Gulf of Mexico Gas Hydrate Drilling and Logging expedition ......

28
1 CONTENTS Expedition Underway ................. 1 Molecular Level Modeling ......... 7 Methane Fluxes and Gas Hydrates in the Sea Of Okhotsk................ 11 The Methane Hydrate Fellowship..................................... 16 The Next Generation .................17 Announcements ...................... 27 AAPG Convention Postdoctoral Fellowship Spotlight on Research .......... 28 Joo-yong Lee CONTACT Ray Boswell Technology Manager—Methane Hydrates, Strategic Center for Natural Gas & Oil 304-285-4541 [email protected] Methane Hydrate Newsletter Gulf of Mexico Gas Hydrate Drilling and Logging Expedition Underway On April 16, 2009 the Gulf of Mexico Gas Hydrate Joint Industry Project (“The Gulf of Mexico JIP”) initiated its second field program aboard the semi-submersible Helix Q4000 (Figure 1). This three-week expedition will conduct logging-while-drilling (LWD) operations at multiple sites to test a variety of geologic/geophysical models for the occurrence of gas hydrate in sand reservoirs in the deepwater Gulf of Mexico. Figure 1: Helix’s semi-submersible Q4000. The rig features dynamic positioning, 51,000 ft 2 deck, transit speed of 10 knots or more, 150 HP ROV, and is capable of handling double-length stands of drill pipe (“doubles”).

Transcript of Gulf of Mexico Gas Hydrate Drilling and Logging expedition ......

1

ContentsExpedition Underway .................1

Molecular Level Modeling .........7

Methane Fluxes and Gas Hydrates in the Sea Of Okhotsk ................11

The Methane Hydrate Fellowship..................................... 16

The Next Generation .................17

Announcements ...................... 27• AAPGConvention• PostdoctoralFellowshipspotlight on Research .......... 28 Joo-yong Lee

ContACtRay Boswell

Technology Manager—Methane Hydrates,StrategicCenterforNatural Gas & Oil

304-285-4541

[email protected]

Methane Hydrate Newsletter

Gulf of Mexico Gas Hydrate Drilling and Logging expedition UnderwayOnApril16,2009theGulfofMexicoGasHydrateJointIndustryProject(“TheGulfofMexicoJIP”)initiateditssecondfieldprogramaboardthesemi-submersibleHelix Q4000 (Figure 1).Thisthree-weekexpeditionwillconductlogging-while-drilling(LWD)operationsatmultiplesitestotestavarietyofgeologic/geophysicalmodelsfortheoccurrenceofgashydratein sand reservoirs in the deepwater Gulf of Mexico.

Figure 1: Helix’s semi-submersible Q4000. The rig features dynamic positioning, 51,000 ft2 deck, transit speed of 10 knots or more, 150 HP ROV, and is capable of handling double-length stands of drill pipe (“doubles”).

gipplem
Typewritten Text
Vol. 9, Iss. 2

22

national energy technology Laboratory

1450QueenAvenueSWAlbany,OR97321541-967-5892

2175UniversityAvenueSouthSuite 201Fairbanks,AK99709907-452-2559

3610CollinsFerryRoadP.O.Box880Morgantown, WV 26507-0880304-285-4764

626CochransMillRoadP.O.Box10940Pittsburgh,PA15236-0940412-386-4687

13131DairyAshford,Suite225Sugar Land, TX 77478 281-494-2516

Visit the NETL website at:www.netl.doe.gov

CustomerService:1-800-553-7681

Fire in the Ice is published by the National Energy Technology Laboratorytopromotetheexchangeofinformationamongthose involved in gas hydrates researchanddevelopment.

Interested in contributing an article to Fire in the Ice?This newsletter now reaches morethan1000scientistsandother individuals interested in hydrates in sixteen countries. Ifyouwouldliketosubmitan article about the progress ofyourmethanehydratesresearchproject,pleasecontact JenniferPresleyat281-494-2560.

[email protected]

this newsletter is available online at http://www.netl.doe.gov/MethaneHydrates

TheprimarygoaloftheGulfofMexicoJIPistoevaluatetheoccurrence,nature,andimplicationsofgashydratesintheGulfofMexico.PriorworkbytheJIPhascontributedsignificantlytothedevelopmentofremotesensingandfieldsamplingtechnologies,wellborestabilitymodeling,andanextensivedatabaseofexperimentaldataontheimpactofgashydrateonthephysicalpropertiesofsedimentsofvariousgrainsizes.In2005,theJIPcompletedLegIdrilling,logging,andcoringoperationsdesignedprimarilytoassesshazardsrelatedtodrillingthroughgashydratewithintheclay-dominatedsedimentsthattypifytheshallowsub-seafloorinthedeepwaterGulfofMexico(seeRuppelet al.,2008,).ThecurrentLegIIprogramisdesignedtoextendourunderstandingofsand-dominatedhydratesystems,andevaluatetheirresourceandhazardpotential.LegIIresultswill then be used to assess the best sites for additional data acquisition (throughbothconventionalandpressurecoring)inLegIII(currentlyplannedtooccurasearlyas2010).

Leg II PreparationsInpreparationforLegII,theJIPanditscollaborators(seesidebarpages4&5)in2006begandetailedgeologicandgeophysicalevaluationsofnumerouspotentialsites,seekingevidenceforactivepetroleumsystems(gassourcesandmigrationpathways)co-locatedwithsand-pronelithologies (see Hutchinson et al.,2008).By2008,theJIPhaddevelopedgeologicinterpretations;conductedpre-stack,full-waveform3-Dinversionsforgashydratesaturation;delineatedandprioritizedspecificdrillingtargets;assesseddrillinghazards;anddevelopedoperationalplansforsitesinAlaminosCanyon(AC)818,GreenCanyon(GC)955,andWalkerRidge(WR)313.LegIILWDoperationswereoriginallyplannedforspring2008, but drilling was postponed when delivery of the contracted drill rig was delayed until after the start of the hurricane season.

The delay in delivery of the rig allowed additional site selection and evaluation activities to continue through the rest of 2008 and early 2009. InadditiontowellboremodelingwithintheJIP,severalcontrolledsourceelectromagnetic(CSEM)surveyswereconductedbyScrippsInstituteofOceanographyovertheplanneddrillsitesinAC818,GC955,andWR313inFall2008(seeWeitemeyeret al.,2009).TheJIPeffortalsobenefittedgreatlyfromcontinuingworkwithintheMineralsManagementService’songoingassessmentofGulfofMexicoresources(seeFrye,2008)thatrevealed additional opportunities to target gas hydrates in coarse-grained sedimentsinEastBreaks(EB)992,GC781/825,andAC21/65.TheUSGScontinued to coordinate the site selection process and develop additional interpretationsofgashydrateoccurrenceatselectedexistingdrillholes.Allsiteswerethenfullyreviewedbythesiteselectionteaminordertorefineandprioritizethefinaldrillingtargets.

Throughoutearly2009,theJIPhaspursuedpermittingandhazardsanalysisforfivesites(AC21/65;EB955,GC992;WR313;GC781/825;Figure2).ThesiteinAC818hadearlierbeendeemedtooriskyforLegIIdrillingduetoexpectedreservoiroverpressureandwasdroppedfromtheLegIIprogram.However,becauseofpreexistingdatathesiteremainsacandidateforGoMJIPLegIIIcoringactivitiesifthedrillinghazardissuescanbeaddressed.Asofthiswriting,ongoingindustryactivityattwoofthelocations(EB992andGC781)renderstheJIP’sabilitytodrillatthoselocationsuncertain.

33

Other issues, including weather, ocean currents, and unexpected operationalcomplications,mayfurtheraffectwhichsiteswillbevisitedduringtheprogram.However,thesiteselectionteamhasproposedatotalof23potentialdrillholesamongstthefivesites,allowingforflexibilityindealing with these unknowns.

Leg II operationsDuringLegII,operationsplaceahighpriorityondrillingsafetyandadherencetobudgetconstraints.AllsiteshaveundergoneextensivehazardsreviewbytheAOAGeophysicsteam(seesidebarpage4)andwillbedrilledonlytothosedepthsthataredeemedfreeofsafetyandoperationalhazards,particularlyfreegasaccumulations.ThebudgetfortheLegIIfieldprogramisapproximately$11.2millionwith80%ofthecostassociatedwithoperatingtherigandtheremainderprimarilycommittedtouseoftheLWDtools.Atroughly$500,000perday,theexpeditionwillbelimitedto~22daysofoperationaltime,whichwillincludeinitialmobilization,transitbetweenholesandbetweensites,andfinaldemobilization.Bothmobilizationanddemobilizationwilloccuratsea.

GoMJIPLegIIwillfeatureastate-of-the-artLWDtoolcombination(Figure3)thatwillprovideunprecedentedinformationonthenatureofthesedimentsandtheirporefillconstituents.Theprogramwillfeature

Figure 2: Locations of six sites evaluated as possible targets for JIP Leg II drilling. Background colors indicate depth to salt, with areas of shallow salt in yellow/orange and small circular areas of blue representing salt-withdrawal mini-basins. Areas in red indicate seismic indications of base of gas hydrate stability.

Figure 3: The JIP Leg II bottom hole assembly. Notable is the presence of a full suite of LWD tools, including the 6.5” MP3 sonic tool just above the bit, followed by an 8.5” hole opener, and then the GeoVision, EcoScope, TeleScope, PeriScope, and SonicVision tools. The SonicVision tool is ~160 feet above the drill bit.

4

fullresearch-levelLWDdataonformationlithologyandporosity,andwillincludeSchlumberger’sMP3(quadrapolesonictool)andPeriScope(3-Dhigh-resolutionresistivity)tools.Thesetoolswillprovidefull3-Dinformationontheacoustic(bothcompressionalandshearwave)andelectricalpropertiesofthesediment,enablingtheimprovedevaluationofgashydrateinbothporefillingandfracture-fillingmodes.

Giventhedifferent(smaller)diameteroftheMP3toolcomparedtotherestofthetoolstring,theJIPLegIIbottomholeassemblywillfeatureasecond“holeopener”locatedabovetheMP3tool.ThisinnovationwillenlargetheholetoallowloggingwiththeothertoolsafterthepassageoftheMP3.

CurrentplanscallforLegIItoproceedfirsttoWR313,wherefiveholeshavebeenpermitted.TheinitialLWDrunwilltargettheholejudgedbythesiteselectionteam,theJIP,andgeohazardsspecialistsashavingthegreatestpotentialforsuccessinfindinggashydrateswithincoarse-grainedlithologieswiththelowestdrillingrisk.TheHelixandJIPteamswillthendrillandcollectLWDdatafromthisfirstsitein“highresolution”mode,whichischaracterizedbyreduceddrillingpenetrationrates.

SelectLWDdatawillbeanalyzedbytheonboardscienceteaminrealtime,andthatinformationwillbeusedtoevaluatetheholebeingdrilledandinformdecisionsregardingthelocationanddrillingparametersforthenexthole.OncethefirstWRwellisdrilled,thedrillstringwillberaisedtocleartheseafloor,andtheshipwillmoveashortdistancetothenextholelocation.AftercompletionoftwoorthreeholesattheWRsite,thefulldrillstringwillberetrievedandlayeddownondeck,andtheshipwillsteamtothenextsite.Underoptimalconditions,itisbelievedthatuptothreesites,withuptothreeholesateachsite,couldbedrilledduringLegII.

the sitesWalkerRidge313ischaracterizedbyaninferredpondedsanddeliverysystemwithintheTerrebonne“mini-basin”.Evidenceforgashydratesinthestratigraphicsectionincludeaseriesofanomalous,shingledseismicreflectionsindicativeofstratal-boundfreegas(“brightspots”)thatcloselyalignwiththepredicteddepthofgashydratestability.Theseanomalousfeaturesincludebothincreasedamplitudeanomaliesindicativeoffreegasbelowthebaseofgashydratestability(BGHS),aswellasreversedpolarityofthosereflectionsabovetheBGHSoccur.Becauseoflowthermalgradientswithinthemini-basinthesedrillingtargetsoccureatabout2,700feetbelowtheseafloor.GC781/825targetsageologicsettingsimilartoWR313,butislocatedjustlandwardoftheSigsbeeEscarpment,refertomap(Figure2).

GreenCanyon955featuresawellestablishedandpersistentsanddeliverysystemthroughtheGreenCanyonchannelattheSigsbeeEscarpment.WellsdrilledpreviouslyintheleaseblockshowsignificantsanddevelopmentwithintheGHSZandminorindicationsofgashydrate.TheprimarytargetforLegIIisalargeclosedstructurewithabundantseismicevidenceofgasandmigrationpathwaysintoasuspectedsand-richlithofaciesneartheBGHS.AdditionalpotentialtargetsinGC955includeareasproximaltotheprimarypaleo-channel-leveesystem(Figure5).

JIP LeG II ContRIBUtoRs

JIP Executive BoardEmrysJones–ChevronJamesHoward–ConocoPhillipsDr.EspenSlettenAndersen–StatoilHydroASADr.LewisNorman–HalliburtonEnergy ServicesPhilippeRemacle–TotalE&PUSADr.PatrickJ.Hooyman–SchlumbergerData&ConsultingServicesMattFrye–MineralsManagementServiceMr.Ken’ichiYokoi–JapanOil,Gas&MetalsNationalCorporationMr.I.L.Budhiraja–RelianceIndustriesLimitedMr.Hong-GeunIm–KoreaNationalOilCorporation

Site Hazards, Operational PlanningEmrysJones,RanaRoy–ChevronDanMcConnell,ZijianZhang,BrendaMonsalve,HunterDanque,JimGharib,MarianneMulrey,BrentDillard,AdrianDigby,AnaGarcia-Garcis–AOAGeophysicsEvanPowell,RichardBirchwood–SchlumbergerDaveGoldberg,StefanMrozewski–LamontDohertyEarthObservatoryTimCollett–USGS

5

EastBreaks992wellstargetanomalousseismicreflectionsthatoccurwellabovetheinterpretedBGHSwithintheDianasub-Basin.Theseanomaliescoincidewiththetopandbaseofa130’-thick,resistivesandloggedinanexistingwell(Figure4).TheAlaminosCanyon21/65 sites provide additional targetsintheDianaBasinwithinalargeareaofseismicanomaliesanalogoustothosetargetsintheEB992wells.

EachsiteevaluatedforLegIIdrillinghasindicationsof(1)theexistenceofgas in reservoirs below the base of gas hydrate stability or visible in the shallowstratigraphicsections;(2)conduitsforgasmigrationfrompotentialsourcesandintothehydratestabilityzone,througheitherfaultsorhigh-permeabilitylithologieslikesands;and(3)thepresenceofcoarse-grainedsedimentsthatcouldserveasreservoirsforhighconcentrationsofgashydrate.

JIP LeG II ContRIBUtoRs ContInUeD

Site Selection TeamDebbieHutchinson,CarolynRuppel,TimCollett,MyungLee–USGeological SurveyBillShedd,MattFrye–USMineralsManagementServiceDanMcConnell–AOAGeophysicsDiannaShelander,JianchunDai–SchlumbergerRayBoswell,KellyRose–USDOE/NETLWarrenWood–NavalResearchLaboratoryTomLatham–ChevronBrandonDugan–RiceUniversity

Onboard Science TeamTimCollett–USGSRayBoswell–USDOE/NETLGillesGuerin,StefanMrozewski,AnnCook–LamontDohertyEarthObservatoryMattFrye,BillShedd,RebeccaDufrene,PaulGodfriaux–MMSDanMcConnell-AOAGeophysics

Figure 4: West-to-east seismic section through the EB992 area. Red line denotes location of an 1995 exploration well that encountered a 130’-thick resistive sand. The top and base of that sand, and the correlation of that sand to the seismic anomalies, are noted. Data courtesy WesternGeco.

6

Inaddition,thesitesrepresentavarietyofGulfofMexicogeologicsettings(Figure5):ifLegIIdrillsitsplannedcomplementofsites,theexpeditionwillprovide a good test of current concepts for the occurrence of gas-hydrate-bearing sands in the Gulf of Mexico.

GulfofMexicogashydratesJIPLegIIisenabledbythecontributionsofdozensofscientistswithintheJIPandincollaboratingfederalagencies.Thesidebaronpage4liststhecontributors.PleaselookforinitialoperationalandsciencereportstobepostedregularlyonboththeJIPandNETLwebsites.Additionaldata,includingfinaldrillingandloggingreports,and site evaluations will be also be posted and announced in Fire in the Ice.

NETL website: http://www.netl.doe.gov/technologies/oil-gas/futuresupply/methanehydrates/2009gomjip/index.html

JIPwebsite:http://gomhydratejip.ucsd.edu/

ReCoMMenDeD ReADInGHutchinson, et al., 2008, Site selection forDOE/JIPgashydratedrillingintheNorthernGulfofMexico;Proceedings,6thInternationalConferenceonGasHydrates.Jones, et al.,2008,ScientificobjectivesoftheGulfofMexicogashydrateJIPLegIIdrilling,OffshoreTechnologyConference,OTC19501.Ruppel,C.,Boswell,R.,Jones,E.,eds.,2008,ThematicSetonScientificResultsof2005USDOE-ChevronJIPDrillingforMethaneHydratesObjectivesintheGulfofMexico,Mar. Petr. Geol., 25 (9), pp. 819-988. Frye, M., et al., 2008, MMS releases preliminaryresultsofGulfofMexico in-place natural gas hydrate assessment,Fire in the Ice Newsletter, Spring 2008.Frye,M.,2008,PreliminaryEvaluationofIn-PlaceGasHydrateResources:GulfofMexicoOuterContinentalShelf,OCSReport,MMS2008-004,2008 http://www.mms.gov/revaldiv/GasHydrateFiles/MMS2008-004.pdfWeitemeyer, et al.,2009,Cruisereport:ImagingnaturalgashydrateintheGulfofMexicousingmarineelectromagneticmethods.Fire in the Ice Newsletter, Winter 2009.

Figure 5: Diagrammatic depiction of sand depositional environments in the deepwater Gulf of Mexico (Courtesy G. St. C. Kendall). WR313, EB992, and AC21/25 target sands within the interiors of mini-basins formed on the Gulf of Mexico shelf by salt tectonics. GC955 focuses on leveed channels on the abyssal plain just beyond the Sigsbee Escarpment. The setting for GC781 is not as well defined, although the targets sit just landward of the Escarpment.

7

the Role of Molecular Level Modeling in Gas Hydrate studiesby Brian Anderson, West Virginia University and Kenneth Jordon, University of Pittsburgh

For decades, researchershavebeenabletomodelandsimulatesystemsofdifferentscalesindependentofeachother;however,theabilitytobridgemultipletimeandlengthscalesbetweensuchmodelshasonlyrecentlybeguntobeintensivelyinvestigated.Naturalgashydratessystemsareidealfordevelopingmultiscalemodelingtechniques.Theformationpropertiesofhydratesaregovernedbymolecular-levelinteractionsbetweenthegasandwatermoleculesaswellasthehostmedia,yethydratereservoirsinnaturecanspantensofmetersverticallyandkilometershorizontally(Figure1).Overthepastfewdecades,manystudiesusingMolecular-LevelModeling(MLM)havebeenconductedongashydratesandmoleculardynamics(MD)simulationshavebeenshowntocorrelatewithexperimentaldatainmanyareassuchasphaseequilibria,inhibition,cageoccupancy,diffusion,andvibrationalspectratonameafewexamples.

Manysuccessfulresearchprogramshavebeenbasedontheconstantintegrationofaccuratetheoreticalmodelingandlaboratorystudies.Conceptsdevelopedthroughsimulationscanenableafundamentalunderstanding of the processes in the laboratory while the lab can exposegapsinthefundamentalknowledgeeagerforcomputationalenlightenment.ThefollowingareafewexamplesofhowresearchersatNETL,TheUniversityofPittsburgh,andWestVirginiaUniversityareusingMLMforhydratesystemsandtheirconnectiontohydrates,andtheirrecoverability,innature.ThisworkwasperformedaspartofNETL’sInstituteforAdvancedEnergySolutions(NETL-IAES).

Figure 1: The multi-scale modeling continuum

8

Lattice Distortion simulationsSmallchangesinthephysicaldimensionsofthegashydratelatticedegreescancreateenormousphysicalpressuresinporousmedia.Modelsofgashydrateresponsetoproductionstimulationdonotincludeexpansionduetoeitherthermaleffectsorguesteffectsforgashydrates.Currently,thecompressibilityandthermalexpansivityoficeareusedintheabsenceofanydataonthesubject.Toaddressthisproblem,NETL,Pitt,andWVUhaveexaminedthetemperature,pressure,andcompositionaldependenceofthecrystallatticedistortionofgashydratesusingmoleculardynamics.1 MDsimulationswereusedtostudythelatticedimensions(orlatticeconstant)ofvarioussIandsIIhydratesatdifferenttemperaturesandpressures.Temperatureandguestsizehavealargeinfluenceonthelatticedimensionswhilepressureandguest-guestinteractionenergyhavearelativelysmallerbutsignificanteffect.Thelatticeconstant,l, is shown to beafunctionofhydrateguestcomposition,thefractionaloccupancyofthecavitiesandtherepulsivenatureoftheguestmolecule.ThedissociationpressurevariationassociatedwiththevariousvolumechangescausedbymolecularpropertiesandtemperaturehasbeencalculatedusingJohnandHolder’smodelandissignificantinmanyinstances(Figure2).

Figure3illustratestheeffectoftemperatureonthelatticeparametersofmethane,carbondioxide,andethanehydratesandshowsnotonlydifferencesintheabsolutevalueofthelatticeparameter,butdifferencesintheslopeofthetemperaturedependence.Thesedifferencescanbetranslatedintovariationsinthecoefficientsofthermalexpansionforhydratesofvaryingguests.Thisworkhighlightstheimportanceofpreciselatticedimensionsincalculatinghydrateequilibriaanddemonstratesthe

rolethatmoleculardynamicsimulationscanplayindeterminingtheeffectoftemperature,pressureandguestsizeonl.Theprimaryfunctionofsuchcalculationsistocreatebetterthermodynamicmodelsforhydrateequilibria,butthecalculationscanalsoprovideawaytodeterminethelatticeexpansion or contraction that occurs during productionmethodsthatinvolve,forexample,temperaturechangeorgasexchange(CO2forCH4).

Figure 2: The dependence of the predicted dissociation pressure on the normalized lattice constant for pure methane hydrate at 270 K.

Figure 3: The dependence of the lattice constant on temperature for pure methane, CO2, and ethane hydrates.

9

thermal ConductivityThethermalbehaviorofhydrateshasattractedconsiderableattentionsincethediscoverythatthethermalconductivitiesofhydratesareverydifferentfromthatofice.Inaddition,gashydratethermalconductivityisanomalouslylow,andgeneralthermalpropertiesarerelativelyinsensitivetotemperature,incontrasttothebehaviorexpectedforcrystallinematerials.2

NETLandtheUniversityofPittsburghhaverecentlycarriedoutnon-equilibriumMD(NEMD)simulationsofthethermalconductivityofmethanehydrateandfortheemptyhydratecage.Theyhavefoundthat,exceptatlow(T <50K)temperatures,thecalculatedthermalconductivitiesofmethane

hydrateandtheemptycagesystemarenearlythesame,rulingouthost-guestcouplingasadominantfactorfortheanomalousthermalconductivityofmethanehydrate.2ThisfindingisremarkableinthatalthoughthethermalconductivityofmethanehydratecandifferfromiceIhbyasmuchas15times,thedifferenceinthermalconductivitybetweenanemptyandamethane-filledhydrateisnotsignificant.

InrecentworkatNETL,Jordanet al. have extended these studies to Xe hydrate andtoCO2hydrate,obtainingforawiderangeoftemperaturesremarkablysimilarthermalconductivitiestothoseofmethanehydrateasseenfromFigure4.Whereastheproductivityofmanynaturally-occurringgashydratereservoirswouldbethermally-limited,understandingandquantifyingthethermalconductivityofthehydratecrystalisoftheutmostimportance.

Mixed HydratesRecentworkatNETLandWVUontheequilibriumofmixedCO2-CH4 hydrateshasillustratedthatmolecular-levelprocessesresultinmacroscopicproperties.PreviousmethodssuchasthoseincorporatedbyKlaudaandSandler3andSloanandKoh4resultinsystematicunderpredictionsofthedissociationpressureforthemixedhydratesystem,whiletheerrorsforthepureCO2andpureCH4errorswerenormallydistributedaroundzero.Thesystematicerrorwasduetolatticestraincausedbytheincorporationoftwoguestsofvaryingsizeandguest-hostinteractionsintothesamehydratelattice.ThisphenomenawasoriginallydescribedbyAnderson,2007forthecaseofthepropane-argonmixedhydrates.Whilethepropane-argonmixture5wouldnotbeencounteredinnature,systemssuchasCH4-C2H6,andCH4-C3H8couldbecommoninthermogenically-

RefeRenCes(1)Zhang,M.;Anderson,B.J.;Warzinski,R.P.;Holder,G.D.“Moleculardynamicssimulationofhydratelatticedistortion”;Prepr.Pap.-Am.Chem.Soc.,Div.FuelChem.,2009,SaltLakeCity,UT.

(2)Jiang,H.;Myshakin,E.M.;Jordan,K.D.;Warzinski,R.P.The Journal of Physical ChemistryB2008,112,10207.

(3)Klauda,J.B.;Sandler,S.I.Chemical Engineering Science 2003, 58, 27.

(4)Sloan,E.D.;Koh,C.A.Clathrate hydrates of natural gases,3rded.;CRCPress:BocaRaton,FL,2008.

(5)Anderson,B.J.Fluid Phase Equilibria 2007, 254, 144.

(6)Velaga,S.;Anderson,B.J.“Phaseequilibriumandcageoccupancycalculations of hydrates using an ab initiointermolecularpotential”;Prepr.Pap.-Am.Chem.Soc.,Div.FuelChem.,2009,SaltLakeCity,UT.

(7)Ripmeester,J.A.;Ratcliffe,C.I.Energy & Fuels 1998, 12, 197.

(8)Nihous,G.C.;Masutani,S.M.Chemical Engineering Science 2006, 61, 7827.

Figure 4: Calculated thermal conductivities of Xe, methane, and CO2 hydrate, as well as for the empty hydrate cage. These preliminary results were obtained using the SPC/E two-body force field.

10

producedhydratedepositsandCO2-CH4isbeingsuggestedasamethanerecoveryprocess.Thisphenomenonofthemixedhydratelatticestrainisaperfectexampleofaphenomenoninwhichmacroscopicpropertiesaregovernedbymolecular-levelevents,andcanbestudiedcarefullyusingmolecular-levelmodeling.InthecaseofCO2-CH4hydrateequilibrium,theseequilibriumpressureerrorscouldleadtolargedifferencesinpredictionsofCO2-CH4 exchange processes and should be incorporated into reservoir simulationalgorithms.AsrecentlyreportedbyAndersonandVelaga6, mostthermodynamicmodelsforhydratedissociationpressuredrasticallyoverpredicttheoccupancyofCO2inthesmallcageofthehydratelatticecomparedtoNMRdataobtainednearthehydrateequilibriumpressure.7 Through the use of ab initiocalculations(Figure5),wehavebeenabletodevelopaCO2-H2OpotentialthatresultsinimprovedaccuracyofCO2 and CO2-CH4thermodynamicpredictions.6

Hydrate Dissolution simulationsCurrently,MDsimulationsarebeingperformedatNETLandWVUtodeterminethedissolutionrateandmechanismforCH4andCO2 hydrates. In2006,NihousandMasutani8 suggested that the concentration of the hydrateguestspeciesattheinterfacebetweenthedesorptionfilmanddiffusiveboundarylayermaybemuchlowerthanambientsolubility.PreliminaryMDsimulationssupportthisconclusion.Additionally,inthearea near the hydrate-water interface, an increase in the solubility of CO2mayaidinincreasingtherateofCO2dissolutioncomparedtoCH4. Anunderstandingofthedissolutionofgashydratesincontactwithundersaturatedwaterisimportanttodeterminingthelong-termstabilityof gas hydrate reservoirs.

Concluding RemarksAtthenanoormolecularscale,molecularmodelingcanbeutilizedtoestimatekeyparameterssuchasthermalexpansion,isothermalcompressibility,thermalconductivity,anddissolutionratesnecessaryforlarger-scalemodels.Thesemodelscanbeextendedtoincluderelevantreal-worldconditionssuchassedimentcompositionandporosityandintegratedintothereservoirsimulationmodelsatvariousdegreesofdetail,allowingthereservoirmodelstocomputemethanehydrateproductionscenariosoverdecadetimescales.

Figure 5: Electron density plot for the CO2-H2O pair interaction from ab initio calculations

Figure 6: Snapshot of a molecular simulation of a dissolving methane hydrate

11

Methane fluxes and Gas Hydrates in the sea of okhotskBy Anatoly Obzhirov, Pacific Oceanological Institute FEB RAS, Vladivostok, Russia

Itiswidelyacceptedthatmethanecontributestothegreenhouseeffectdrivingglobalclimatechange,withtheatmosphericmethaneconcentrationgrowingabout1%peryear.Themethanedistributionfoundinwaterandsedimentcolumnshasbeenstudiedontheshelf,slopeandinthedeeppartoftheSeaofOkhotsksince1984(Obzhirovet al., 1989, Obzhirov,1993).Watercolumnmethanewasmeasuredonnineexpeditions(from1998to2004)withintheframeworkoftheRussian-GermanKOMEX-project(GEOMARReports82,88and110)andduringfiveexpeditions(2003,2005-2007)oftheRussian-Japanese-KoreanprojectCHAOS.Backgroundmethaneconcentrationsinthewatercolumnweremonitoredovertheyearsandmethaneanomalieswerefoundonallexpeditions.Priorto1988,backgroundmethaneconcentrationsfoundinbottomwaterwereca.20-30nl/l,withmethaneanomaliescomingtoabout300-400nl/l,usuallyaboveoil/gasdeposits.After1988,ontheSakhalinshelfandslope,backgroundconcentrationsinthewatercolumnhadincreasedto70-80nl/landmethaneanomalieshadrisentomorethan10,000nl/l,especiallyaroundtheperiodoftheNeftegorsk(May1995)andHokkaidoearthquakes(September2003).Inthisarticlewewilllookatthemethanedistributionsinthewatercolumnandsediment,hydroacousticbubbledetectioninthewatercolumn(referredtohereas“flares”butalsoknownas“plumes”)andtherelationofgashydratetomethanefluxes.

Methane Distribution in the Water Column and sedimentMoredetailedinvestigationsofmethanedistribution in the Sea of Okhotsk were carried out on the northeastern Sakhalin shelf and slope (Figure1).Here,gashydratewasfoundinnear-surfacesediments,withthreepossiblesourcesofmethane:microbiologicalmethaneproduction,oil/gasbearingsedimentsandmethanedischargeof gas hydrates.

Microbiological activity usually leads to backgroundconcentrationsinthewatercolumnofabout70-80nl/lofmethaneinsurfaceandbottomwaterlayers,providedthatthesurfacesedimentsconsistofmuchorganicmatter(morethan1%),andto5-10nl/linthedeepwaterarea,wherethereislessorganicmatter.OntheSakhalinshelfandslope,methaneanomalieswerefoundofmorethan10-1000timesthebackgroundvalue(500-15000nl/l).Here,themethaneisderivedfromoil/gasbearingsedimentlayersanddecomposinggashydrates,andthemainpathwaysformethanetoenterthewatercolumnfromthesedimentarethroughfaultzones.Thisleadstomorphologicalstructuresinsurfacesedimentandmineralassemblagesbeingexpressedascarbonateconcretionsontheseafloor.

Insidethemethaneflares,themethaneconcentrationsaremorethan20,000nl/l,andwithincloseproximityoftheflaresvaluesstill

Figure 1: Map of the Sea of Okhotsk with major faults, CTD and sediment core sample locations as well as areas named throughout the text.

12

reach1000-3000nl/l.Methaneconcentrationsinthesedimentaroundtheseflarescometo5-10ml/l.Methanemonitoringshowedthatthesurfacewaterinshallowareasisoversaturatedwithvalues>1000nl/l)intheautumnandthespring.Intheseseasons,themethanefluxismoreintensiveandwillemanatefromthesurfacewaterandintotheatmosphere.

Increasing number of Methane flares DuringtheLV29Cruisein2002,manynewflareswerefound,withveryfewexceptions,alongonesingleline-thefaultzonethatspreadsfromthenortheasternshelftotheslopeandtothebottomoftheDeruginBasin.Someflareswerefoundinfissureswhichcrossthemainfault(Figure2).Significantmethaneanomaliesinthewatercolumnaccompaniedtheflares(5000-10,000nl/landmore).Themethanedistributioninthewatercolumnshowsthatalargevolumeofmethaneexistsinthesediment.Themethanesources are the oil/gas deposits in the shelf area and gas hydrates located in the deep part of the slope.

Atthetimeofthecruise(June2002),seismicactivityconnected to an earthquake in Sakhalin was registered (Figure 3).Alargevolumeofmethaneescapedfromthesedimentandintothewatercolumnandtheatmospherefromthe northeastern Sakhalin shelfandslopearea.Inadeeper part of the Derugin Basin,watercolumnmethaneconcentrations did decrease tobackgroundvolumelevelsduetothesedimentthicknessthere being less. Oil/gas bearingsedimentsandgashydrate layers were also not present at this location.

Figure 3: Variations in methane concentrations in the water column and the number of flares on the Sakhalin North-East shelf and slope. Triangles show the number of flares, squares depict methane concentrations in bottom water. The increase in the number of flares after 1995 is suggested to be caused by the major earthquake in Neftgorsk (magnitude 7.6).

Figure 2: The northeastern Sakhalin shelf and slope of the Sea of Okhotsk. The square shows a region where detailed gas geochemical investigations have been carried out. Many new flares were found along the line of the flares Gisella and Obzhirov on the Sakhalin North-East slope of the Okhotsk Sea. Red circles indicate flare positions.

13

Gas Hydrate and Methane fluxesGashydrateswerefoundintheSeaofOkhotsknearParamushirIslandin1986(Zonenshainet al.,1987).Thisareahasgashydratefieldsinnear-surfacesediments(1-5mbelowtheseafloor).TheBSR(Gaedickeet al., 1997)showsthatthethicknessofthegashydratelayerisabout200m.Gashydratewasdiscoveredthroughthegasventsthatformwheregashydratedecomposesinfaultzones.Gasbubbles(mostlymethane)fromdecomposinghydratesrosethroughtheseafloorandintothewatercolumn.Thesebubblescreatestrongbackscatteringinechogramsrecordedbyechosoundersthatlooklikeflareswhenvisualizedandareastallas200-300m(Figures4A,B,C,D).

Methaneconcentrationsinsidetheflarewere>1000nl/l.Theconcentrationdecreasessharplyoutsidetheflareandatthefaultzone.Themethanefluxisdirectlyrelatedtothegashydrate.Intheareaofthegashydratefield,themethaneconcentrationfoundinthebottomwaterwasnearbackgroundlevels,about40-50nl/l.Itissupposedthatthemethaneanomaliesarecreatedbydecomposinggashydrateandthefluxofmethanefromunderthegashydratelayers(Figure5).

Figure 4B: Gas flares on the northeastern Sakhalin slope. Y-axis provides depth (left flare from 430 m to130 m water depth; Gizella flare area; right flare from 680 m to 420 m water depth).

Figure 4C: Gas flare at the bottom of the Derugin basin (flare reaches from 820 m to 480 m water depth). Y-axis reads depth in m.

Figure 4D: Flare site “Lavrentiev” with almost vertically rising gas bubbles that are released at the foot of a steep, fault-induced escarpment. Y-axis gives depth in m.

Figure 4A: Hydro-acoustic image of single beam echosounders (echograms)are commonly used to detect gas bubbles in the water column. Due to their shape in echograms these features are called “flare”. The images shows a gas flare on the northeastern Sakhalin shelf. Y-axis provides depth in m (flare from 200 m to 80 m water depth).

14

This regularity was used for identifying gas hydrate on the northeastern Sakhalinshelfandslope(Obzhirovet al.,2002;Obzhirovet al.,2004).In1989(Obzhirovet al.,1989),flareswerefoundverysimilartothoseobservedintheParamushirarea,wherein1991gashydrateswerefound(Ginsburget al.,1993)inawaterdepthfrom400to800mandinnear-surfacesediments(0.5-6mbelowtheseafloor).Thegascontentofthegashydratewasmostlymethane.Sedimentcoresdecomposedwithinhalfanhourduetothegashydratedegassing.Themethanecontentofthosegashydrate-bearingsedimentswasusuallymorethan10ml/l,whichis1000timesthebackgroundvalue.

Moremethaneanomalieswerefoundinthebottomwater(2000-5000nl/l)intheBariteHillarea.Sedimentsbetween2to6mbelowtheseafloorshowthesamemethaneanomalies.Onthestrengthofthis,wemayconcludethatgashydratesprobablyexistinthisarea.Anomalieswerealsofoundintheslopeareaabout40milesfromTerpeniaBayinasoutheaasterndirection.Here,significantmethaneconcentrations(2791nl/l)werefoundinintermediatewaterdepth(137m),thesurface,water(963nl/l,depth50m)andthebottomwaterlayer(337nl/l,depth719m).ApossibleexplanationfortheveryhighconcentrationsintheintermediatewaterlayeristhatthiswatermassisaintrusionfromtheshelfareaofTerpeniaBay.Themethaneanomalyinthebottomwaterarecausedbybubblereleaseindicatingthatgashydratesmayoccurinthisarea.

summaryThemainresultsofourinvestigationsaresummarizedbelow:

• WediscoveredmethaneflaresontheeasternSakhalinslopeandshelf.Methaneconcentrationsinthewatercolumninsideandneartheflaresusuallyrangedfrom1000tomorethan20,000nl/l.Methanebubblesemanatefromtheseafloorviathefaultzoneandspread300-400mupwardsintheslopeareatothesurface.

Figure 5: Different morphological manifestations of gas hydrate, Sea of Okhotsk.

15

RefeRenCes GinsburgG.D.,SolovievV.A.,CranstonR.E.,LorensonT.D.,KvenvoldenK.A.(1993)Gashydratesfromthecontinentalslope,offshoreSakhalinIsland,OkhotskSea//Geo-Marine Letters, 13, 41-48.

GaedickeCh.,BaranovB.et al.(1997)Seismicstratigraphy,BSRdistributionandventingofmethane–richfluidswestoffParamushirandOnecotanIsland,NorthernKurils//Marine Geology, V.116.3.

ObzhirovA.I.,KazanskyB.A.,andMelnichenkoYu.I.(1989):Effectofthe sound scattering in water of the Okhotsk Sea. // Pacific Geology, N2: 119-121(inRussian).

ObzhirovA.I.(1993):Gasgeochemicalfieldsinbottomwaterofseasandoceans; Science Publ., Moscow: 139 pp. (inRussian).

ObzhirovA.I.et al.,(2002) Methane monitoring in the Sea of Okhotsk. Dalnauka, Vladivostok, 250 p. (in Russian).

ObzhirovA.,ShakirovR.,SalyukA.,SuessE.,BiebowN.,SalomatinA.(2004).Relationsbetweenmethaneventing, geological structure and seismo-tectonicsintheOkhotskSea//Geo-Marine Letter. Vol. 24 № 3., p. 135–139.

ZonenshainL.P.,MurdmaaI.O.,BaranovB.V.,et al,1987,Submarinegas vent in the Sea of Okhotsk to thewestfromParamushirIsland:Oceanology,27,795-800(inRussian).

• Themethanesourceareoil/gas-bearingsediments,methanedischargeofdecomposinggashydrateandbacteria-generatedmethaneproduction.Methaneanomaliesexceedbackgroundvaluesbyabout10-10000times.

• Themethanefluxgoesfromthesedimentthroughthewatercolumnandtotheseasurfacefurtherintotheatmosphere,mostlyinshelfandslopeareas.Themethanevaluesincreaseinthespringandautumn.

• Themethanefluxfromtheseafloorincreasesinperiodsofseismo-tectonic activity.

• Waterlayersthatshowmethaneanomaliesfromshelfintrudeintothewatercolumnintheslopearea.

• Methaneanomaliesinthebottomwaterlayerreach70-100minthicknessintheBariteHillareaoftheDeruginBasin.Manynewflareswerefound(morethan100)intheareaoftheformerlydiscoveredErwin,GisellaandObzhirovflares.Theycreateacousticanomaliesinechograms(flares)reachingaheightof200-300mwhenvisualized.Insidetheflares,themethaneconcentrationsreachabout5000-20,000 nl/l, outside they are still about 500-3000 nl/l.

• Newflaresappearedbetween2000and2007;nonehadbeenobservedinthisareapriorto1999(seeGEOMARReport88,cruiseGe99,1999).Thismeansthatinthisperiod(1988-2007)seismo-tectonicactivityopenedafaultzoneforgas(methane)tocometotheseafloorsurface.Thisfitsverywellwiththedocumentedepisodes of the Sakhalin earthquakes in 1994, 1995, 2000, 2001, 2003 and 2007.

• Methaneanomaliesinthewatercolumn(500-2500nl/l)werefoundintheshelfandslopeareaofTerpeniaBayinasoutheasterndirection.Here,themethanesourcesareoil/gas-bearingsedimentsontheshelfandmaybegashydratesontheslope.

• ThemethanedistributionmeasuredinsedimentcoreswithgashydratefromSakhalinSlopeandBariteHillisverysimilar.Thesedimentcoresfromthoseregionsshowhugemethaneanomalies(about1-3mM/kg).ItlooksasifgashydrateisdistributedinthesedimentsoftheBariteHillareainasimilarwayasintheareaoftheSakhalin slope.

• Outsidethegashydrateandbaritebearingareas,thesedimentmethaneconcentrationsareonbackgroundlevels(0.0001-0.0003mM/kg).

ConclusionTheincreasingquantitiesofmethaneflaresandinmethaneconcentrationsince1988areconnectedwithseismo-tectonicactivationofthefaultsintheSeaofOkhotsk.ThisconceptfitswellwithdatafrommudvolcanoesintheeasternSakhalinarea.Theiractivityseemstobeconnectedtothegrowingseismo-tectonicoscillationsthatleadtotheopeningoffaultzonesandgas/fluidmigration.Moreover,anewmudvolcanoformed.Theaveragemethanefluxfromthesedimentintothewatercolumnandtotheatmosphereintheshelfandslopeareais1,000,000m3peryear.ItcanthusbestatedthatthemethanefluxfromtheSeaofOkhotskwillincreasetheatmosphericmethaneconcentration,addingtothegreenhouseeffect.Furthermore,thefluxeswillincreaseinperiodsofseismo-tectonicactivity

16

the Methane Hydrate fellowshipInresponsetotheMethaneHydrateResearchandDevelopmentActof2000thatauthorizestheSecretaryoftheU.S.DepartmentofEnergy(DOE)to“promoteeducationandtraininginmethanehydrateresourceresearchandresourcedevelopment,”theDOE’sNationalEnergyTechnologyLaboratory(NETL)launchedtheMethaneHydratesFellowshipinthespringof2006.TheFellowshipprovidesfinancialsupport to post-graduate and post-doctoral students for self-directed, methanehydrateresearchprojects.

TheFellowshipprogram,incooperationwithsponsoringfederallaboratories,researchorganizationsandaccrediteduniversities,isimplementedbytheNationalResearchCouncil(NRC)intheselectionofworthyM.Sc.,Ph.D.,andpost-doctorallevelcandidatesthroughanationalcompetition.Applicationsareevaluatedbyagroupofpanelistswhoarechosenonthebasisoftheirstatureandexperienceinthefieldofmethanehydrates.TheirevaluationsarethebasisfromwhichfinalawardsaremadeonthebehalfofNETL.

Anapplicant’selectioncriteriaincludestheirdegree,training,professionalexperience, and research experience in any appropriate discipline or combinationofdisciplinesrequiredfortheirproposedproject.Applicantsmustsubmitadetailedresearchproposaldescribingthemethanehydrateresearch that they intend to pursue at their university or laboratory. The proposalmustbetheoriginalworkoftheapplicantandbeapprovedbytheir proposed advisor.

Currently,theFellowship,whichhassupportedthreeexcellentgeochemistryandmicrobiologyresearcherstodate,islookingtobroadenthedisciplinesandscopeofprojectssupportedundertheprogram.Thisincludesresearchfocusedonutilizinganddevelopingadvanced geological and geophysical tools and techniques for in situ detection,characterizationanddistributionofnaturallyoccurringgashydrateaccumulations.Projectsthatimproveunderstandingofprocessesthatleadtotheformationanddissociationofhydrateinthenaturalenvironment,thusaddressingkeyissuesrelatedtomethanehydratesasapotentialresourceaswellastheirpotentialroleinglobalclimatechange,are also of interest.

Applicationdeadlinesforthe2009FellowshipprogramareFebruary1andAugust1.FellowshipopportunitiesareopentoallcitizensoftheUnited States.

FormoreinformationontheDOE/NETLMethaneHydrateFellowshipProgram,pleasevisithttp://nrc58.nas.edu/pgasurvey/data/aobooks/rapbooks.asp?mode=frntmtr&progctr=AH&seq=20/.Formoreinformationontheresearchprojectsandresearchfellows,pleasevisit http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/GradFellowship.html/.

17

Hydrate Researchers: the next GenerationTostudymethanehydratesistobeastudentofalltypesofsciences,muchinthesamewaythatamasterchefisalwaysonthelookoutfornewflavorcombinationsfromdifferentculturalcuisines.Asforthosestudentscurrentlytoilingawayonmethanehydrateresearchprojectsinthefieldand in labs across the United States, they are the apprentices. Working withandlearningfromtheirteachers,thesestudentsbringtheirownspecial blend of ingenuity, innovation and insight to the prep table. Facing theseriousissuesofglobalclimatechange,energysecurity,andseafloorstability,these“masters”and“apprentices”ofhydrateresearchcontributetofurtherdevelopmentsinthescienceofmethanehydrate.

TothisendtheDepartmentofEnergy’sNationalEnergyTechnologyLaboratory(DOE/NETL)supportsboththeteachersandthestudentswhocontributetoourgrowingunderstandingofmethanehydratesthroughprojectssupportedundertheNationalMethaneHydrateResearchandDevelopmentProgram.

Students contribute to the research process through opportunities currentlyavailableatover40universitiesparticipatingintheProgram.Inthespringof2005,therewereover100undergraduate,graduate,andpost-doctoralstudentsinvolvedinmethanehydrateresearch.Today,thatnumberhasgrowntoover180,with23studentsparticipatinginresearchat national laboratories, where they are gaining a wealth of experience.

Inthepagesthatfollow,youwillmeetafewmembersofthenextgenerationofmethanehydratescientists.Inonestory,youwillfindafatherofthreethatrealizedacareerasapharmacistwasnotthepathforhim,andthroughvolunteerworkinamicrobiologylabfoundwhatwouldbecomehislife’swork.Youwillalsomeetastudentwhofoundgeophysicsmorefascinatingthanveterinarymedicineandnowutilizesmarineelectromagneticmethodstoremotelyimagemethanehydrates.

Thesearejusttwoofthevariedandinterestingtalesthatourfuturescientistshavesharedwithus.ComingfrompointsasdistantasKoreaandIndiaandascloseasCanadaandtheUnitedStates,thesestudentsaresupportingmethanehydrateresearchthroughtheirmanycontributions.Theyarethefutureinnovatorswhoseeffortsare,inpartsupportedbytheNationalMethaneHydrateResearchandDevelopmentProgram.

Kaushik BandyopadhyayGeology (B. sc. 1999), Jadavpur University, Calcutta, India

Geophysics (M. sc. 2001), Indian Institute of technology, Kharagpur, India

Geophysics (Ph. D. expected 2009), stanford University

ArmedwithdegreesinGeologyfromJadavpurUniversity,andGeophysicsfromtheIndianInstituteofTechnology,Kharagpur,India,KaushikBandyopadhyaymovedtotheUnitedStatestopursuehisPh.D.inGeophysicsfromStanfordUniversityinStanford,California.WhileatStanford,KaushikattendedalecturebyDr.AmosNurthatintroducedtheresourcepotentialofmethanehydrate.

AccordingtoKaushik,itwasadifferentStanfordprofessorthathelpedsolidifyhisinterestinmethanehydrates,“Myresearchinterestsliein

18

rockphysicsandDr.JackDvorkinshowedmeaninterestingpropertyofmethanehydrate-bearingsedimentshavingahighseismicvelocity,yetanunexpectedlyhighattenuation.”

Kaushikusesgeophysicalmeasurements(seismicorelectromagnetic)toinferdifferentrockpropertiessuchaslithology,porosity,andporefluids.“Mymainresearchfocusistoimprovetheoreticalrockphysicsmodelsforanisotropicandattenuativerocksthroughanunderstandingoftheirgeologicalorigin,”saysKaushik.“Apartofmyresearchisapplyingthesemodelstomethanehydratereservoirsinordertogainabetterunderstandingoftheirseismicbehavior.”

Currently,Kaushikmeasurestheultrasonicvelocityanisotropyinpureclayminerals.“Elasticpropertiesofclaymineralsareimportant,butlargelyunknownparametersneededtointerprettheseismicsignaturesfromclay-bearingrocks,”saysKaushik.

Asforthefuture,Kaushikplanstocontinuehisresearchtodevelopagreaterunderstanding of elastic properties of rocks relevant to conventional and unconventionalenergyresources.Fornowthough,Kaushiksaysthat,“GuidancefrommyadvisorDr.GaryMavkoandinspirationfrommywife,TanimaDutta,helptokeepmemotivatedinmystudies.”

KaushikissupportedunderNETLProjectDE-FC26-05NT42663.Pleasesee http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOEProjects/MH_42663RockPhysics.html for moreinformationregardingthisproject.

Gaurav BhatnagarChemical engineering (B. sc. 2002 and M. sc. 2003), Indian Institute of technology, Delhi, India

Chemical engineering (Ph. D. 2008), Rice University

PriortocomingtotheUnitedStates,GauravBhatnagarknewofmethanehydrateresearchthatwasbeingpursuedinhisnativeIndia.Butwithhisbackgroundinchemicalengineering,Gauravfeltthatnaturalgashydrateresearchwasaverydifferentfieldofstudyrequiringaverydifferentsetofskills.AfterobtaininghisBachelor’sandMaster’sinChemicalEngineeringfromtheIndianInstituteofTechnologyinDelhi,GauravmovedtoHouston,TexastopursuehisPh.D.atRiceUniversity,wherehefoundthathischemicalengineeringtraininghadbetterpreparedhimforgashydrateresearch than he thought.

ItwasthroughhisworkwithPh.D.advisorDr.GeorgeHirasakithatGauravwasfirstencouragedtopursuegashydrateresearch.“Dr.Hirasakihelpedmerealizehowconventionalchemicalengineeringknowledgecouldbeappliedtostudynaturalgashydratesystems,”saysGaurav.“ItwasDr.Hirasaki’senthusiasmtoexplorenewfieldsofstudythatmotivatedmetoapplymystrengthsinmodelingandsimulationinaverydifferentarea,suchashydrates.”WhileatRice,GauravalsoworkedinclosecollaborationwithDr.JerryDickensandDr.BrandonDugan,which“wasveryhelpfulinjumpstartingmyresearchandallowedmetolearnvariousaspectsofearthsciencethatIneverfullyappreciatedasachemicalengineer,”addsGaurav.

HisworkatRicefocusedonmodelinggashydrateaccumulationsovergeologictimescales,whichhelpeddevelopanunderstandingofdifferenthydratesystemsthroughaunifiedperspective.“Weweretryingtoidentify

19

howmuchhydratecanformatagivensiteandwhatcontrolsthisdistribution,”notesGaurav.“Tothisend,weidentifiedkeydimensionlessgroupsandparametersthatcontrolgashydratesaturationatdifferentgeologicsites.Thishelpedustopredicttheconditionssuitableforfindinghydrate‘sweetspots’thatmightbefeasibletoexploiteconomically,”headds.

Toassistinaccomplishingthisfeat,Gauravandothersdevelopedtheirown“relativelycomplexnumericalmodelsandcodestostudythetemporalevolutionofdynamicgashydratesystems.Wecameupwithspecialscalingschemesthathelpedcondensethedatafromhundredsofsimulationsintosimplehydratemaps.Wealsoidentifiednewproxiesforquantifyinggashydratesaturationandshowedhowlithologycandominatelocalgashydratedistribution,”saysGaurav.

AftersuccessfullydefendinghisthesisinFebruary2008,Gauravaccepteda position with Shell Global Solutions as a gas hydrate researcher focused onflowassuranceissuesrelatedtohydratesandgeohazardsassociatedwithdrillingthroughshallowhydratedsystems.Fromhisdaysasastudent,GauravholdsfondmemoriesofwinningtheSocietyofPetroleumEngineers(SPE)studentpapercontests(bothregionalandinternational)in2006,aswellasabeststudentpaperawardattheAmericanGeophysicalUnion(AGU)2006FallMeetingforhisworkonhydrates.“Itwasespeciallyrewardingtoberecognizedbyboththeindustrialandtheacademiccommunity.IwasgladIwasabletocommunicatetheimportanceofourworkandideastoverydifferentaudiences,”headds.Whenheisnotworking,Gauravenjoysplayingcricketandracquetball,travellingandlisteningtoclassicalHindustanimusic.

GauravwassupportedunderNETLProjectDE-FC26-06NT42960.Pleasesee http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOEProjects/MH_42960DetectProd.html for moreinformationregardingthisproject

Brandon BriggsBiology (B. sc. 2003) and Microbiology (M. sc. 2007), Idaho state University

oceanography (Ph. D. expected 2011), oregon state University

IfBrandonBriggshadfollowedhisoriginalplan,onewouldbeabletofindhimbehindthepharmacist’scounterfillingprescriptions.“WhenIstartedcollegeatIdahoStateUniversity(ISU),Iwantedtobeapharmacist,butIquicklyrealizedthatitwasnottherightchoiceforme,”saysBrandon.“Ibeganvolunteeringinamicrobiologylab,whereIhelpedtodevelopatechniquetoconcentrateDNAfromanaquifer.”

Brandonpursuedhisinterestinmicrobiologywhicheventuallyledhimtohiscurrentworkinhydrateresearch.“AftercompletingmyBachelor’sofScienceinBiologyfromISU,IstayedontheretocompletemyMaster’sofScienceinMicrobiology.Formymaster’swork,IgrewabacteriumthatreducedironatapHof3,”saysBrandon.“ItwasduringaquickpresentationbyDr.FrederickColwellofOregonStateUniversity(OSU)thatIfirstlearnedoftheimportancemicrobialinfluencesinmethanehydrates.”

Whenheisnotchasinghisthreekids(ages4years,2years,and2months)aroundorperformingscienceexperimentsforhisoldeston“ScienceSaturdays,”BrandoncanbefoundworkingonhisPh.D.withDr.Colwell,studyingthemicrobialdistributionsofmethanechargedsediments.

20

UsingtechniquesthatextracttheDNAandRNAfrommicrobeswithinthesediment,BrandonisabletouseDNAmeasurementsliketerminalrestrictionlengthpolymorphism(t-RFLP)todeterminethemicrobialdiversity.“IcanalsodoamoredetailedanalysisandsequencespecificpartsoftheDNAtodeterminewhattypeoftaxaarefoundbelowtheseafloor,”notesBrandon.“UsuallythemicrobesthatIfindhavenotbeenpreviouslydescribed,sotheonlywaytoidentifythemicrobesistoinferanidentityfromrelatedDNAsequeneces.”

Eventhoughgettingenoughsamplestoworkwithisafrustratinglimitation,Brandonfeelsthat,“theinterdisciplinarynatureofhydratesmakestheworkmostrewarding.Itwilltakegeologists,chemists,modelers,andmicrobiologiststounlockthemysteriesofhydrates,”saysBrandon.“KnowingthatwhatIamstudyingwillsomedayhelpmankindisprettymotivating.Myresearchaddsapiecetothepuzzlethatsomeoneelsecanusetofurtherusalongevenmore.”

BrandonissupportedunderNETLProjectFLU5A425/100400.Pleasesee http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOEProjects/MH_FLU5A425Methanogen.html formoreinformationregardingthisproject.

Michael eatonChemical engineering (B. sc. 2002) and Petroleum Refining (M. sc. 2003), Colorado school of Mines

Materials science (Ph. D. 2007), state University of new York

MichaelEatonreceivedhisintroductiontomethanehydratesasagradstudentworkinginthelabforDr.DendySloanattheColoradoSchoolofMines(CSM)inGolden,CO.MichaelwaspursuinghisMaster’sDegreeinPetroleumRefiningwhenfatesteppedin,“Goingintograduateschool,Ihadverylittleknowledgeofwhatahydratewas,orjusthowinterestingtheyare.IknewIwantedanadvanceddegree,buthadnoparticulargravitationtowardshydrates,”saysMichael.“DendySloan,agiantinthehydratesworld,offeredmearesearchpositioninhislab,andtherestishistory.”

AftercompletinghisMaster’satCSM,MichaelenrolledattheStateUniversityofNewYorkinStonyBrook,NYtopursuehisPh.D.inmaterialsscience,“MyadvisoratStonyBrook,Dr.DevinderMahajan,providedtheopportunityformetocontinuestudyinghydrates.Ihavebeenincrediblyfortunatetohaveworkedwithmanyworld-classresearchersandingeneralsomegreatpeoplealongthewayinmystudies,”saysMichael.“Eachhasshownmeadifferentaspectofwhatitmeanstobeascientist.”

HisresearchwhileatCSMusedneutronandX-raydiffractiontostudythecageoccupancyofbothxenonandmethanehydratesasafunctionoftemperatureandpressure.“UsingatechniqueknownasRietveldanalysis,Ianalyzedthediffractionpatternsandnumericallyextractedsuchvalues,”hesays.“FormyPh.D.,Iconstructedareactortostudytheformationanddecompositionkinetics,morphology,anddistributionofhydratesindifferenttypesofsediments.Inordertoextractsuchdatafromsimplepressureandtemperaturemeasurementswithinthereactor,Iwroteacomputerprogramtomodelthe2-Dimensionaltransientthermalbehaviorofthereactor.”

21

Michael’sexperiencesinthelabprovidedsomeuniqueopportunitiestoobtainhisdata.“Oneofmyfavoritememorieswasbeingabletoperformsomeofmymaster’sworkatOakRidgeNationalLaboratorywithguidancefromClaudiaRawnandBryanChakoumakos,”saysMichael.“IlearnedmoreinaweekaboutX-raydiffractionfromClaudiaandBryanthanIdidtherestofthetimeonmymaster’s--theywereincrediblypatientwithme.”

AfterobtaininghisPh.D.,Michaelacceptedafull-timepositionintheoiland gas industry. When he is not at work, he can be found spending his freetimewithhiswifeErinorouthittingthepavement,“Irunquiteabit.Ithelpsmeburnoffstress,andIalsofindthatIgetmostofmybestthinkingdonethen.”

MichaelwassupportedunderNETLProjectEST-380-NEDA.Pleasesee http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOEProjects/EST-380-NEDA_SubsurfaceMimic.htmlformoreinformationregardingthisproject.

Alex HangsterferChemical oceanography and Biology (B. sc. 2004), Roger Williams University

Chemical oceanography (M.sc. expected 2009), scripps Institution of oceanography

Aftercompletingherundergraduatestudiesasanocean-basedenvironmentalchemistryandbiologystudentatRogerWilliamsUniversityinBristol,RI,AlexHangsterferfirstbecameinterestedinmethanehydrateswhile working as a visiting researcher at Woods Hole Oceanographic Institution(WHOI).Itwastherethatshefirstsawlive,videotapedfootageofmethanebubblingtotheocean’ssurface.“IwasworkingwithChrisReddy,whodoesalotofworkwithoilspills,andatthetimeandthereweretheseseepsthatweregeneratingvisibleoilslicksontheseasurface,”saysAlex.“...onceIsawthisfootage,itsparkedmyinterestinwhatwasreallygoingonwithsub-seafloormethaneandifthereisawaythatwecanharnessitsenergypotentialifweknowmoreaboutthesubseafloorhydrologicalsystemsassociatedwithmethanehydratedeposits.”

CurrentlyfinishingherMastersatScrippsInstitutionofOceanography,Alex’sfocusisonthegeologicalsettings,geochemicalsignatures,andmicrobialcommunitiesassociatedwithsub-seafloorgashydrate-bearingsediments.“Myfocuswhileherehasbeentodeterminehowthesedifferentparametersareinterconnectedandhowtheyinfluenceoneanotheringashydrate-bearingsedimentsandwhateffecttheinteractionbetweentheparametershasongashydrateoccurrence,”shenotes.“Forexample,howdoesamicrobialcommunitystructurevarywithchangesindepthandgeochemicalhorizons;whichmicrobespresentinthesedimentscontributetotheproductionoftheobservedgeochemicalsignatures,orhowdoespermeabilityacttoconstraingashydrateoccurrence?”

Tohelpanswerthesequestions,AlexhadbeenworkingonextractingbacterialandarchaealDNAfromsedimentsamplestakenfromcoresdrilledintheKrishna-GodavariBasinintheIndianOcean.“Thiscanbeachallengeduetotheextremelylowabundanceofmicrobesdeepwithinthesedimentcolumn,”shesays.AlexhasalsoworkedwithscientistsfromLawerenceBerkeleyNationalLaboratorytoapplyextractedDNAtoaphylochip.ThisDNAmicroarraycanidentifyamultitudeofarchaealand

22

bacterialgroupspresentinthesedimentsample.“Thisanalysisallowsscientiststotrackhowmicrobialcommunitystructureischangingfromsampletosample,encounteringvaryingdepths,geochemicalhorizonsandgeologicalsettings,asinthecaseofmysamples”notesAlex.

Usingherinnatecreativitythatisbolsteredbyencouragementandsupportfromahostofteachersandprofessors,Alexismotivatedbythepossibilityofmakingnewconnectionsbetweenthebiological,chemicalandgeologicalsystemsassociatedwithgashydrateoccurrences.Somefavoritememoriesinvolvebeingatseaandexperiencingfirsthandhowmethanehydrates and seeps are investigated. One of her greatest experiences was “...theopportunitytogotothebottomoftheoceanintheDSV Alvin to investigateandrecoversamplesfrommethane-richsedimentsoffthecoastofCostaRica,andexperiencewhatthedeepoceanistrulylikeformyself,”Alexrecalls.“Itwillneverceasetoamazemehowlifehasadaptedtothrivein these deep, dark and cold conditions; it is truly an honor to experience itsoclosely.Ihopetotakemanymoretripstocontinuetoexplorethebottomoftheoceaninmylifetime!”

AlexissupportedunderNETLProjectFLU5A425/100400.Pleaseseehttp://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOEProjects/MH_FLU5A425Methanogen.htmlformoreinformationregardingthisproject.

Antone Jainenvironmental engineering (B. sc. 2007, M. sc. expected 2009), Massachusetts Institute of technology

AsanenvironmentalengineeringundergradatMassachusettsInstituteofTechnology(MIT)inCambridge,MA,AntoneJainfoundinmethanehydratesaperfectwaytocombinehisinterestintheoceanwithfindingquantitativeapproachestotheproblemsfoundinenergyandtheenvironment.“Dr.RubenJuanesjoinedmydepartmentduringthesummerbeforemysenioryearandIfoundhismethanehydrateresearchtobeaperfectmatchforme,”notesAntone.Equippedwiththeideaofwhathewantedtopursue,AntonecompletedhisdegreeandchosetostayatMITto pursue his M. Sc. degree in hydrology.

HiscurrentworkwithDr.Juanesinvolveslookingat,“MethanefluxesintheHydrateStabilityZone(HSZ),whicharedynamicprocesses,asevidencedby the observations of co-existence of gas and hydrate, diverse hydrate morphologiesandactivegasventingontheseafloor,”saysAntone.“Ourcomputationalmodelingexploreshowtheinterplayofmultiphaseflow,geomechanics,andhydrateformation/dissociationdynamicscausedistinctmethanefluxpathsintheHSZ.Inourcoupledgrain-scalemodel,weusethediscreteelementmethodtosimulatethesoilmechanicsandatwo-phaseflowporenetworktosimulatefreegasandbrine.”

ThroughhisworkwithDr.Juanes,Antonehasfoundthatwithenoughcapillarypressure,freegasmigrationoccursbyoneoftwomodes:capillary invasion or by fracture opening and propagation. The results of Dr.Juanes’sandhisworkimplythatinveryfinesediments,hydratewilltendtoforminveinsalongafracturenetwork.Incoarsersedimentsthehydrateswillfilltheporespacemoreuniformly.Theirnextstepsinvolveincorporatinghydrateformationintothegrain-scalemodelandvalidation

23

withlaboratoryexperiments.Aftervalidationandusingtheirgrainscaleknowledge,theplanistomodelgasmigrationatthegeologicscale.

Motivated by his interests in science and furthering our understanding ofmethanehydrate,Jainbelievesthattheworkheisinvolvedwithtoday will contribute to the rapidly growing body of knowledge on methanehydrates,andthatthisbodyofknowledgewillenableaccurateassessmentsofhydratesasaprospectiveenergyresourceandcomponentintheglobalcarboncycle.Hesumsitupbest,“Ihopethattheapplicationofthisknowledgewillimprovethequalityoflifeforpeople.Therearesomanyscientistswhohaveworkedformanyyearsonunderstandinggeologicallyoccurringmethanehydrates,thatIviewmyselfasoneyoungcontributorinahugeandgrowingresearchcommunity.Thecollectiveworkofthemethanehydratesresearchcommunitycanhaveagreatimpactonpeople’slives.”

AntoneissupportedunderNETLProjectDE-FC26-06NT43067.Pleasesee http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOEProjects/MH_43067GasHydSediments.html formoreinformationregardingthisproject.

Jongwon JungCivil and environmental engineering (B. sc. 1999 and M. sc. 2004) Korea University

Civil and environmental engineering (Ph. D. expected 2009), Georgia Institute of technology

Since2006,JongwonJunghaspursuedhisPh.D.inCivilandEnvironmentalEngineeringfromGeorgiaInstituteofTechnologyinAtlanta,Georgia.Thereheisresearchingmethaneproductionfromhydrate-bearingsedimentswithhisadvisor,Dr.CarlosSantamaria.“Heshowedmethepathtobecomingascientistandprovidedmeanopportunitytostudymethanehydrates,”saysJongwon.

PriortoworkingwithDr.SantamariaatGeorgiaTech,Jongwoncompletedbothhisbachelor’sandmaster’sdegreesinCivilandEnvironmentalEngineeringfromKoreaUniversitylocatedinSeoul,SouthKorea.

CurrentlyJongwon’sresearchisfocusedonunderstandingtheporescaleinteractionbetweenhydrateandsedimentparticlesduringformationanddissociation.“Imeasuretemperature,pressure,electricalconductivity,mechanicalimpedance,bondingandtensilestrength,”saysJongwon.“Iamalsofinalizingseveralstudiesonhydratepropertiesatsmallscalesduringformationanddissociation.Inthemeantime,Iworkonadvancingnumericalmodelstoprocessdatareceivedfromone-dimensionalexperimentsongasproductionduringhydratedissociationandformation.”

Hisresearchhascreatedverymanymemorablemoments,withhisfavoritebeing,“thefirsttimeImadehydrateinthelab.Afterseveralweeksofkeepingthesystemwithinthestabilityfieldandaftermanypreviousfrustrationswithheatlossfromthechamber,theexperiencewasmadeallthemorememorable,”saysJongwon.

ForJongwon,thestudyofhydratebearingsedimentsrequires“deepknowledgeinmanydifferentareas,includingchemistry,geology,physics,

24

andgeomechanics,”hesays.“Itisbothstimulatingandchallenging!”Whilehisresearchandstudieskeephimbusy,whenJongwondoesfindtimetorelaxalittleheenjoysplayingtennisorswimming,butaboveall,“Iloveplayingwithmyson.”

JongwonissupportedunderNETLProjectDE-FC26-06NT42963.Pleasesee http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOEProjects/MH_42963MethaneRecov.html for moreinformationregardingthisproject.

Peter KannbergGeological sciences (B. sc. 2004), University of Rochester

Geophysics (M. sc. expected 2009), oregon state University

AsanundergradattheUniversityofRochesterinRochester,NY,PeterKannbergspentasummerworkingasaninternatPacificNorthwestNationalLaboratory(PNNL)inRichland,WA,imagingclasticdikesusinganinfrared(IR)camera.Asaresultofthisexperience,useofIRimagingfortheidentificationandquantificationofgashydratesinsedimentcoreswasproposedtotheOceanDrillingProgram(ODP).Peter,“gaveapresentationtoDr.FrankRackofODPdemonstratingtheuseofinfraredcamerasonasimulatedhydratecore.”ThisledtotheuseofIRimagingonboardtheR/V JOIDES Resolution(JR)duringODP’sLeg204ExpeditiononHydrateRidge.“Thefastpacednatureofstudyingsomethingasephemeralashydratesmadeforaveryexcitingfirstexperience,”recallsPeterwhoparticipated as a shipboard technician.

Peter’sexperienceduringLeg204ledtohiseventualacceptanceofapositionasafull-timemarinetechnician,apositionthatprovidedPeterafront-row seat to a wide-variety of research opportunities that very few arefortunatetoexperience.“BeingapartofODPandIODP(IntegratedOceanDrillingProgram)wasanincredibleexperience.Theopportunitytoparticipateinresearchandworkwithleadingscientistsfromsuchawiderangeofoceanographicdisciplineswasinvaluable,”saysPeter.“PhilLong,myadvisoratPNNL,wasinstrumentalinexposingmetohydrateresearch,andgettingmyfootinthedooratODP,anopeningthathasallowedmetosail on three hydrate expeditions aboard the JOIDES Resolution.”

PeterisnowatOregonStateUniversitypursuinghisMaster’sinmarinegeologyandgeophysics.HisworktherewithDr.AnneTréhuinvolvesusingtemperaturedatatakenduringIndia’sNationalGasHydrateProgram(NGHP)Expedition01tomapheatflowinhydrate-bearingsedimentsontheIndianmargin.“Iwasfortunatetosailasthedownholetoolstechnicianduringtheexpedition,notknowingatthetimethatacoupleofyearslaterIwouldbeusingthetemperaturedatacollectedbythosetoolsinmymaster’sresearch,”saysPeter.“Iamcurrentlyreviewingthetemperaturedatafromthatexpedition.BycomparingthegeothermalgradientderivedfromthosetemperaturemeasurementstothedepthoftheBottomSimulatingReflectorfoundinseismicdata,wewillbeabletomaptheheatflowoftheregion.”

Whereheseeshimselfintenyearsisdifficulttosay,butPeternotesthat,“wherevermycareertakesme,theresearchIwillconductwillbeapplicabletosocietalproblems.Iseeenergyresearchashavingincreasingimportanceas nations continue to develop, and gas hydrate could provide abundant

25

energyforthosecountriesputtingforththeefforttobetterunderstandthesedeposits.”

PeterissupportedunderNETLProjectDE-NT0005669.Pleaseseehttp://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOEProjects/MH_05669HydratesIndia.htmlformoreinformationregardingthisproject.

frank KinnamanChemistry (B. sc. 2003), University of California – santa Barbara

Marine science (Ph. D. 2008), University of California – santa Barbara

FrankKinnaman,whoin2008receivedhisPh.D.inMarineSciencefromtheUniversityofCaliforniainSantaBarbara,CA(UCSB),firstbecameinterestedinmethanehydrateswhileworkingasanundergraduateintern.ThisinterestledtohisgraduateworkstudyingmicrobialoxidationofmethaneandhydrocarbonseepsedimentsoftheCoalOilPointseepfield,whichislocateddirectlyoffshoreUCSB.“Inmycurrentwork,IamfocusingonmethaneconcentrationsandoxidationinthewatercolumnoftheSantaBarbaraBasin,”saysFrank.“Iamalsoadvisinganundergraduatewhoisexaminingpropaneconsumptioninseepsediments.”

AspartofhisPh.D.studies,Frankstudiedthepatternsandextentofmicrobialdegradationofmethaneandothergasesinsedimentsaroundseep vents found not only in shallow and hydrate free-seeps but also in thedeep,hydrate-richenvironmentsoftheSantaMonicaBasin.“Thusfar,laboratoryincubationsofsedimentwithandwithout14C-CH4 as a tracer and studying the natural abundance of 13Chavebeenkeymethods,”hesays.Theseresults“demonstratedapproximatelyten-foldmoremethaneoxidationatseepssituatedat80and800mdepththanseepsat10and20mdepth,withthemicrobialcommunitiesattheshallowersitesheavilyimpactedbybenthicdisturbances,andstarvedofmethanebytheactionofintensebubbledischarge,”henotes.“Examinationofarelativelyshallowandintenseseepat20mdepthresultedintheobservationofconsistentspatialpatternsofmethaneoxidation,whichprobablyresultsfromtheinterplaybetweendiffusiveandadvectiveprocessesaroundindividualgasvents.”Frankalsodesignedandconstructednovelin-situ equilibration samplers(peepers)inthecourseofhisresearch.

Frank’smethanehydrateresearchhasprovidedmultipleopportunitiestoseemethaneseepsupclose,HeparticipatedinAlvindivesin2007andsamplecollectiontripstotheshallowportionsoftheCoalOilPointseepfieldusingSCUBA.Franksaid,“Divingthroughascendingbubblesofnaturalgasattheseseepsishauntinglybeautiful–visuallyfascinating–butalittlespookytoo!”

What helps to keep Frank focused on his research is the belief that even minuteadvancesinthisfieldwillhaveglobalimplications.Themostrewardingaspectofstudyingmethane-dominatedsystemsisthe,“diverseskillsetandbroadbackgroundgainedduringthecourseofstudy.”Whenheisnotadvisingundergradsorresearchingmethanehydrates,FrankKinnamanlikestogarden,afittinghobbywhenoneconsidersthatallthreeactivitiesrequireinfinitepatienceandperseverance,toobtainsuccess.

FrankissupportedunderNETLProjectDE-NT0005667.Pleaseseehttp://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOEProjects/MH_05667Methanotropic.htmlformoreinformationregardingthisproject.

26

Karen WeitemeyerGeophysics (B. sc. 2003), University of British Columbia

earth sciences (Ph. D. 2008), University of California – san Diego

ThepathtomethanehydrateresearchwasawindingoneforKarenWeitemeyer,currentlyapost-docresearcheratScrippsInstitutionofOceanographyinLaJolla,CA.Withaninterestinbothveterinarianscienceandgeophysics,itwastheexcitementbroughttothetablebyhergeophysicsprofessorsattheUniversityofBritishColumbia(UBC)inVancouver,BC,Canadathatconvincedherthatgeophysicswastherightfieldforher.“IwasfortunatetobeintroducedtogeophysicsbytheexceptionalprofessorsandteachingassistantsatUBC.Theirexcellentinstructionandinterestingeophysicsconvincedme,”saysKaren.

KarenwasintroducedtomethanehydratesasanundergraduatethroughherworkonamodeloftheclimaticeffectsfromthereleaseofmethaneduetohydratedissociationbelowtheLaurentideandCascadiaicesheets.“Dr.BruceBuffettopenedawholenewworldforme.WhenIpresentedmyworkattheUBCScienceopenhouseandattheAmericanGeophysicalUnion(AGU)annualmeeting,Iwassurprisedathowmuchinterestpeoplehadinlisteningtothehydratestory,”shesays.

Itwasathree-monthexchangeprogramwiththeAustralianNationalUniversityinCanberra,workingwithDr.F.E.M.Lilleythatintroducedhertoresearchinelectromagneticstudies.Karen’sspecificareaofresearchusesmarineelectromagneticmethodstoremotelyimagemethanehydratesinthefield.Whencomparedagainstthesurroundingwater-saturatedsediment,gashydratesareelectricallyresistive.“Iamabletofindresistorswithcontrolledsourceelectromagnetic(CSEM)techniques,”notesKaren.“CSEMisoneoftwomarine-basedtechniquesusedforoilandgasexploration.Wehaveadaptedthetechniquetobemoresensitivetoshallowsedimentsinwhichhydratesarefound.”

ItwasherPh.D.advisor,Dr.StevenConstable,whohelpedtomakeitpossibletousetheseelectromagnetictechniquestoimagegashydratesinapilotstudyalongHydrateRidge.“IamcurrentlyprocessingarecentlycollectedcontrolledsourceelectromagneticdatasetfromfoursitesintheGulfofMexico:AlaminosCanyon818,WalkerRidge313,GreenCanyon955,andMississippiCanyon118.Thisprojectwilllaterinvolvelaboratorystudiesontheelectricalconductivityofhydrates,”notesKaren.“Anewfieldforme,butIamexcitedtolearnaboutit!”

TheinterdisciplinarynatureofhydratesresearchinterestsKarenconsiderably,“WhatIfindmostrewardingisthatthisfieldofstudyintegratesphysics,chemistry,biologyandgeologytogether,”shesays.“Itallowsyoutomeetmanydifferentpeopleandscientists.Studyinggashydratesisalsointerestingbecauseofthesocial,economic,andenvironmentalimplicationsthatsurroundgashydrates.Myparticularfieldofinterestisbreakingnewground,whichmakesitexciting.”

KarenissupportedunderNETLProjectDE-NT0005668.Pleaseseehttp://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOEProjects/MH_5668EMCharGOM.htmlformoreinformationregardingthisproject.

27

Anouncements

AAPG Convention to Include two sessions on Gas HydratesTheAAPGAnnualConventionandExhibitiontobeheldJune7-10,2009inDenver,Colorado,willincludetwosessionstitled“Hydrates-SedimentologyandResourcesIandII.”ThesessionsaresponsoredbytheEnergyMineralsDivision(EMD)oftheAAPG.Thetwosessionswillfeature19posterpresentationsonawiderangeofgashydraterelatedpermafrostandmarineresearchanddevelopmentissues.

TheAAPG-EMDGasHydrateResearchCommitteewillalsohostaninformal“FriendsofGasHydrate”meetingonTuesdaynight,June9th,at5:00p.m.(locationtobeannounced).Thisyear’sAAPG-EMDGasHydrateResearchCommitteemeetingwillfeatureupdatesandreviewsofvariousongoinginternationalgashydrateresearchprograms.

Formoreinformationaboutthemeetingsee:http://www.aapg.org/denver/

Postdoctoral fellowshipApplicationsareinvitedforPostdoctoralFellowshipsattheColoradoSchoolofMines,CenterforHydrateResearchintheChemicalEngineeringDepartment.TheCenterforHydrateResearchisagloballeaderinthefieldofgashydrates,withafundinglevelinexcessof$1.3millionperyear.TheCenterhousesanindustrialconsortiumcomposedoftwelvemajorenergycompanies,andleadsseveralnationalandinternationalcollaborativeprograms.

TheChemicalEngineeringDepartmentandCenterforHydrateResearchalsohavecloselinkswiththeNationalInstituteofStandardsandTechnology(NIST)inBoulder,CO,andtheUSGeologicalSurvey(USGS)inGolden,CO.

The postdoctoral fellowships are in two research areas:

• Hydrogenstorageinclathratematerials

• Gashydratesinflowassurance

Toobtainadditionalinformationregardingfellowshipresponsibilitiesandqualifications,aswellasinstructionsonhowtoapply,pleasevisithttp://hydrates.mines.edu/CHR/Positions.html.

28

Joo-yong LeeJoo-yongLeehasanappreciationforthephraseCarpeDiem,“Seizetheday.”WhiledefendingherPh.D.dissertation,researchersfromtheKoreanInstituteofGeoscienceandMineralResources(KIGAM)grouphaddiscoveredmethanehydratesintheEastSea.Atthesametimetheyhadalso contacted Joo-yong regarding her plans after graduation. So the day aftergraduatingfromtheGeorgiaInstituteofTechnologywithherPh.D.inCivilEngineering,Joo-yongwasonaplaneheadedforSeoul,SouthKorea,“IthoughtthatIhadnotimetoloseinjoiningtheresearchgroup,”saysJoo-yong.“IflewtoKoreathedayaftermygraduationceremonytobeapartoftheUBGHO1hydrateresearchcruise,whichwasthefirstgashydratedeepdrillingcruiseinKorea.”

WhileastudentatGeorgiaTech,Joo-yonghadherfirstexperiencewithgashydratewhenshejoinedtheparticulatemediaresearchlab.“Dr.CarlosSantamariawasmyadvisoratthattime,andhefosteredmyinterestingeophysicalmethodsingeotechnicalstudy,”saysJoo-yong.“Heintroducedmetogashydrates.AtthetimeDr.CarolynRuppelwasatGeorgiaTechandshealsohelpedmegetstartedingashydratesresearch.”

HerworkwithDrs.SantamariaandRuppelinvolvedexaminingthehydrateformationanddissociationmechanisminsedimentsanddeterminingthegeophysicalpropertiesofhydrate-bearingsediment.“IwasveryfortunatetohaveDr.Santamariaasmyadvisor,”saysJoo-yong.“ItrulyenjoyedworkingwithhimatGeorgiaTechbothashisPh.D.studentandhisfriend.WorkingwithDr.Ruppelwasalsoenjoyableassheinspiredmetocontinuemyworkasafemalescientistinthegashydrateresearcharena.”

AftercompletingtheresearchcruisethatbroughtherhometoKorea,Joo-yongcontinuedherworkasresearcherforKIGAMintheirdepartmentof gas hydrate research. There her focus is on the production of naturalgasfromgashydrateinsediments,“Iamnowfocusedonthemechanicalbehaviorofhydrate-bearingsedimentsduringproductionusinggeophysicaltools,”saysJoo-yong.“Lastyear,Iperformedlab-scaleproductiontestswithnaturalgashydrate-bearingsedimentsfromtheEastSeainKorea.TheexperimentwasmonitoredwithgeophysicalinstrumentationandX-rayCTscanningdevices.Theexperimentalresultsprovidedcrucialinsightsontheproductionofgashydrateinmarinesediments.Iamveryexcitedandcan’twaittopresenttheresultstomycolleaguesfromaroundtheworld.”

Joo-yongbelievesthatthemostrewardingthingaboutstudyinghydrateis,“ThatIcanresearchwhatIammostcurrentlyinterestedin.GashydrateresearchisverypopularinKoreaasitisoneofthepotentialnewenergyresources.Italsoincludesmanyaspectsofgeophysicalandgeotechnicalresources, which allow for study of the various aspects of natural phenomenarelatedtogashydrates,whichreallythrillsme.”

Inheroff-time,Joo-yongenjoyswatchingmovies,listeningtomusicandreadingbooks.Whenshewantstodosomethingactive,meetingfriendsfor all-day shopping excursion is at the top of her list.

Joo-YonG Lee ResearcherKoreanInstituteofGeoscience&MineralResources

When asked for what advice she would give to students considering gas hydrate research, Joo-yong said: Studying hydrates, especially performing experimental study, really requires patience and passion for the research as gas hydrate is not an easy material to work with.One will face every different aspect of frustration in different degrees that one must cope with, every month, every week, or every day, which is something that probably applies to all researchers.Every time I face frustration, I try not to focus on the fact that I am stuck, since that will only make me even more frustrated. Instead, I think about what I should do at that current stage or about things that I should have done but haven’t done so far, instead of worrying about “what if it doesn’t work even after I’ve done this?” Sometimes it may become a long detour to my goal, but I always believe that I’ll get there eventually and also by some reasonable deadline.My advisor used to say, “Good things happen to good people.” I agree with his comment very much. The only thing one should worry about is whether he or she tries hard enough to deserve the final triumph.

spotlight on Research