GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at...

17
GROUND DEFORMATION DUE TO STEAM CAP PROCESSES AT REYKJANES, SW-ICELAND: EFFECTS OF GEOTHERMAL EXPLOITATION INFERRED FROM INTERFEROMETRIC ANALYSIS OF SENTINEL-1 IMAGES 2015-2017 Mylรจne Receveur (1) , Freysteinn Sigmundsson (1) , Vincent Drouin (1,2) , Michelle Parks (3) (1) Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland (2) National Land Survey of Iceland, Akranes, Iceland (3) Icelandic Meteorological Office [email protected] Final Master project 1

Transcript of GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at...

Page 1: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

GROUND DEFORMATION DUE TO STEAM CAP PROCESSES AT REYKJANES, SW-ICELAND: EFFECTS OF GEOTHERMAL

EXPLOITATION INFERRED FROM INTERFEROMETRIC ANALYSIS OF SENTINEL-1 IMAGES 2015-2017

Mylรจne Receveur (1), Freysteinn Sigmundsson(1), Vincent Drouin(1,2), Michelle Parks (3)

(1) Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland(2) National Land Survey of Iceland, Akranes, Iceland

(3) Icelandic Meteorological Office

[email protected] Master project

1

Page 2: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

Highlightsโ€ข Time series analysis from 2015 to 2017 using

Interferometric analysis of C-band Sentinel-1A and Sentinel-1B data

โ€ข Determination of the parameters for the deformation source using probabilistic inversion

โ€ข Models of deformation processes, considering pressure/temperature and production data

2Source :Mylene Receveur

Source :European Space Agency (ESA)

Source : Mylรจne Receveur

Page 3: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

Introduction Data Time series analysis Modeling Interpretation Conclusion

โ€ข High temperature geothermal system

โ€ข 17 production and 5 injection wells in 2015-2017

โ€ข Commissioning of the 100 Mwe power plant in 2006

Average yearly next extraction of geothermal fluid 1970-2016 (Vatnaskilreport, 2017)

Pre

ssu

re (

ba

r) 2

00

6-2

01

7

3Source: HS-Orka; Thorvaldsson & Arnarsson, Vatnaskil report, 2017; Khodayar et al., 2016

Page 4: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

Introduction Data Time series analysis Modeling Interpretation Conclusion

2005-2016 Inferred cumulative vertical displacement: -0,26 mContraction towards the center of deflation: 0.14 m.

Envisat track 173 Envisat track 138

2005-2008

Envisat T173: -33mm/yr

Envisat T138: -28 mm/yr

Parks et al. (2018)

TSX track T26 TSX track T1102009-2016

TSX T26: -24 mm/yr

TSX T110: -21 mm/yr

4

Page 5: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

5

Phase change in range (rad)

Phase change in range (rad)

Introduction Data Time series analysis Modeling Interpretation Conclusion

a) Geometry for ascending and descending near-polar orbits.

b) Projection of heading h and LOS vectors l onto the ground plane (Wortham, 2014).

๐ท๐‘’๐‘ ๐‘๐‘’๐‘›๐‘‘๐‘–๐‘›๐‘” ๐‘‡155

๐ด๐‘ ๐‘๐‘’๐‘›๐‘‘๐‘–๐‘›๐‘” ๐‘‡16

๐‘‘๐ฟ๐‘‚๐‘† = โˆ’ าง๐‘‘ โ€ข เดค๐‘ข

เดค๐‘ข๐‘‡16 = [โˆ’0.545 0.123 0.830]

เดค๐‘ข๐‘‡155 = [0.605 0.123 0.787]

5

Sentinel-1 mission: two satellites, two tracks

โ–ช 104 and 107 Single Look Complex images from T16 and T155 between October 2014 โ€“ January 2018

โ–ช 1 image every 12 days, 5 x 20 m resolution

โ–ช Processing: ISCE software

Page 6: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

6

Introduction Data Time series analysis Modeling Interpretation Conclusion

โ–ช40 interferograms

โ–ช804 days

6

โ–ช47 interferograms

โ–ช942 days

Perpendicular baseline

o S1Ao S1B

Page 7: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

Introduction Data Time series analysis Modeling Interpretation Conclusion

Velocity mapsโ–ชResolution:

40 x 40 m

โ–ชSub-circular subsidence bowl centered on the most productive area (Gunnuhver hot spring)

โ–ชLinear deformation: 16 mm/yr in the satellite LOS

77

Time series analysis for a set of point situated in the center of the most deforming area (black squares):

7

Page 8: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

Introduction Data Time series analysis Modeling Interpretation Conclusion

Decomposition into near-vertical and near-east displacement components

8

๐‘›๐‘ˆ =๐‘‘๐ด + ๐‘‘๐ท

1.617 ๐‘›๐ธ =๐‘‘๐ด โˆ’ ๐‘‘๐ท

โˆ’1.149

Near-eastNear-vertical

-25 mm/yr

+4 mm/yr

-10 mm/yr

(mm/yr) (mm/yr)

Page 9: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

9

Introduction Data Time series analysis Modeling Interpretation Conclusion

Horizontal Okada sill with uniform closing and contracting penny shaped crack

โ–ชInput: LOS average velocity maps

โ–ชContraction of a rock body under pressure change in a homogeneous, isotropic and elastic half-space

โ–ช5 model parameters

โ–ชResults: source at 1 km depth closing by a constant rate of 4 cm/yr or a volume change โˆ†๐‘‰ = 0,9 โˆ— 105๐‘š3/๐‘ฆ๐‘Ÿ

9

-0,04 [ -0,06; -0,02]1531 [979; 1969]1357 m [666; 2156]

1161 1097; 1193700 680; 730

โˆ’9.96 โˆ’10,0;โˆ’8,5] ร— 10โˆ’5

Page 10: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

Introduction Data Time series analysis Modeling Interpretation Conclusion

Relation between deformation sources and geological structure

(modified from Friรฐleifsson et al., 2014; Khodayar et al., 2016)

Vertical displacement map

10

Reservoir volume : 3,8 ๐‘˜๐‘š3

Average reservoir thickness : 2 kmMicro-scale porosity: 15%Steam cap thickness: 300-400 mSteam cap volume: 0,6-0,8 ๐‘˜๐‘š3

Page 11: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

11

๐‘‘๐‘ฃ =๐‘‘๐‘ฃ

๐‘‘๐‘‡๐‘‘๐‘‡ +

๐‘‘๐‘ฃ

๐‘‘๐‘ƒ๐‘‘๐‘ƒ = ๐‘ฃ๐›ผ๐‘‘๐‘‡ โˆ’ ๐‘ฃ๐‘๐‘‘๐‘ƒ

Introduction Data Time series analysis Modeling Interpretation Conclusion

๐‘ฃ โˆถ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’๐‘ƒ: ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’๐‘‡: ๐‘‡๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’๐›ผ: ๐ถ๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘: ๐‘ˆ๐‘›๐‘–๐‘Ž๐‘ฅ๐‘–๐‘Ž๐‘™ ๐‘๐‘œ๐‘Ÿ๐‘œ-๐‘’๐‘™๐‘Ž๐‘ ๐‘ก๐‘–๐‘ ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก

11

Cumulative volume change 2005-2017

โˆ†๐‘‰๐‘ก๐‘œ๐‘ก(2005โˆ’2017) = โˆ’3,9 ร— 106๐‘š3

Page 12: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

1) Pressure change

2) Cooling within a horizontal layer

3) Delayed rock compaction

๐‘‘๐‘ฃ =๐‘‘๐‘ฃ

๐‘‘๐‘‡๐‘‘๐‘‡ +

๐‘‘๐‘ฃ

๐‘‘๐‘ƒ๐‘‘๐‘ƒ = ๐‘ฃ๐›ผ๐‘‘๐‘‡ โˆ’ ๐‘ฃ๐‘๐‘‘๐‘ƒ

Introduction Data Time series analysis Modeling Interpretation Conclusion

In a Penny shaped crack

โˆ†๐‘ƒ =ยต

2๐‘Ž3โˆ†๐‘‰

โˆ†๐‘‰๐‘ƒ๐‘†๐ถ= โˆ’0,7 ร— 105๐‘š3/๐‘ฆ๐‘Ÿ

with ๐‘Ž = 700 ๐‘š

ยต = (1 โˆ’ 20) ๐บ๐‘ƒ๐‘Ž

โˆ†๐‘ƒ = 0,1 ๐‘ก๐‘œ 2 ๐‘€๐‘ƒ๐‘Ž/๐‘ฆ๐‘Ÿ

โˆ†๐‘ƒ = 0,15 ๐‘€๐‘ƒ๐‘Ž/๐‘ฆ๐‘Ÿ if ยต = 1,5 ๐บ๐‘ƒ๐‘Ž

12

โˆ†๐‘ƒ = 0,3 MPa in 2 years(-0,15 MPa/yr)

Page 13: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

Introduction Data Time series analysis Modeling Interpretation Conclusion

In the Okada layerโˆ†โ„Ž = ๐›พ๐›ผโ„Žโˆ†๐‘‡

= โˆ’0,04 ๐‘š/๐‘ฆ๐‘ŸWith ๐›พ๐›ผ = (1 โˆ’ 5) ร— 10โˆ’5 ยฐ๐ถโˆ’1

13

If โˆ†๐‘‡ = โˆ’4 ยฐ๐ถ/๐‘ฆ๐‘Ÿโ„Ž = 200 ๐‘ก๐‘œ 1000 ๐‘š

If โ„Ž = 400 ๐‘šโˆ†๐‘‡ = โˆ’10 ๐‘ก๐‘œ โˆ’ 2ยฐ๐ถ/๐‘ฆ๐‘Ÿ

1) Pressure change

2) Cooling within a horizontal layer

3) Delayed rock compaction

๐‘‘๐‘ฃ =๐‘‘๐‘ฃ

๐‘‘๐‘‡๐‘‘๐‘‡ +

๐‘‘๐‘ฃ

๐‘‘๐‘ƒ๐‘‘๐‘ƒ = ๐‘ฃ๐›ผ๐‘‘๐‘‡ โˆ’ ๐‘ฃ๐‘๐‘‘๐‘ƒ

โ„Ž = 600 ๐‘š

โˆ†๐‘‡2009โˆ’2015=30ยฐC

At 925 m b.s.l

Page 14: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

Non-linear relationship between pressure and volume change

Change in isothermal compressibility (steam zone)

โˆ†๐‘‰ = ๐‘โˆ†๐‘ƒ๐‘‰

Introduction Data Time series analysis Modeling Interpretation Conclusion

๐’„ = ๐Ÿ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ๐ŸŽ๐‘ท๐’‚โˆ’๐Ÿ

14

๐’„ = ๐Ÿ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—๐‘ท๐’‚โˆ’๐Ÿ

1) Pressure change

2) Cooling within a horizontal layer

3) Delayed rock compaction

๐‘‘๐‘ฃ =๐‘‘๐‘ฃ

๐‘‘๐‘‡๐‘‘๐‘‡ +

๐‘‘๐‘ฃ

๐‘‘๐‘ƒ๐‘‘๐‘ƒ = ๐‘ฃ๐›ผ๐‘‘๐‘‡ โˆ’ ๐‘ฃ๐‘๐‘‘๐‘ƒ

Source: Thorvaldsson & Arnarsson, Vatnaskil report, 2017; Khodayar et al., 2016)

โˆ†๐‘‰๐‘ก๐‘œ๐‘ก(2005โˆ’2017) = โˆ†๐‘‰๐‘Ÿ๐‘’๐‘ ๐‘’๐‘Ÿ๐‘ฃ๐‘œ๐‘–๐‘Ÿ+ โˆ†๐‘‰๐‘ ๐‘ก๐‘’๐‘Ž๐‘š ๐‘๐‘Ž๐‘ = โˆ’2,6 ร— 106 โˆ’ 1,3 ร— 106 = โˆ’3,9 ร— 106๐‘š3

Page 15: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

Conclusion

15

โ–ชSentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation free area)

โ–ชDecrease in the rate of volume change :โ–ช 2006-2009: -7.3 x 105 m3/yrโ–ช 2009-2016: -1,5 x 105 m3/yrโ–ช 2015-2017: -0,9 x 105 m3/yr

โ–ชMigration of the modelled source from about 2,2 km to 1 km depth

โ–ชChange in subsidence pattern

โ–ชCombination of pressure, temperature and compressibility change in steam cap can explain 2015-2017 deformation

Futureโ–ชNumerical modeling of deformation processesโ–ชUse geodetic studies to guide reinjection and

preservation of the steam cap

15

Page 16: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

Thank you !QUESTIONS ?

16

Page 17: GROUND DEFORMATION DUE TO STEAM CAP ......Sentinel-1 InSAR successfully captures deformation at Reykjanes using only two years of data. Ideal location at Reykjanes (flat & vegetation

ReferencesAxelsson, G., Arnaldsson, A., Berthet, J.C.C., Bromley, C.J., Gudnason, E.A., Hreinsdรณttir, S., Karlsdรณttir, R., Magnรบsson, I.Th, Michalczewska, K.L., Sigmundsson, F., Sigurdsson, O., 2015. Renewability Assessment of the Reykjanes Geothermal System, SW-Iceland. In: Proceedings World Geothermal Congress 2015. 10p.

Clifton, A., 2003. Fracture populations on the Reykjanes Peninsula, Iceland: Comparison with experimental clay models of obliquerifting. In: Journal of geophysical research, Vol, 108, NO. B2, 2074, doi:10.1029/2001JB000635

Drouin, V., Sigmundsson, F., Verhagen, S., Ofeigsson, B.G., Spaans, K., Hreinsdottir, S., 2017. Deformation at Krafla and Bjarnaflaggeothermal areas, Northern Vocanic Zone of Iceland, 1993-2003. In: Journal of Volcanology and Geothermal Research 344. 92-105.

Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F., 2007. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. European Space Agency. TM-19. ISBN: 92-9092-233-8 ISSN

Fialko,Y., Khazan,Y., Simons,M., 2001. Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy, Geophysical Journal International, 146, 181โ€“190.

Friรฐleifsson, G.ร“., Sigurdsson, ร“., Thorbjรถrnsson, D., Karlsdottir, R., Gilason, Th., 2014. Preparation for drilling well IDDP-2 at Reykjanes. In: Geothermics 49. P119-126

Im, K., Elsworth, D., Guglielmi, Y., Mattioli, G.S., 2017. Geodetic imaging of thermal deformation in geothermal reservoirs โ€“production, depletion and fault reactivation. In: Journal of Volcanology and Geothermal Research (unpublished). 13p

Khodayar, M., Nielson, S., Hickson, C., Gudnason, E.A., Hardarson, B.S., Gudmundsottir, V., Halldorsdottir, S., Oskarsson, F., Weisenberger, T.B., Bjornsson, S., 2016. The 2016 Conceptual Model of Reykjanes Geothermal System, SW Iceland. ISOR Report. Project No: 15-0230. 110p

Okada, Y. 1985. Surface deformation due to shear and tensile faults in a halfspace, Bull. Seismol. Soc. Am., 75, 1135โ€“1154.

Parks, M., Sigmundsson, F.,Sigurdson, O., Hopper, A., in review. InSAR Analysis of the Western Reykjanes Peninsula: 2003 to 2016. Draft report.

17