GSA Data Repository Item 2016299 Hyland, E.G., Sheldon, N ... · S NRM 700 CBPM-24 100 200 300 400...

8
GSA Data Repository Item 2016299 Hyland, E.G., Sheldon, N.D., and Cotton, J.M., 2016, Constraining the early Eocene climatic optimum: A terrestrial interhemispheric comparison: GSA Bulletin, doi:10.1130/B31493.1. DATA REPOSITORY Figure DR1. Paleomagnetic data summary and examples Figure DR2. Stratigraphic column of upper Cerro Bayo section with exemplar paleosol insets Table DR1. Paleomagnetic data Table DR2. Geochemical data and climate proxy results Table DR3. Carbon isotope data from organic carbon analyses Table DR4. Compilation of binned EECO proxy data (250 kyr bins) presented in Fig. 5

Transcript of GSA Data Repository Item 2016299 Hyland, E.G., Sheldon, N ... · S NRM 700 CBPM-24 100 200 300 400...

Page 1: GSA Data Repository Item 2016299 Hyland, E.G., Sheldon, N ... · S NRM 700 CBPM-24 100 200 300 400 500 600 D = 358˚ Reversed I = -39˚ a95 = 13.5 D = 170˚ Normal I = 33˚ a95 =

GSA Data Repository Item 2016299 Hyland, E.G., Sheldon, N.D., and Cotton, J.M., 2016, Constraining the early Eocene climatic optimum: A terrestrial interhemispheric comparison: GSA Bulletin, doi:10.1130/B31493.1.

DATA REPOSITORY

Figure DR1. Paleomagnetic data summary and examples

Figure DR2. Stratigraphic column of upper Cerro Bayo section with exemplar paleosol insets

Table DR1. Paleomagnetic data

Table DR2. Geochemical data and climate proxy results

Table DR3. Carbon isotope data from organic carbon analyses

Table DR4. Compilation of binned EECO proxy data (250 kyr bins) presented in Fig. 5

Page 2: GSA Data Repository Item 2016299 Hyland, E.G., Sheldon, N ... · S NRM 700 CBPM-24 100 200 300 400 500 600 D = 358˚ Reversed I = -39˚ a95 = 13.5 D = 170˚ Normal I = 33˚ a95 =

Data Repository for “Constraining the Early Eocene Climatic Optimum: a terrestrial interhemisphericcomparison” by Hyland et al., including Figures DR1-DR2 and Tables DR1-DR4.

Figure DR1. Paleomagnetic data including: A) stereoplot of ChRM directions with Fisher mean values, a95circles, and modern and Paleogene pole positions; B) example vector endpoint diagrams for demagnetized samples; and C) example thermal decay diagram for demagnetized samples.

A. B.

C.

00

100 200 300 400 500 600 700 800

60

30

TT (˚C)

A/m

(10

)

CBPM-22

UP/W

CBPM-20

N

NRM

700

100200

300400

500600

UP/W

S

NRM

700

CBPM-24

100

200300

400500 600

D = 358˚

Reversed

I = -39˚a95 = 13.5

D = 170˚

Normal

I = 33˚a95 = 12.8

Modern pole position (NGDC, 2014) Paleogene pole position (Prezzi and Alonso, 2002)

N = 11

N = 13

Page 3: GSA Data Repository Item 2016299 Hyland, E.G., Sheldon, N ... · S NRM 700 CBPM-24 100 200 300 400 500 600 D = 358˚ Reversed I = -39˚ a95 = 13.5 D = 170˚ Normal I = 33˚ a95 =

0

100

Stra

tigra

phic

hei

ght (

m)

20

80

120

60

40

LITH

MeallaFm.

MaizGordo

Fm.

SALMA

Itabo

raia

nPr

e-Ita

bor.

Figure DR2. Stratigraphic column of upper Cerro Bayo section with paleosol details. SouthAmerican land mammal age (SALMA) for the section is de�ned by Quattrocchio et al. (1997), Quattrocchio and Volkheimer (2000), Clyde et al. (2014) and Woodburne et al., (2014). Selectedpaleosols represent type soils for descriptive purposes, and are named for local landmarks.Paleosol classi�cations are based on the schemes of Mack et al. (1993) and the NRCS (2014).

Fluvial sandstones

Lacustrine mudstones

Paleosols

0

-1.8

Dep

th (m

) A

BgBt

C

0

-1.2

Dep

th (m

)

A

Bg

BkC

A

B?C

0

Dep

th (m

)

-0.6

Isonza type paleosol (Argillisol/Al�sol)

Amblayo type paleosol (Calcisol/Inceptisol)

Cardones type paleosol (Protosol/Entisol)

Root traces

Mottling

Clay slickens

Carb. nodulesBurrows

Page 4: GSA Data Repository Item 2016299 Hyland, E.G., Sheldon, N ... · S NRM 700 CBPM-24 100 200 300 400 500 600 D = 358˚ Reversed I = -39˚ a95 = 13.5 D = 170˚ Normal I = 33˚ a95 =

Table DR1. Paleomagnetic data

Sample name Height (m)a D (˚)b I (˚)b MAD (˚)

a Height refers to stratigraphic height from the base of the Maiz Gordo Fm.b D = declination; I = inclination* Values excluded from magnetostratigraphic analysis due to MAD >15˚

CBPM-1CBPM-2CBPM-3CBPM-4CBPM-5CBPM-6CBPM-7CBPM-8CBPM-9CBPM-10CBPM-11CBPM-12CBPM-13CBPM-14CBPM-15CBPM-16CBPM-17CBPM-18CBPM-19CBPM-20

CBPM-22CBPM-23CBPM-24CBPM-25

0.00.20.510.510.610.720.520.620.726.026.126.231.047.056.056.570.071.082.083.0

116.0125.5126.0128.0

299183141134160168189191340330343019180188212332344028016001

040161177151

-531232931304572-23-23-24-25103548-40-41-37-41-41

-59131530

28.3*8.95.88.714.711.82.37.813.33.411.410.84.514.38.19.27.810.15.79.5

4.010.88.29.0

VGP (˚lat)

27.2-81.3-51.0-46.0-69.6-75.7-81.7-57.067.058.869.768.5-70.0-80.7-61.364.375.363.975.388.2

53.5-64.1-72.4-61.5

CBPM-21 101.0 014 -52 75.67.2

Page 5: GSA Data Repository Item 2016299 Hyland, E.G., Sheldon, N ... · S NRM 700 CBPM-24 100 200 300 400 500 600 D = 358˚ Reversed I = -39˚ a95 = 13.5 D = 170˚ Normal I = 33˚ a95 =

Tabl

e D

R2. G

eoch

emic

al d

ata

a H

eigh

t ref

ers

to s

trat

igra

phic

hei

ght f

rom

bas

e of

the

Mai

z G

ordo

Fm

.b c d e *

Ana

lytic

al e

rror

= ±

0.5%

** A

naly

tical

err

or =

±0.

1%

Sam

ple

Hei

ght (

m)a

SiO

(wt%

)*A

lCa

O (w

t%)*

*M

gO (w

t%)*

*N

aK

TiO

Ti/A

lCI

A-K

bSA

LcPW

IdM

AP

(mm

/yr)

eM

AT1

(˚C)f

MAT

2 (˚C

)g

CBM

-P16

-BCB

MG

-P1-

BCB

MG

-P1-

ACB

MG

-P2-

BCB

MG

-P2-

ACB

MG

-P3-

CCB

MG

-P3-

BCB

MG

-P3-

ACB

MG

-P5-

BCB

MG

-P5-

ACB

MG

-P7-

BCB

MG

-P7-

ACB

MG

-P10

-CCB

MG

-P10

-BCB

MG

-P10

-ACB

MG

-P11

-CCB

MG

-P11

-BCB

MG

-P11

-ACB

MG

-P12

-BCB

MG

-P12

-A

-10.

012

.513

.020

.020

.555

.555

.756

.058

.558

.872

.572

.998

.599

.099

.510

2.5

103.

010

3.5

112.

011

2.4

× 10

0

× N

a)+(

1.66

× M

g)+(

5.54

× K

)+(2

.05

× Ca

)) ×

100

Base

d on

CIA

-K c

limof

unct

ion

of S

held

on e

t al.

(200

2)f

Base

d on

SA

L cl

imof

unct

ion

of S

held

on e

t al.

(200

2)g B

ased

on

PWI c

limof

unct

ion

of G

alla

gher

and

She

ldon

(201

3)

69.1

70.7

74.7

71.4

73.3

69.1

66.1

67.1

62.5

61.1

65.6

65.7

73.7

71.0

71.6

76.8

75.9

79.1

55.6

64.4

14.8

13.7

13.7

15.0

14.0

16.5

17.0

16.8

18.6

19.0

16.6

16.3

13.9

15.5

14.9

12.5

13.1

11.1

23.8

18.0

1.89

3.27

1.35

1.73

0.97

0.76

0.85

1.12

1.26

1.24

1.86

1.33

0.47

0.58

1.14

0.59

0.99

1.41

1.69

1.48

4.46

3.61

0.78

2.57

1.37

1.78

2.98

1.95

2.38

2.52

0.98

2.01

1.39

0.38

1.44

1.04

0.18

0.88

2.34

1.64

3.30

2.18

4.11

2.03

1.82

2.65

2.51

2.29

2.75

2.60

1.34

2.31

1.02

0.69

0.98

0.78

0.12

1.15

0.31

0.48

3.19

4.15

2.80

4.50

4.09

4.26

4.34

4.36

4.89

5.06

4.67

4.75

4.37

3.61

4.44

4.39

3.09

3.69

6.47

5.08

0.60

0.56

0.31

0.61

0.58

0.73

0.75

0.74

0.93

0.93

0.72

0.71

0.56

0.66

0.63

0.44

0.41

0.33

0.94

0.73

0.05

0.05

0.03

0.05

0.05

0.06

0.06

0.06

0.06

0.06

0.05

0.06

0.05

0.05

0.05

0.04

0.04

0.04

0.05

0.05

62.5

59.0

----

-69

.8--

---

----

-75

.1--

---

73.2

----

-74

.9--

---

----

-87

.6--

---

----

-86

.8--

---

86.9

----

-

0.60

0.59

----

-0.

55--

---

----

-0.

52--

---

0.53

----

-0.

44--

---

----

-0.

32--

---

----

-0.

27--

---

0.32

----

-

66.4

66.0

----

-57

.1--

---

----

-57

.9--

---

61.7

----

-47

.4--

---

----

-29

.6--

---

----

-23

.3--

---

56.0

----

-

758

706

----

-87

4--

---

----

-96

9--

---

934

----

-96

6--

---

----

-12

42--

---

----

-12

22--

---

1224

----

-

6.2

6.4

----

-7.

2--

---

----

-7.

7--

---

7.5

----

-9.

2--

---

----

-11

.3--

---

----

-12

.3--

---

11.5

----

-

9.9

9.9

----

-10

.3--

---

----

-10

.3--

---

10.1

----

-10

.8--

---

----

-12

.1--

---

----

-12

.8--

---

10.4

----

-

Page 6: GSA Data Repository Item 2016299 Hyland, E.G., Sheldon, N ... · S NRM 700 CBPM-24 100 200 300 400 500 600 D = 358˚ Reversed I = -39˚ a95 = 13.5 D = 170˚ Normal I = 33˚ a95 =

Table DR3. Carbon isotope data from organic carbon analyses

Sample name Height (m)a

a Height refers to stratigraphic height from base of the Maiz Gordo Fm.b Carbon isotope values are the average composition of ≥3 analyses* Analytical uncertainty is maintained at <0.1‰ for all analyses

δ C (‰)b* SD (‰)§ OC (wt%)

CBMG-P1CBMG-P2CBMG-P3CBMG-P4CBMG-P5CBMG-P6CBMG-P7CBMG-P8CBMG-P9CBMG-P10CBMG-P11CBMG-P12

13.020.556.057.058.871.272.975.082.499.5103.5112.4

0.020.040.030.010.030.020.030.030.020.020.050.01

0.110.171.180.310.200.140.220.170.250.080.180.21

-28.04-24.66-26.39-25.16-26.21-20.69-21.17-21.88-21.61-26.64-27.79-24.35

§ Standard deviation (S.D.) average = 0.27‰, or 0.18‰ with outlier (CBMG-P3) removed

Page 7: GSA Data Repository Item 2016299 Hyland, E.G., Sheldon, N ... · S NRM 700 CBPM-24 100 200 300 400 500 600 D = 358˚ Reversed I = -39˚ a95 = 13.5 D = 170˚ Normal I = 33˚ a95 =

Table DR4. Data averages from Figure 4 with sources

1) This work; 2) Hyland and Sheldon, 2013; 3) Royer et al., 2004; 4) Hollis et al., 2012 (Tex86 and Mg/Ca data); 5) Coccioni et al., 2010; 6) Zachos et al., 2008; 7) Dickens and Backman, 2013; 8) Hancock and Dickens, 2005 a) Baseline values recorded as average value for previous 5 Myr of data from Wilf (2000) and Krause et al. (2013). b) Baseline values recorded as average value for previous 2 Myr of data from same sources.

A

Atm. CO∆MAT (ter.)a

∆MAT (mar.)b

∆ C (ter.)c

∆ C (plank.)b

∆ C (benth.)b

Source B C D E F G H I J K L M N O Pn

(per bin)

36 (2.3)52 (3.3)50 (3.1)72 (4.5)94 (5.9)88 (5.5)

2, 314156, 7, 8

BINS (250 kyr)

3901.11.21.00.0-0.1

3402.01.82.2-0.2-0.65

5802.01.91.0-0.05-0.2

8003.02.82.0-0.5-0.35

12103.12.72.1-0.45-0.65

14004.22.94.2-0.55-0.65

4202.21.92.8-0.6-0.65

8604.02.54.0-0.7-0.5

4201.62.00.9-0.65-0.85

6001.20.90.9-0.7-1.15

4700.81.21.6-0.75-1.0

2601.20.61.4-0.55-0.8

3701.10.81.8-0.3-0.75

3801.10.80.2-0.25-0.6

4401.10.30.6-0.15-0.3

4601.00.30.50.0-0.15

Page 8: GSA Data Repository Item 2016299 Hyland, E.G., Sheldon, N ... · S NRM 700 CBPM-24 100 200 300 400 500 600 D = 358˚ Reversed I = -39˚ a95 = 13.5 D = 170˚ Normal I = 33˚ a95 =

Supplementary References

Clyde, W.C., Wilf, P., Slingerland, R.L., Barnum, T., Bijl, P.K., Bralower, T.J., Brinkhuis, H., Comer, E.E., Huber, B.T., Ibanez-Mejia, M., Jicha, B.R., Krause, J.M.,

Terra Nova, v. 24, p. 380-386.

Dickens, G.R., Backman, J., 2013, Core alignment and composite depth scale for the lower Paleogene through uppermost Cretaceous interval at Deep Sea

¹³

carbon dioxide: American Journal of Science, v. 299, p. 805-827.

Gradstein, F.M., Ogg, J.G., Schmitz, M., and Ogg, G., 2012, The Geologic Time Scale 2012: Elsevier (Amsterdam, NED), pp. 1176.

Hollis, C.J., Taylor, K., Handley, L., Pancost, R., Huber, M., Creech, J., Hines, B., Crouch, E., Morgans, H., Crampton, J., Gibbs, S., Pearson, P., Zachos, J., 2012,

Hyland, E., and Sheldon, N.D., 2013, Coupled CO2Palaeoecology, v. 369, p. 125–135.

Geophysical Research, Solid Earth, v. 107, 1–18.

Volkheimer, W., and Smelka, A. (Eds.), Southern Hemisphere Paleo- and Neoclimates: Key sites, data and models, Springer (New York, USA), pp. 353–367.

v. 10, p. 1203–1206.

Royer, D.L., Berner, R., Montanez, I., Tabor, N., Beerling, D., 2004, CO2 as a primary driver of Phanerozoic climate: GSA Today, v. 14, p. 4-10.

Eocene-Oligocene boundary in Oregon: Journal of Geology, v. 110, p. 687–696.

v. 112, p. 292-307.

Woodburne, M.O., Goin, F.J., Bond, M., Carlini, A.A., Gelfo, J.N., Lopez, G.M., Iglesias, A., Zimicz, A.N., 2014, Paleogene land mammal faunas of South

DeCelles, P.G., Carrapa, B., Horton, B.K., Gehrels, G.E., 2011, Cenozoic foreland basin system in the Central Andes of northwestern Argentina: Implications for Andeangeodynamics and modes of deformation: Tectonics, v. 30, p. 6013-6043.

Marquillas, R.A., Del Papa, C., Sabino, I.F., 2005, Sedimentary aspects and paleoenvironmental evolution of a rift basin: Salta Group (Cretaceous-Paleogene), north-western Argentina: International Journal of Earth Sciences, v. 94, p. 94-113.