Grinding Mill Scale-up Problems by CC Harris N Arbiter

download Grinding Mill Scale-up Problems by CC Harris N Arbiter

of 4

Transcript of Grinding Mill Scale-up Problems by CC Harris N Arbiter

  • 7/25/2019 Grinding Mill Scale-up Problems by CC Harris N Arbiter

    1/4

    Gr i i id i i i g illSco fe yp Prob lem s

    C .

    C . H a r r i s an d N. A r b i t e r

    Bal l and rod mi lls at An ac on da

    C o.

    s Carr Fork coppe r mine outs ide Salt Lake City , UT . At lef t , Harding e

    16.5 x 29

    f t 5 x 8 . 8 m) ball

    mill. A t r ight , Hardinge

    14 x 20

    f t

    (4.3 x 6.1

    m) rod mi l l . Th e mi l ls were produ ced by the Mine ral Processing Div is ion of Koppers Co.

    Inc. Photo courtesy of Koppers.

    T h e eco n o m ic ad van tage .s o f large

    d i a m e t e r

    b a l l

    m i l l s

    c a n b e c o m -

    o r o m i . s e d

    b y u n e . \ p e c t e d c a p a c i t y

    i m i t i n g c o n d i t i o n s .

    These arise

    b e

    cause

    m e d i a r o t a t i o n a l

    flow

    to ore

    a.xial flow r a t i o s , a n d t h e n u m b e r o f

    m i l l

    r e v o l u t i o n s t h a t o r e is s u b j e c t e d

    to d u r i n g residence,

    a r e b o t h i n

    v e r s e l y

    p r o p o r t io n a l

    to

    m i l l

    d i a m e t e r .

    Because o f

    t h i s , m i x i n g

    e f f i c i e n c y a n d

    g r i n d i n g

    k i n e t i c s m a y

    decrease

    a n d

    become

    c a p a c i t y l i m i t i n g w h e n

    m i l l

    d i a m e t e r s r e a c h a c r i t i c a l r a n g e .

    T h e r e a r e t w o p o s s i b l e

    scale-up

    p r o b l e m s i n v o l v e d

    i n t h e d e s i g n a n d

    use o f

    m i n e r a l

    p r o c e s s i n g m a c h i n e r y :

    S e l e c t i n g t h e

    size

    a n d o p e r a t i n g

    c o n d i t i o n s

    f o r a v a i l a b l e l a r g e r e q u i p

    m e n t ,

    t o i n s u r e t h a t o p e r a t i n g r e s u l t s

    w i l l

    m a t c h

    those

    o b t a i n e d

    w i t h

    s m a l

    le r u n i t s ;

    o r

    E x t e n d i n g t h e

    size ranges

    o f

    e q u i p m e n t b e y o n d e x i s t i n g l i m i t s .

    P r e v i o u s

    research

    a t C o l u m b i a

    U n i v e r s i t y

    in to flotation

    m a c h i n e

    h y d r o d y n a m i c s

    h a s d e m o n s t r a t e d t h e

    C. C. Harr is is professor of mineral

    engineer ing and N. Arbi ter is emer i tus

    professor wi th Henry Krumb School of

    M ines , Co lumbia Un ivers i t y , New York ,

    N Y 10027.

    i m p o r t a n c e

    i n

    scale-up

    o f i n t e r n a l

    flow r e l a t i o n s h i p s ; these p e r f o r m

    a

    s i m i l a r

    r o l e i n

    g r i n d i n g

    ( A r b i t e r

    an d

    H a r r i s ,

    1980).

    Problems at oug ainv il le

    T h e l a r g e s t

    t u n i b l i n g m i l l s

    in use in

    1 9 4 3, a c c o r d i n g t o T a g g a r t , w e r e 9 f t

    ( 2 .7 m) f o r ro d

    m i l l s

    an d 10.5 f t (3 .2 m)

    fo r

    b a l l

    m i l l s . Since

    t h e n , r o d

    m i l l

    d i a m e t e r s h a v e i n c r e a s e d t o 1 5 f t

    ( 4 . 6 m ) a n d

    b a l l

    m i l l

    d i a m e t e r s t o

    16.5 f t (5 .0 m ) ,

    w i t h

    t w o p l a n t s u s i n g

    1 8 - f t ( 5 . 5 - m )

    m i l l s .

    T h e m o r e r e c e n t l y

    d e v e l o p e d p r i m a r y

    a u t o g e n o u s

    m i l l s

    h ave d iam eters up to 36 f t ( 11 m) .

    I n

    s p i t e o fthese r e l a t i v e l y l a r g e i n

    creases,

    th ere h as

    been o n l y

    o n e

    p u b

    l i s h e d

    r e p o r t r e g a r d i n g

    scale-up

    p r o b

    l e m s : t h e B o u g a i n v i l l e i n s t a l l a t i o n o f

    e i g h t 18 ft x 2 1 ft (5.5 m x 6.4 m )

    b a l l

    m i l l s .

    D es ig n e d f o r 90 000 s t/d ( 82

    kt/d) , t h e c i r c u i t

    o r i g i n a l l v

    t r e a t e d

    a b o u t

    72,000

    st/d (66

    kt/d).

    A c c o r d i n g

    to

    t h e o p e r at o r ( H i n k f u s s ,

    1976),

    . .

    t h e

    m i l l s

    u se a b o u t o n e - t h i r d m o r e

    p o w e r p e r t o n n e o f o r e

    g r o u n d

    t h a n

    w o u l d

    b e e x p e c t e d

    f r o m

    s m a l l e r ,

    3 .7 - m ( 12- f t )

    m i l l s .

    C i r c u l a t i n g loads

    up

    to 650 % are

    necessary,

    a n d

    coarser

    f e e d

    sizes

    a r e a p r o b l e m .

    V a r y i n g b a l l

    l o a d s ,

    b a l l sizes,

    a n d l i n e r p r o fi l e s

    b r o u g h t

    n o i m p r o v e m e n t . I n c r e a s i n g

    m i l l

    speed

    i n c r e a s e d p o w e r p r o p o r

    t i o n a t e l y ,

    b u t c a p a c i t y

    less

    t h a n

    p r o

    p o r t i o n a t e l y .

    T o r e a c h d e s i g n c a

    p a c i t y , an

    a d d i t i o n a l

    18 x 2 1 ft (5.5 x

    6.4 m)

    m i l l

    w a s i n s t a l l e d ,

    f o l lo w e d

    b y

    a 18 x 24 ft (5.5 x 7.3 m )

    m i l l Steane

    an d

    H i n k f u s s ,

    1979).

    Because o fthese

    p r o b l e m s , t h e

    m i l l

    m a n u f a c t u r e r r e c o m m e n d e d t h a t n o

    b a l l m i l l s

    lar ge r tha n 16.5 f t (5 m) in

    d i a m e t e r b e c o n s t r u c t e d

    u n t i l

    th e

    B o u g a i n v i l l e

    p r o b l e m c o u l d b e b e t t e r

    u n d e r s t o o d ( K j o s ,

    1979).

    H o w e v e r ,

    m i l l s of

    t h e

    samesizep e r f o r m satisfac-

    t o r i l v

    a t C i t i e s

    Service

    Co . ' s P in to

    \'al-

    le y

    p l a n t ( H u l s e b o s , 1 9 79 ,

    1981),

    an d

    a u t o g e n o u s

    m i l l s

    n e a r l y t w i c e th a t

    d i a m e t e r a re i n r e g u l a r s e r v i c e .

    S c a l e E f fe c t s i n T u m b l i n g M ills

    S t u d y o f a v a i l a b l e d a t a

    f r o m

    B o u g a i n v i l l e ,

    P i n t o V a l l e y , a n d o t h e r

    p l a n t s ,

    a n d a d e t a i l e d a n a l y s i s o f

    s c a l e - u p , i n d i c a t e t h a t t h e r e s h o u l d b e

    a

    c r i t i c a l

    d i a m e t e r r a n g e f o r

    b a l l m i l l s *

    * The sam e proble m can be expected

    with any tum bl in g m i l l , but not necessar-

    i ly at the same diameter.

    M I N I N G E N G I N E E R I N G

    J A N U A R Y 1 9 8 2 ^

  • 7/25/2019 Grinding Mill Scale-up Problems by CC Harris N Arbiter

    2/4

    above

    w h i c h

    scale-up

    p r o b l e m s c a n

    b e e x p e c t e d . T h e

    d i f f i c u l t y

    i s n o t i n

    th e

    a b i l i t y

    t o p r e d i c t o r p r o v i d e t h e

    p o w e r

    necessary

    t o

    d r i v e

    t h e m i l l

    (Kjos,

    1979),

    b u t r a t h e r i n t h e

    exis

    tence

    o f a p r e v i o u s l y u n r e c o g n i z e d

    d i m e n s i o n a l a n d d y n a m i c f a c t o r a s

    sociated w i t h m i l l scale-up.

    T h i s h a s

    tw o

    i n t e r r e l a t e d c o m p o n e n t s :

    A decrease i n m i x i n g w i t h i n

    c r e a s i n g m i l l d i a m e t e r , d u e t o t h e d e

    pendence

    o f

    m i x i n g effectiveness

    o n

    t h e n u m b e r o f

    m i l l

    r e v o l u t i o n s t o

    w h i c h

    a

    u n i t

    o f f e e d i s s u b j e c t e d . T h i s

    w i l l

    b e c o m p o u n d e d

    w i t h

    t h e d i s p e r

    s i o n

    o f

    residence

    t i m e s ( H e r b s t a n d

    F u e r s t e n a u , 1 98 0; F i n c h a n d R a m i

    rez-C astro, 1981) to be

    expected

    in a

    s i n g l e r e a c t o r e v e n i f

    w e l l

    m i x e d

    ( L e v e n s p i e l ,

    1972);

    A

    g r i n d i n g

    k i n e t i c s f a c t o r , r e p r e

    sented

    b y t h e r a t i o o f t h e

    g r i n d i n g

    m e d i a c i r c u l a t i o n r a te t o o r e f e e d r a t e ;

    t h i s also decreases w i t h

    i n c r e a s i n g

    m i l l d i a m e t e r s .

    These hectors

    ar e d i f f e r e n taspects o f

    t h e i n t e r a c t i o n b e t w e e n m e d i a c i r c u

    l a t i o n

    a n d f e e d

    flow.

    T h e i r

    systematic

    d e v e l o p m e n t i s g i v e n i n

    Table

    1 .

    Mixing Considerat ions

    T h e B o u g a i n v i l l e s ta f f ( H i n k f u s s ,

    1 97 6; H i n k f u s s a n d Steane, 1979) and

    o t h e r

    observers

    ( K j o s , 1 9 7 9 )

    have

    suggested

    t h a t p o o r m i x i n g a n d

    flow

    p r o b l e m s a r e

    i n v o l v e d .

    C a l c u l a t i o n s

    y s

    o n B o u g a i n \ i l I e a n d P i n t o

    V a l

    l e y o p e r a t i n g d a t a ,

    i n c l u d i n g

    a p p l i c a

    t i o n

    o f e q u a t i o n s 8 a n d 9 , l e a d t o d a t a

    i n Table

    2 . A ls o i n c l u d e d f o r c o m p a r i -

    Notation

    D M i l l d i a m e t e r m e a s u r e d i n s l d ^ l i n e r s

    F r a c t i o n c r i t i c a l s p e e d (= N \ 3 w h e r e N

    i s i n r pm and D i n f ee t )

    L M i l l l e n g t h m e a s u r e d i n t e r n a l l y

    L , L o a d i n g : f r a c t i o n o f m i l l v o l u m e o c c u p i e d by

    g r i n d i n g m e d i a , m e a s u r e d a t r e s t

    N M i l l r o t a t i o n a l s p e e d : r e v o l u t i o n s p e r u n i t t i m e

    n A v e r a g e n u m b e r o f r e v o l u t i o n s d u r i n g t h e r e

    s i d e n c e o f a n e l e m e n t o f o r e i n t h e m i l l {= Nr

    P M i l l power c o n s u m p t i o n : n e t p o w e r = c o n

    s u m e d p o w e r - i d l i n g p o w e r

    O , M a s s fe e d r a t e o f o r e t h r o u g h m i l l : a x i a l m a s s

    f l o w r a t e [ = n e w f e e d r a t e x ( 1 -i - c i r c u l a t i n g

    l o a d r a t i o ) . N o t e : Q / V ^ D ' ]

    Q , M a s s r o t a t i o n a l f l o w r a t e : m a y r e f e r t o s t e e l , o r

    p u l p , o r d r y o r e , o r a n y c o m b i n a t i o n , d e p e n d

    i n g o n d e n s i t y t e r m , p N V ^ . S e e a l s o T a b l e

    2 , f o o t n o t e j . N o t e : 0,. V ^ D ' )

    t N o m i n a l r e s i d e n c e t i m e o f o r e e l e m e n t i n m i l l

    ( = V^or/Q,)

    V M i l l v o l u m e ( = 7 r L D /4)

    V V o l u m e o f m i l l o c c u p i e d b y m e d i a ( = V L , )

    V o l u m e o f p u l p

    (

    = V e )

    W W e i g h t o f m i l l c o n t e n t s : m a y r e f e r t o s t e e l o r

    p u l p o r d r y o r e d e p e n d i n g o n d e n s i t y t e r m ,

    p ( = V p )

    f G r i n d i n g m e d i a v o i d r a t i o : v o i d v o l u m e / b u l k

    v o l u m e - 0 . 4 1 , n e w b a l l c h a r g e : e - - 0 . 3 8 .

    s e a s o n e d b a l l c h a r g e ( T a g g a r l 5 - 3 2 ) ; ~ 0 . 4 t o

    0 . 5 , e x p a n d e d d u e t o m i l l r o t a t i o n ( t o b e p u b

    l i s h e d )

    A u t o g e n o u s m i l l s : < = 1 ; = 1 .2 , e x p a n d e d d u e

    t o m i l l r o t a t i o n

    e H a l t a n g l e s u b t e n d e d a t m i l l c e n t e r b y g r i n d i n g

    med i a a t r es t [ ( 9 -

    sin6cose

    /7r

    = L,]

    p D e n s i t y o f m i l l c o n t e n t s o r o f a c o m p o n e n t o f

    c o n t e n t s : b u l k d e n s i t y o f b a l l l o a d - 2 9 0 l b s /

    c u b f t ; s t e e l d e n s i t y 4 8 0 l b s / c u b f t

    c r O r e de ns i t y

    son are data

    f r o m

    a s m a l l e r

    b a l l

    m i l l

    ( T a g g a r t ,

    194-5)

    a n d a l a r g e a u t o g e n o u s

    m i l K L o v e d a y .

    1979).

    T h e

    18-ft 5.5-m)

    m i l l d a t a s h o w t h a t a t P i n t o V a l l e y a

    u n i t

    o f f e e d i s

    exposed

    to 2 .4 t i m es as

    man\l r e v o l u t i o n s as at B c 2 U ga in -

    v i l l e .

    T h e s i g n i f i c a n t l y l o w e r n v a l u e

    f or B o u g a i n x

    i l l e

    t h a n f o r P i n t o V a l l e y

    ( a n d e s p e c i a l l y f o r t h e o t h e r t w o

    p l a n t s ) a n d s t a f f o b s e r v a t i o n s a t

    B o u g a i n v i l l e

    raise

    q u e s t i o n s a b o u t

    t h e n u m b e r o f m i l l r e v o l u t i o n s r e

    q u i r e d

    f o r e f f e c t i v e

    m i x i n g

    o f f e e d

    w i t h g r i n d i n g m e d i a .

    O r r discussed m i x i n g

    g r a n u l e s o f

    t h r e e c o l o r s i n a r o t a t i n g m i x e r a n d

    c o n c l u d e d t h a t t h e q u a l i t y o f

    m i x i n g

    based o n a

    test)

    d e p e n d e d o n t h e

    n u m b e r o f r e v o l u t i o n s as

    f o l l o w s :

    11 ,

    DOor; 2 3 , fiiir ; 3 5 , v e r y g o o d ; 5 6 ,

    excel-

    e n t . W h i l e t h e r e a r e t o o m a n y d i s

    s i m i l a r i t i e s

    b e t w e e n

    systems,

    r e -

    ( j u i r e m e n t s , a n d c r i t e r i a t o a p p l y t h i s

    i n f o r m a t i o n

    d i r e c t l y t o c o m m i n u t i o n ,

    these

    r e s u l t s s u p p o r t t h e i d e a t h a t

    p o o r

    m i x i n g

    i s o n e p r o b a b l e

    cause

    o f

    t h e B o u g a i n v i l l e p r o b l e m .

    T h e 1 8 - f t

    5.5-m) m i l l s

    i n q u e s t i o n

    operate

    a t s u b s t a n t i a l l y t h e

    same

    speed

    a n d

    w i t h

    s i m i l a r l o a d i n g s . T h e

    p e r f o r m a n c e d i f f e r e n c e s m u s t b e d u e

    p r i m a r i l y

    to d i f f e r e n c e s i n

    residence

    t i m e s d e t e r m i n e d b y t h e h i g h e r f e e d

    rates

    a n d m u c h h i g h e r c i r c u l a t i n g

    l o a d s a t B o u g a i n \ ' i l l e .

    These

    r e s u l t i n

    a 4 0 % l o w e r n o m i n a l

    residence

    t i m e

    a nd

    n v a l u e c o m p a r e d

    w i t h

    P i n t o

    V a l

    l e y . F o r m i l l s o f d i f f e r e n t d i a m e t e r , a l l

    o t h e r f a c t o r s b e i n g t h e

    same,

    t h e

    d i f

    ferences

    c a n b e e v e n l a r g e r . T h i s i s

    i l l u s t r a t e d

    i n

    Table

    3 , c a l c u l a t e d

    f r o m

    B o u g a i n v i l l e

    d a t a p r o p o r t i o n e d d o w n

    to

    a 5 .9 - f t

    1.8-m)

    m i l l , w h i c h

    i s t h e

    size u s e d i n t h e i r

    p i l o t

    s t u d i e s . C a l c u

    l a t e d v a l u e s a r e

    also

    i n c l u d e d f o r a

    16.5-ft

    ( 5 - m )

    m i l l ,

    i n t e r n a l d i a m e t e r

    1 5 .9 f t ( 4 .9 n i ) ( R o w l a n d a n d K j o s ,

    1978),

    w h i c h

    i s t h e l a r g e s t r e c o m

    m e n d e d d i a m e t e r m e n t i o n e d e a r l i e r

    ( K j o s ,

    1979).

    T h e f i g u r e s f o r t h e

    5.9-ft 1.8-m) m i l l

    a re r o u g h l y c o m p a r a b l e w i t h

    those

    f o r

    t h e t h r e e s a t i s f a c t o r i ly p e r f o r m i n g

    m i l l s i n

    Table

    2 ; t h e h i g h e r n v a l u e s

    suggest

    a h i g h e r r o t a t i o n a l

    m i x i n g

    ef

    fectiveness

    f o r t h e o t h e r

    m i l l s

    c o m

    p a r e d

    w i t h

    B o u g a i n \ ' i ll e . O t h e r

    m i l l

    dataprocessed

    i n t h i s s t u d y s h o w t h a t

    t h e n v a l u e f o r t h e B o u g a i n v i l l e m i l l is

    b y f a r t h e s m a l l e s t f o r a n o p e r a t i n g

    m i l l , a l t h o u g h s m a l l e r v a l u e s have

    been

    c a l c u l a t e d

    f r o m

    m a n u f a c t u r e r s '

    e s t i m a t e d

    capacities

    f o r 1 8 - f t - d i a m

    ( 5 . 5 - m - d i a m )

    m i l l s

    p r o d u c i n g v e r y

    coarse

    g r i n d s .

    A l t h o u g h m i x i n g

    d e f i c i e n c i e s a re

    u s u a l l y a t t r i b u t e d t o r o t a t i o n a l

    flow

    inadequacies,

    a n o t h e r m e c h a n i s m

    c a n also r e s u l t i n s e g r e g a t i o n o f

    p u l p

    a n d g r i n d i n g

    m e d i a

    w i t h

    r e d u c e d

    g r i n d i n g e f f i c i e n c y . T h e a x i a l c o m p o

    n e n t o f o re

    flow

    w i t h

    average

    v e l o c i t y ,

    L/ t

    oc

    L D - ^

    increases

    s t r o n g l y o n

    scale-up. Table

    2 s h o w s t h a t t h i s v e l

    o c i t y

    i n t h e B o u g a i n v i l l e

    m i l l

    i s c o n

    s i d e r a b l y

    greater

    t h a n i n t h e o t h e r

    m i l l s :

    n e a r l y 2 . 5 t i m e s t h a t f o r P i n t o

    V a l l e y , a n d m o r e t h a n 1 0 t i m e s t h a t f o r

    B u t t e a n d S u p e r i o r . I n s p i t e o f t h e

    v ry l a r g e size o f th e a u t o g e n o u s m i l l ,

    it s

    a x i a l c o m p o n e n t o f o r e v e l o c i t y is

    l o w .

    H o r i z o n t a l flow

    v e l o c i t i e s t h r o u g h

    p o r o u s m e d i a a r e g o v e r n e d b y t h e

    pressure

    g r a d i e n t

    f r o m

    f e e d t o d i s

    charge;

    s c a l e d - u p g e o m e t r i c a l l y , t h i s

    i s c o n s t a n t . I f t h i s a p p l i e s e v e n a p

    p r o x i m a t e l y to f l ow-throu gh gr i nd i ng

    m e d i a , a

    p o i n t w i l l

    b e

    reached

    i n

    scale-up

    w h e r e t h e i m p o s e d f e e d r a t e

    T a b l e

    1General

    M i l l E q ua t i ons

    P o w e r - I n t e r n a l R o t a t i o n a l F lo w E q u a t i o n s

    1. P ^ N L D ^ T o r q u e - a r m e q u a t i o n . T h e o r e t i c a l / e x p e r i m e n t a l c o n f i r m a t i o n .

    2.

    O ,

    ^ NID

    =cN V I n t e r n a l r o t a t i o n a l f l o w ( V =

    n LD U^

    = VL , )

    3 . P 0 , D F r o m e q u a t i o n 1 /2 . P u m p e q u a t i o n : h e a d i s s y n o n y m o u s w i t h D .

    O p e r a t i o n a l C o n s t r a i n t s C u r r e n t P r a c t i c e )

    4

    c o n s t a n t

    5 . Q , =t P

    D e r i v e d E q u a t i o n s

    6, P ^ LD - ^

    7, P, 'V, ^ Q/ V . D -^

    8- Q, , /Q, ^ D - '

    9 . ( Q , / V ) { V / Q , ) N t D - '

    C o n s t a n t f r a c t i o n c r it i c a l s p e e d ( C o n s t a n t F r o u d e n u m b e r ) . K i n e m a t i c s i m i l a r i t y .

    T h r o u g h p u t s c a l e u p . C o n s t a n t s p e c i f i c e n e r g y . P r o p o r t i o n a l i t y c o e f f i c i e n t i n c r e a s e s

    f o r c o a r s e r g r i n d s , s o f t e r o r e s , a n d v i c e v e r s a .

    F r o m 1 a n d 4 . P o w e r v e r s u s m i l l s i z e e q u a t i o n f o r s i m i l a r o p e r a t i n g c o n d i t i o n s .

    F r o m 5 a n d 6. S p e c i f i c p o w e r a n d s p e c i f i c t h r o u g h p u t i n c r e a s e s i m i l a r l y w i t h m i l l

    d i a m e t e r .

    F r o m 3 a n d 5 . F l o w r a t i o ( r o t a t i o n a l / a x i a l ) d e c r e a s e s s t r o n g l y w i t h i n c r e a s i n g m i l l

    d i a m e t e r .

    F r o m 2 a n d 8 . N o m i n a l r e s i d e n c e t i m e , t = V c r /0, =t D~' ' ^ Vp = fV^.

    N o t e s

    I n e q u a t i o n s 1 , 2 . a n d 3 m i l l l o a d i n g i s a s s u m e d t o b e c o n s t a n t i n s c a l e u p .

    E q u a t i o n s 1 , 2 , a n d 3 a p p l y t o a l l r o t a t i o n a l m a c h i n e r y o p e r a t i n g u n d e r g r a v i t a t i o n a l c o n s t r a i n t .

    C u r r e n t s c a l e u p p r o c e d u r e s i n v o l v e o n l y e q u a t i o n s 1 . 4 , 5 , 6 , a n d 7 .

    E q u a t j ^ o n s 2 , 3 , 8 , a n d 9 i n v o l v e i n t e r n a l r o t a t i o n a l f l o w a n d p r o v i d e n e w i n s i g h t i n t o m i l l d y n a m i c s .

    N r = n in e q u a t i o n 9 i s a v e r a g e n u m b e r o f m i l l r e v o l u t i o n s d u r i n g r e s i d e n c e o f o r e .

    Current scale-up pract ice involves equat ions 1 4 and 5 with equat ions 6and 7 derived from them. Equat ion 1 is

    the torque-arm relat ionship for power consumption whi le equat ions 4 and 5

    respectively

    express the imposed

    constancy-or

    near constancy-of fract ion cr i t ical speed and of applied energy per

    unit

    of ore in the mill. Equat ion 2

    internal rotat ional flow leads to equat ion 8 f low rat io and to equat ion 9 giving the average number of revolut ions

    during ore

    residence

    in the mill. While all the equat ions are capable of

    some

    refinement this cann ot significantly

    affect

    the strong inverse relationship to

    mill

    d iameter shown by equat ions 8 and 9 from which the concept of a

    critical diameter follows.

    4 4 J A N U A R Y 1 9 8 2

    M I N I N G E N G I N E E R I N G

  • 7/25/2019 Grinding Mill Scale-up Problems by CC Harris N Arbiter

    3/4

    Table2Mil l Spec ifi cat ions, Operat ing and Perf orman ce Data, and Derived Parameters

    Bouga inv i l le P in to Va l ley ' '

    Butte and Super ior '^ ' Palabora * '

    18 ft (5.5 m) over flo w mill 18 ft (5.5 m) overf low mill

    8 ft (2,4 m) over flow mill 32 ft (9.7 m) aut oge nous mill

    Porphyry Copper

    Quartz monozi te Zinc blende in granite

    Carbonati te

    Design specif ication

    Current operation

    -1927 Operat ion

    Current Operation

    D X L ft '

    17.4 X 21

    17.4 X 21 7.4 X 5.8

    31.5 X 21.4 X 14 '

    V cu ft 4994 4994

    2494 10476'

    L,%: (9 + sine)'

    4 0 ; 2.40

    3 7 ;

    2.34

    3 6 ;

    2.32

    3 5 ; 2.30

    W St '

    289.6

    267.9 13

    297.6

    V cu ft 998.7

    923.9

    44.9

    4400

    N rpm

    12.5

    12.3

    20

    10

    68 67

    71

    73.3

    P hp inst al led/ consumed

    4250/4410

    4000/ 200/246

    /6970

    New feed st/h

    483

    365 12.5

    623

    Circu lat ing load ratio 4 1.5 2 1.67

    Q, st/h

    2415 912.5

    37.5

    1663

    CT

    Ib/ cu ft 172 ' 172 ' 172