Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce...

16
Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella

Transcript of Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce...

Page 1: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

Group 2

E treme

hot spells

Mari JonesChristiana PhotiadouDavid KeelingsCandida DewesMerce Castella

Page 2: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

2

Motivation

• Examine extreme hot temperatures in Europe and their drivers:– Blocking Index– North Atlantic Oscillation– El Niño-Southern Oscillation (BEST index)

ASP Summer Colloquium Project#223 June 2011

Page 3: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

Russia July 2010

http://earthobservatory.nasa.gov/IOTD/view.php?id=47880

Page 4: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

4

Data Sets

Barcelona: 1926-2010Oslo: 1937-2010Oxford: 1853-2010Moscow: 1949-2010Trier: 1948-2010

Blocking: 1961-2000NAO: 1848-2010ENSO-SST: 1871-2010

ASP Summer Colloquium Project#223 June 2011

-20 0 20 40

40

50

60

70

Oxford

Oslo

Trier

Barcelona

Moscow

Page 5: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

Atmospheric blocking

relationship between temperature and precipitation anomalies (Rex 1951, Trigo et al. 2004)

… sustained, quasi-stationary, high-pressure systems that disrupt the prevailing westerly circumpolar flow

Height of tropopause (2 pvu *):

• elevated tropopause associated with strong negative potential vorticity anomalies ( > -1.3 pvu )

* [10-6m2s-1K kg-1]

Sillmann, 2009

Page 6: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

Atmospheric blockingPotential Vorticity (PV) - based blocking indicator

Blocking detection method (Schwierz et al. 2004):

• Identification of regions with strong negative PV anomalies between 500-150hPa

• PV anomalies which meet time persistence (> 10 days) and spatial criteria (1.8*106km2) are tracked from their genesis to their lysis

Sillmann, 2009

Page 7: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

Excesses over Thresholds

0 20 40 60 80 100 120

05

1015

2025

Days

Pre

cip

itatio

n [

mm

]

v = 1mm

u = 16.8mm

Page 8: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

Stationary Point Process

• Frequency of Events: Poisson Process

• Magnitude of excess: GPD

Page 9: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

9

Threshold Selection

ASP Summer Colloquium Project#223 June 2011

31 32 33 34 35

-10

10

30

Threshold

Mo

difi

ed

Sca

le

31 32 33 34 35

-1.0

0.0

0.5

Threshold

Sh

ap

e

Page 10: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

10

Model fitting

ASP Summer Colloquium Project#223 June 2011

Stationary Model

Non-Stationary Model Blocking Non-Stationary Model ENSO

Non-Stationary Model NAO

Page 11: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

Stationary Point Process

Parameters for JJA Maximum temperaturelocation

MLE estimates of the GEV parameters transformed to give the parameters of the Poisson model and GPD:

σu = σ + ξ(u – μ)Λ = (t2-t1)[1+ξ (z-μ)/σ ]-1/ξ

Page 12: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

Non-stationary Point ProcessDo the atmospheric driving conditions improve the

statistical mode fits?

stationary Point Process non-stationary Point Process

COV – time dependent covariate

As before derive GPD parameters from GEV estimates

e.g. Atmospheric blocking as covariate (CAB)

Page 13: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

Statistical modelingModel selection

Model choice

Deviance Statistic:

where nllh0(M0) is the neg. log-likelihood of simple model

nllh1(M1) is the neg. log-likelihood of more complex model

*

* degrees of freedom

Model µ σ λ Distribution functions d.f.

0 0 0 0 F(x) ~ GPD(μ,σ) G(x) ~Pois(λ) 3

1 CAB 0 CAB F(x|CAB(t)=z) ~ GPD(μ(z),σ) G(x|CAB(t=z)) ~Pois(λ(z))

4

2 CAB CAB CAB F(x|CAB(t)=z) ~ GPD(μ(z),σ(z)) G(x|CAB(t)=z) ~Pois(λ(z))

5

Page 14: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

Non-stationary Point ProcessComparison of models

Page 15: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

15

Discussion

• Resolution of Blocking index is too low• JJA Summer only may miss some events• Attributing excess temperatures to one driver

alone is too simplistic multiple covariates?• Hot spells (consecutive days of excess) may be

more interesting• Similarly considering relative importance of

minimum temperatures and relative humidity

ASP Summer Colloquium Project#223 June 2011

Page 16: Group 2 E treme hot spells Mari Jones Christiana Photiadou David Keelings Candida Dewes Merce Castella.

16

Issues…

• Data limitations (blocking only available JJA)• Familiarity with R packages

– Fitting covariates– Calculating return levels under non-stationarity– Mapping

• Time!

ASP Summer Colloquium Project#223 June 2011