W @ 250°C (per die)

0

20 20

1010

0

Die Width Die Length

5

20 20(cm)g

(cm)

Page 6: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

SidewallsThermal-Stress Design• Modeling performed in SolidWorks

Housing Design and SimulationHousing Design and Simulation

g• Maximizes thermal-stress relief features• Incorporates mechanical reinforcement structures

Stress relief and Stress relief and reinforcement features

Housing• Sidewalls frame lid

Lid Frame

• Sidewalls, frame, lid• 275 °C max ambient temperature• Thermal-stress capable design

6

Maximum deflection area

Page 7: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

PWM Control Signal Gate Drive Output

7

Turn‐on Turn‐off Full period250 °C

Page 8: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

SiC Power Module(Open for Thermal Imaging)

Demonstration System– 300 V DC bus input– 60 V DC motor

60 A peak current

FiltersDC MotorLoad

– 60 A peak current– 15 kHz switching frequency– 250 °C junction

temperature

Voltage Regulator for PWM Control

8

Gate DrivePower Supply

Page 9: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

High Temperature SoldersIssues

• Few practical lead free alloys• Gold solders have limitations• Low thermal conductivity• Step soldering

Typical Gold Alloys• 81Au / 19In (487°C)• 96.85Au / 3.15Si (361°C)• 88Au / 12Ge (361°C)

80A / 20S (280°C)• 80Au / 20Sn (280°C)

Typical Lead Alloys• 95Pb / 5Sn (308°C)• 95Pb / 5In (300°C)/ ( )• 92.5Pb / 5In / 2.5Ag (300°C)

Typical Lead Free Alloys• 95.5Sn / 3.8Ag / 0.7Cu (217°C)• 3 5Ag / 96 5Sn (221°C)

9

• 3.5Ag / 96.5Sn (221°C)• 3.5Ag / 95Sn / 1.5Sb (218°C)

Page 10: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

BenefitsTransient Liquid Phase (TLP)

• Extremely strong• High temperature stable• Excellent thermal conductivity• Processing temp < Melting temp• Lead Free

Transient Liquid Phase (TLP)

Low Temperature Liquid Phase• Tin, Indium, etc.• Eutectic solder alloys

Issues / Challenges

• Lead FreeHigh Melting Point Base Metal

• Silver, Nickel, Gold, Copper, etc.• Unalloyed for best diffusion• Needs to be relatively thick • Longer processing times

• Material compatibility• Composition variations• Pressure• Thin die metallization

• Needs to be relatively thick

Dissolution and Diffusion• Composition changes• Solidification

C tibl t i l t Thin die metallization• Highly sensitive to contamination• Compatible material systems

10

Page 11: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

Transient Liquid Phase (TLP)Starting

compositionTarget

Composition

Transient Liquid Phase (TLP)

Low Temperature Liquid Phase• 96.5Sn / 3.5Ag Foil

High Melting Point Base Metal• 100% Silver Foil

PreformsIsostatically laminated• Isostatically laminated

• Sn plated and cut to shape

Assembly Hardware• Precision graphite fixturesg p• Alumina weights

11

Page 12: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

Diffusion • Ni/Sn TLP bonding samples have

been fabricated Diffusion area

been fabricated• Thermal cycling still underway• Testing/Inspection/Analysis

performed:

Sn-rich area• Cross sectioning followed by

• Optical microscopy• SEM/EDX

• > 100 kg die shear testing results

TLP bond interface /minor

• > 100 kg die shear testing results w/ 1cm2 die

TLP bond interface w/minor voiding

TLP bond TLP bond interface

12

Page 13: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

(1)Process power substrateAttach power device

(2)Add dielectric

(3)Metal contact

13

Page 14: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

SiCMOSFET

Power Substrate

Dielectric Material

GateConnect

SiCMOSFET

SourceConnect

Lg RgLg Rg

Ls Rs

Wire Bondless Power Module12 SiC MOSFETs1200V / 150A

14

1200V / 150A

Page 15: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

15

Page 16: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

APEI, Inc.SiC Power Modules

CreeSiC MOSFETsSiC Diodes

9”

9”

Key Attributes• 3-Phase• Power ~ 5 kW• 115 V line to line

4”

• 115 V line to line• SiC MOSFETs and diodes• Convection air cooled• 200 °C junction temp operation• 50 kHz switching frequency

16

• 50 kHz switching frequency• Mass = 7.25 lbs.• Volume = 365 cubic inches

Page 17: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

Air ConvectionHeat-Sink

APEI Power Modules

PowerBoard

Power

(Cree MOSFETs) InverterFilters

ConnectorsSiCGate Drivers

ControlBoard

17

Board

Page 18: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

Actual Size Comparison

28”Heat Sink Characteristics Commercial Si Inverter APEI, Inc. SiC Inverter Comparison

Power 5 kW 5 kW SameCooling Free Air Convection Free Air Convection SamePeak Efficiency @ Pk Power 95.50% 96.75% APEI increased efficiency 1.25%Power Loss 205 watts 162 watts APEI reduces losses 27%

14”Heat Sink

Size 28.5" x 16" x 5.75" 4.5" x 9" x 9" APEI > 7x smaller volumeVolume 2,622 cubic inches 365 cubic inches APEI > 7x smaller volumeMass 58 lbs. 7.25 lbs. APEI > 8x lighterPk Temperature Capability < 125 °C > 225 °C APEI 2× temperature capability

7”

Heat Sink

APEI, Inc.SiC Inverter

CommercialSi Inverter

18

Page 19: H Al M t th H. Alan Mantooth Professor of Electrical Engineering ...

100

97

98

99

Eff

SiC JFET Solar Inverter (10 kHz)

SiC MOSFET Solar Inverter (50 kHz)

94

95

96fice Si IGBT, Fsw=10kHz

Si Solar Inverter (10 kHz)

S C OS So a e e (50 )

91

92

93ncy

SiC, Fsw=10kHz

SiC, Fsw=20kHz

SiC, SV, Fsw=8.5kHz

90

0 2 4 6 8 10 12 14Power (kW)

SiC, Fsw=10kHz, No Filter

19