Gutta percha

42
Gutta Percha By Dr.Anoop.V.Nair, PG, Dept of Cons & Endo, KVGDC

description

gutta percha, the most commonly used root canal obturating material

Transcript of Gutta percha

Page 1: Gutta percha

Gutta PerchaBy

Dr.Anoop.V.Nair, PG, Dept of Cons & Endo, KVGDC

Page 2: Gutta percha

Contents

Introduction

Discovery & historical uses

Sources

Evolution in dentistry

Composition

Chemistry

Phases

Properties

Commercial manufacture

Available forms

Techniques to use

Immuno cross reactivity

Disinfection- how?

References

Page 3: Gutta percha

An introduction

The primary objectives of Operative Endodontics-

total debridement of the pulpal space

development of a fluid–tight seal at the apical foramen

total obturation of the root canal.

Earlier root canal filling materials-

Amalgam, Asbestos, Balsam, Bamboo, Cement, Copper, Gold Foil, Iron, Lead,Oxy- Chloride of Zinc, Paraffin, Pastes, Plaster of Paris, Resin, Rubber,Silverpoints, Tin foil etc.

Among all these materials tried, none of them met the requirements of anideal obturating material.

The search for a suitable Root canal filling material ended with thediscovery of “Gutta-percha”.

Page 4: Gutta percha

Discovery

Gutta-percha is a name derived from twowords.

“GETAH”- meaning gum

“PERTJA”- name of the tree in Malaylanguage

used in crude form by the natives ofMalaysian archipelago for making knifehandles, walking sticks and for variousother purposes.

TAXONOMYKingdom: Plantae

Subkingdom: TracheobiontaSuperdivision: Spermatophyta

Division: MagnoliophytaClass: MagnoliopsidaSubclass: Dilleniidae

Order: EbenalesFamily: Sapotaceae

Genus: Isonandra Species

Page 5: Gutta percha

The first person to discover this material was John Tradescant, who broughtthis material after his travels from far-east in 1656, he named this materialas “Mazer wood”.

But the honour of introduction of this material goes to Dr. WilliamMontogmerie (1843), who was a medical officer in Indian service.

He first came across gutta percha in Singapore in 1822.

His interest in the latex was sparked off by the use of gutta percha byworkers to made handles for their machetes.

Montgomerie also observed that knife handles and medical devices could bemade from the substance.

He was the first to appreciate the potential of this material in medicine andfor which he was awarded the gold medal by the Royal society of arts,London in 1843.

Page 6: Gutta percha

Other uses

First Guttapercha patent was taken by Alexander, Cabriol and Duclos for alaminate consisting of three layers called “Gutta-percha fabric”.

In 1845 Hancock and Bewley formed the Gutta-percha company in UnitedKingdom.

Jewels and ornaments made of it as they were considered to be preciousmaterials at that time.

Page 7: Gutta percha

Cyprus Field & Werner Siemens - underwater communication through telegraph wires insulated with gutta percha

Insulating underwater cable wires- 1866, Trans-atlantic telegraph cable, helped the whole world by revolutionizing communication.

It was nearly a 100 years later that gutta percha was replaced by polyethylene as the material to insulate cable wires.

Liquor gutta percha fortior is used as a thin cover on linen materials to prevent them from getting stained or soiled.

Pure or clear gutta is used in silk painting.

Page 8: Gutta percha

Its introduction simplified the manufacture of golf balls.

Earlier they were made of wood, leather and feathers and the procedurewas cumbersome. It was introduced as hand moulded one by JamesPatterson in 1845.

This change was instrumental in seeing the game grow immensely. The eraof Gutta-percha golf balls lasted from 1845-1900, till the introduction ofnatural rubber in its manufacture.

In medicine, they were used as splints for holding fractured joints andmanufacture of handles of forceps, catheters etc.

It was earlier used to control hemorrhage in extracted socket wounds.

They were also used for skin diseases by the dermatologists, particularlyagainst Small pox, Erysipelas, Psoriasis and Eczema.

‘Gutty’

Page 9: Gutta percha

Dried coagulated extract of plants of Palaquium, Blanco genus ofSapotaceae family.

These trees are natural inhabitants of South East Asia, particularly Malaysianand Indonesian archipelago

The concrete juices of Isonandra gutta, Palaquium gutta and Dichopsis guttaare the main trees from where, we obtain Gutta-percha material.

These Gutta-percha yielding trees are medium to tall trees, in which a seriesof cuts (concentric or v- shaped cuts) are made to obtain the juice.

The leaves of these trees also contribute to a minimal extent in Gutta-perchaproduction.

Sources

Page 10: Gutta percha

In India the species of this genus is very scanty.

The species found are Palaquium obavatum, Palaquium polyanthum,Palaquium ellipticum and palaquium gutta trees in Assam and Westernghats.

Palaquium gutta was recently introduced and planted in Botanical gardens,Bangalore.

Indigenous plantation of these trees can be done like rubber gardening andthere is an encouraging prospect.

Among the various trees, Palaquium oblongifolium is suited for plantations,but yield low amount of Gutta.

Among them, the important one is Guttabalata or Surinam Gutta-percha,obtained from Mimusops globsa (Bullet tree), South America.

It contains more resin proportions than true Gutta.

The other substitutes are from Butyrospermum park (Sheabutter tree ofWest Africa), Dyera costulata (of Malaya and Borneo), Maytenusphyllanthoides (Mexico), Calatropis giganlea (Madar tree of India) andManilkara species (inferior balata-South America)

INDIGENOUS SOURCES

Page 11: Gutta percha

EVOLUTIONGutta-percha was first introduced to dentistry as a temporary filling material by EdwinTruman.

1847 - Hill Developed “Hill’s-stopping” a restorative material, a mixture of bleachedGuttapercha and carbonate of lime and quartz.

1867 - Bowman was the first to use Guttapercha for root canal filling.

1883 - Perry used pointed gold wire wrapped with soft Gutta-percha, rolled and packed itinto the canal.

1887 - S.S White Company was the first to start the commercial manufacture of Gutta-percha points.

1893 - Rollins used Gutta-percha with pure oxide of mercury into root canal filling.

1914 - Callahan introduced softening and dissolution of Gutta-percha with the use ofrosins in obturation.

1959 – Ingle and Levine were the first persons to propose standardization of root canalinstruments and filling materials and at their behest, standardized Gutta-percha wasintroduced to the profession in 1959 after 2nd International Conference of Endodontics atPhiladelphia.

1976 - A group evolved into the present day International standards organization (ISO) forapproval of specification of root canal instruments and filling materials.

ADA specification for obturating Gutta percha points is No.78.

Page 12: Gutta percha

Gutta-percha is a Trans- isomer of poly isoprene.

Its chemical structure is 1, 4, trans–poly isoprene.

Since its molecular structure is close to that of natural rubber, which is a cis-isomer of poly isoprene, it has a number of similarities but a difference inform makes its mechanical properties to behave more like crystallinepolymers.

In crude form its composition is

GUTTA--------- 75-82%

ALBAN--------- 14-16%

FLUAVIL------- 4-6% and also contains

Tannin, salts and saccharine substance.

CHEMISTRY&COMPOSITION

Page 13: Gutta percha

Dental gutta percha composition:

matrix gutta percha: 20%

filler zinc oxide: 66%

radiopacifier heavy metal sulfates: 11%

plasticizer waxes and/or resins: 3%

Page 14: Gutta percha

Chemically pure Gutta-percha exists in two distinctly different crystalline forms (α and β), that can be interconvertible

Natural gutta percha from tree- α form

However the most commercial available product is in β form

During the process of manufacture, if the cooling is done rapidly, ‘β’ form results. If it is cooled slowly, less than 0.5°c/hr, ‘α ’ form results.

Another unstable form (γ) exists, which is amorphous in nature.

α ---- runny, tacky and sticky (lower viscosity)

β ---- solid, compactible and elongatible (higher viscosity)

γ ----- similar to a (unstable)

Transitions between low and high melting polymorphs of Gutta-percha are reversible, cyclic phenomena

PHASES

Page 15: Gutta percha

α and β

ALPHA FORM BETA FORM

Brittle at room temperature Stable and flexible at room temperature

Becomes gluey, adhesive and highly

flowable when heated

( low viscosity)

Becomes less adhesive and flowable

when heated

( high viscosity)

Thermoplasticized gutta percha for warm

condensation obturation technique

are in alpha form

Gutta percha points used for cold

condensation obturation techniques

are in beta form

Gutta percha exhibits two crystalline transformations when heated from room temperature to 1000 Centigrade. These transformations can be summarized as follows:•Beta to alpha: occurs between 42-49 ( this phase transformation is reversible)•Alpha to amorphous: occurs between 53-59

Page 16: Gutta percha

Properties

Biocompatibility: highly biocompatible; does not react with body fluids,inert irrespective of alkaline or acidic medium, does not initiate allergic hostresponse.

Dimensional stability: expansion or shrinkage of material occurs only duringphase transformations.

Ductility and malleability: depending on existing phase, material may beductile or malleable.

Melting point: approximate value is around 600C, starts softening

Ease of handling: gutta percha used for endodontic obturation purposes arein both alpha and beta forms, both of which are easy to manipulate. Whenrequired gutta percha can be easily removed from root canal.

Adaptation to root apex: apical seal is of prime importance in obturation,which is achieved by using gutta percha, either in cones or warm,thermoplasticized form.

Page 17: Gutta percha

Materials expand, when heated from β to α or Υ phases (1-3%).

When cooled down, shrinkage also takes place and it is greater than degreeof expansion and differs by as much as 2%.

Aging of Gutta-Percha cones results in brittleness.

The encylopedia brittanica states that oxidation of Gutta-percha conescauses brittleness.

Aged brittle cones can be made reusable by a rejuvenation process ofheating – quenching treatment.

The cones are immersed in hot tap water (>55º C) for one or two secondsand then immediately immersed in cold tap water (< 20º C) for severalseconds.

Page 18: Gutta percha

COMMERCIAL MANUFACTURE

Coagulation

The sap that oozes out is collected and put into a pot and boiled with little water.

It is boiled and then kneaded under running water.

Chemical method of coagulation is by addition of alcohol and creosote mixture (20:1), ammonia, limewater or caustic soda

Page 19: Gutta percha

Obach’s technique

The obtained pulp is mixed with water and heated to 75°c to release theGutta-percha threads and then cooled to 45°c.

The flocculated Guttapercha called “yellow Gutta” contains 60% polyisoprene and 40% contaminants (resin, protein, dirt and water).

Yellow Gutta is mixed with cold industrial gasoline at below 0°ctemperature.

This treatment not only flocculates the Gutta-percha but also dissolvesresins and denatures any residual proteins.

After removal of cold gasoline, de-resinated Gutta threads are dissolved inwarm water at 75°c and dirt particulate is allowed to precipitate.

Residual greenish yellow solution is bleached with activated clay, filtered toremove any particulate and then steam distilled to remove the gasoline.

“Final ultra pure” Gutta-percha has gasoline scent, before it is modified withfillers into its final commercial product formulation.

Page 20: Gutta percha

CURRENT FORMS

i. Solid core gutta percha points:

Available as standardized and non- standardized points ( beta phase).

Standardized points: these are manufactured in coherence toinstrument taper and apical gauge. Increased zinc oxide contentadds to stiffness.

Non standardized points: these are manufactured in variabletaper, not necessarily in accordance with a particular instrument.The tip of point is adjusted with an apical gauge to best fit and sealthe apex. Flexibility is enhanced due to low content of zinc oxide.

Both standardized and non standardized gutta percha points areused with cold lateral condensation with warm verticalcompaction.

Page 21: Gutta percha

ii. Thermoplasticized gutta percha:

Usually available in injectable form (alpha phase).

Thermoplaticized gutta percha systems provide special heaters which heatsthe gutta percha till the temperature when it flows.

For obturation the apical seal is achieved with the plugging of master coneand then the gutta percha is backfilled.

Page 22: Gutta percha

GUTTA PERCHA Standardized

points

Non standardized

points

Thermoplaticized

Phase Beta Beta Alpha

Trade names Denstply, Sure

endo

Sure endo, Omega Obtura II, Ultrafill,

System B

Obturation

technique to be

used

Cold lateral

condensation with

warm vertical

compaction

Cold lateral

condensation with

warm vertical

compaction

Warm gutta percha

with injectable

technique

Page 23: Gutta percha

Gutta perchaand a 3 dimensional seal

The objective of root canal filling procedures, should be the total three dimensional filling of the root canals and all accessory canals.

Gutta percha cones may be used with a cementing material, or they may be rendered plastic with various solvents and used without root canal cement.

Page 24: Gutta percha

Solvent techniques

Gutta percha may be dissolved in various solvents, such as chloroform, oilof eucalyptus, or xylol.

CHLOROPERCHA

When dissolved in chloroform, a paste of chloropercha is formed, thethickness of which is determined by the amount of solvent used and by theamount which evaporates in the course of the filling procedure.

At the beginning of the filling visit, several pieces of gutta percha are cutinto a dappen dish and stirred with a small amount of chloroform.

The dappen dish should be covered with a glass slab to minimizeevaporation of the chloroform as the gutta percha dissolves into it while thedentist is selecting his master gutta percha cone.

Page 25: Gutta percha

A small amount of chloropercha is streaked onto the walls of the dry rootcanal with a fine root canal spreader or other suitable instrument.

The apical third of the master cone is dipped into the chloropercha paste,and the entire master cone is gently repositioned into the canal.

The material in the canal is now forced laterally with root canal spreaders,making room for additional gutta percha cones which are added repeatedlyin sufficient number to provide a dense root canal filling.

Each piece of gutta percha blends with the gutta percha and chloroperchaalready in the canal to form a homogeneous mass which conforms quiteadequately to the configuration of the root canal system.

The lateral pressure on the plastic gutta percha– chloropercha mixtureautomatically imparts a small vertical component of pressure, owing to theshape of most prepared canals.

The entire mass moves apically during lateral condensation with any solventtechnique.

Page 26: Gutta percha

Callahan–Johnson diffusion technique-

the root canal system is flooded with 95 percent ethyl alcohol and then dried with paper points.

The alcohol flooding and drying removes some organic and most aqueous

material from the walls of the canals.

The canals are flooded again, now with a chlororosin solution.

The chlororosin solution spreads extensively into inaccessible eccentricities in the root canal and into accessory canals as well.

This solution acts as a solvent both for a previously prepared master cone and for fatty organic material, so that when the master cone and additional cones are added in the condensation procedures, dissolved gutta percha will diffuse effectively into otherwise inaccessible portions of the root canal system.

Page 27: Gutta percha

Nygaard–Ostby technique is a variation of the Callahan–Johnson method,where finely ground specially prepared gutta percha particles are spatulatedwith chloroform to produce the necessary paste which will be used inconjunction with the master gutta percha cone.

This method is reported to reduce greatly both apical excess and theshrinkage in the final filling.

Page 28: Gutta percha

LATERAL CONDENSATION/COMPACTION

The advantage of this method over the solvent techniques is that positivedimensional stability of the root canal filling can be anticipated, and there is lesslikelihood of carrying filling material beyond the root apex.

One disadvantage is that at no time is a homogeneous mass developed.

The final filling consists of a large number of separate gutta percha cones tightly pressed together and joined by frictional grip and the cementing substance only.

It is the gradual setting of the root canal cement which gives the digital illusion of homogeneity as the lateral condensation procedure continues

Only at the point where the coronal excess is removed with a hot instrument is true homogeneity established.

lateral condensation produces the densest filling in the middle and coronal thirds of the tooth, and the apical seal is little improved as additional cones are added.

It offers the distinct advantages of greater lemgth control and greater patient comfort, and has been successfully employed by large numbers of dentists for many years.

May not fill canal irregularities as well as warm vertical compaction or thermoplastic techniques

Page 29: Gutta percha

WARM VERTICAL COMPACTION

Introduced by Schilder

The use of warm gutta percha with vertical condensation permits great density to be created in the apical portion of the filling.

No other technique provides for the filling of accessory canals and foramina with such frequency as warm gutta percha used in conjunction with vertical condensation.

To employ the warm gutta percha technique, the root canal must be shaped so that a continuously tapering funnel is created with its narrowest diameter at the periodontal ligament and its widest diameter at the coronal opening or access cavity.

However this funnel may curve, it must be progressively wider coronally.

This continuous taper permits the introduction into the canal of a graded series of pluggers with which the gutta percha is wedged apically.

Disadvantage include slight risk of vertical root fracture because of compaction forces, less length control and potential for extrusion of material into periradicular tissues.

Page 30: Gutta percha

CONTINUOUS WAVE COMPACTION TECHNIQUE

Employs an electric heat carrier, the System B unit, and stainless steelpluggers ( tapered .04, .06, .08, .010, .12), with 0.5 mm diameter.

Recommended temperature setting for system B is 200 o C.

But studies have shown that external temperature never exceeded critical10 o c rise with any tip config or temp setting.

After selecting master cone, plugger is inserted to fit within 5 to 7 mm ofthe canal length, deeper placement may enhance flow of GP.

Unit is set to 200 o C, plugger inserted activated, compaction done by coldplugger against GP in the canal orifice.

Firm pressure is applied and heat is activated within the device.

Plugger moved rapidly to within 3 mm of binding point.

Heat inactivated while firm pressure maintained, on the plugger for 5 to 10seconds.

After GP cooled, a 1 sec application of heat separates plugger from GP andis removed.

Page 31: Gutta percha

WARM LATERAL COMPACTION

Endotec II-(Medidenta) advantage of length control of lateral compactionand incorporating a warm GP technique.

Produces a fusion of the GP into a solid homogenous mass

Endotwinn (Hu Friedy) ability to vibrate the electronically heated tip.

Studies have shown warm lateral compaction, using both heat and vibration,warm vertical compaction produced better replication of defects than coldlateral compaction.

EL Downpak (Hu Friedy) variation of Endotwinn, used with warm lateral andwarm vertical compaction.

Page 32: Gutta percha

THERMOPLASTIC INJECTION TECHNIQUES

Heating GP outside the tooth and injecting the material into the canal.

OBTURA II, OBTURA III, CALAMUS, ELEMENTS, HOTSHOT, ULTAFIL 3D

Page 33: Gutta percha

CARRIER BASED GUTTA PERCHA

Thermafill, Profile GT obturators, GT series X Obturators, Protaper universal obturators.

Metal core and coating of GP, heated over open flame

Central core provided rigid mechanism to facilitate placement of GP

Disadvantage was that metallic core made placement of post challenging and retreatment procedures were difficult.

GP often stripped from carrier leaving only the carrier as the obturatingmaterial in the apical area of the canal.

Now Plastic core with alpha phase GP and heating device to control temperature available.

Page 34: Gutta percha

IMMUNOCROSS REACTIVITY

GUTA PERCHA and NATURAL RUBBER LATEX (NRL), are from differenttrees of the same botanical family

Raw GP contains the rubber molecule trans-polyisoprene

NRL contains cis-polyisoprene intermingled with a variety of

latex-allergen proteins

Dental latex materials can cause immediate hypersensitivity (type I allergy)in dental professionals and patients.

Type I reactions from NRL which include ocular, nasal, pulmonary,gastrointestinal, cardiovascular and genitourinary symptoms products canbe localized and systemic

Page 35: Gutta percha

Gazelius et al. and Boxer et al. speculate that because gutta percha and NRL are both rubber-like materials from the same family of trees, a potential cross-reactivity between NRL and gutta percha allergens in latex-allergy patients exists.

Two case reports were published alleging that gutta percha induced an allergic response in NRL-sensitized patients

Costa et al. investigated the cross-reactivity between gutta percha, guttabalata, and NRL using a competitive radioallergosorbent test (RAST) inhibition assay.

These results demonstrated that the raw or manufactured gutta perchapoints did not show detectible cross reactivity.

However, raw gutta balata extracts cross-reacted with NRL-specific IgEantibody.

Using the RAST inhibition and the immunoblot inhibition assays, Hamannet al. demonstrated that there is no cross-reactivity between gutta perchapoints and NRL, but raw gutta percha cross-reacted with serum from patients with type 1 NRL allergy.

Page 36: Gutta percha

Kang PB et al. studied the postulated immuno cross-reactivity between proteins derived from raw gutta percha (RGP), gutta percha point (GPP) and natural rubber latex (NRL).

Antigenicity and cross-reactivity of proteins were determined by the FITkit(FITBiotech, Finland) and ELISA inhibition assays.

Antigenicity of proteins derived from RGP or GPP was not demonstrated.

Except for NRL glove extracts, neither extracts from RGP or GPP were reactive in ELISA inhibition assay.

Significance. There is no immunologic cross-reactivity in vitro between proteins derived from RGP or GPP, and from NRL gloves. Thus, therapeutic use of GPP is unlikely to initiate adverse immuno-reactivity in individuals previously sensitized to NRL proteins.

The immuno cross-reactivity of gutta percha pointsPeter B. Kang∗, Kristy Vogt, Stephen E. Gruninger, Milton Marshall, Chakwan Siew, Daniel M. Meyer

Dental materials 23 ( 2007 ) 380–384

Page 37: Gutta percha

Disinfection

GP can be contaminated by handling, aerosols and physical sources during the storage process.

Why disinfection of GP?

To fill the root canal system were free from pathogenic microorganisms

Penetration of bacteria into the blood stream of systemically compromised patients should be avoided because of the risk of infective endocarditis

Owing to the thermoplastic characteristic of gutta-percha cones, they can not be sterilized by the conventional process in which moist or dry heat is used because this may cause alteration to the gutta-percha structure. Therefore, a rapid chairside chemical disinfection is needed.

Page 38: Gutta percha

Polyvinylpyrrolidone-iodine, ethyl alcohol, sodium hypochlorite, hydrogen peroxide, quaternary of ammonium, glutaraldehyde, and chlorhexidineliquid.

The time for these substances to kill microorganisms ranges from a few seconds to substantial periods of time.

Why do we need a quick decontamination method?

It is difficult to know beforehand how many accessory cones will be used during lateral condensation.

5.25% NaOCl is an effective agent for a rapid disinfection of gutta-percha cones.

CHX was not effective in eliminating Bacillus subtilis spores on gutta-percha cones after 72 h of contact with the disinfecting substance.

Disinfection of gutta-percha cones with chlorhexidine and sodium hypochloriteBrenda Paula Figueiredo de Almeida Gomes et al. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;100:512-7

Page 39: Gutta percha

FUTURE The rapid strides taking place in dental materials science has lead to the

introduction of newer materials and techniques with improved physical andmechanical properties. This surge in newer alternatives has lead to thephasing out of older obsolete materials. This brings to the question whetherGutta-percha is indispensable?

Gutta-percha’s unique property of inertness, better sealing ability and theability to do re-treatment in case of failure, make it an indispensableobturating material currently.

Page 40: Gutta percha

Gutta-percha has over the years have been modified in several ways toaccommodate the growing trends in endodontics and achieve its mission bysimplifying the techniques, achieving optimal seal with a better adaptationto the dentinal walls and a less time consuming process.

In this continual process, newer products like self lengthed marked Gutta-percha have been developed and are in line for clearance of patency.

In future, for Gutta-percha to remain indispensable certain propertymodifications are required such as increased stability, better flow properties,better intra-canal adaptation with reduced shrinkage and an inherentantibacterial efficacy without dissolution.

Page 41: Gutta percha

REFERENCES

COHEN’S PATHWAYS OF THE PULP- 10TH edition

Schilder H. Filling root canals in three dimensions- JOE — Volume 32, Number 4, April 2006

Disinfection of gutta-percha cones with chlorhexidine and sodium hypochlorite. Gomes BPFA et al. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 2005;100:512-7

The immuno cross-reactivity of gutta percha points Kang BP. Dental materials 23 ( 2007 ) 380–384

Gutta percha: An untold story. Prakash R, GopiKrishna V, Kandaswamy D. Endodontology 32-36

Comparison of 6 different gutta-percha techniques (part II):Thermafil, JS Quick-Fill, Soft Core, Microseal, System B and lateral condensation. NimetGenc¸og˘lu. ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY Volume 96, Number 1

Page 42: Gutta percha

Thank you…