Green Solvents. Ionic liquids in oxidation...

download Green Solvents. Ionic liquids in oxidation catalysis.d7.unicam.it/eucheme/sites/d7.unicam.it.eucheme/files/files/doc... · Example 1: reduction of nitrobenzene to aniline. ... Electric

If you can't read please download the document

Transcript of Green Solvents. Ionic liquids in oxidation...

  • 1

    Green Solvents.Ionic liquids in oxidation

    catalysis.

    Prof. Antonio Pastor

  • 2

    Green chemistry?

    Risk = f(hazard, exposure)

  • 3

    Green Chemistry

    Green chemistry consists of chemicalsand chemical processes designed toreduce or eliminate negativeenvironmental impacts.

    From EPA (Environmental Protection Agency); USA.

  • 4

    How can sustainability be achievedin the production of chemicals?

    The Green chemical principles

    Paul Anastas of the U.S. EnvironmentalProtection Agency (EPA)

  • 5

    1. Waste preventioninstead of remediation

    2. Atom economy orefficiency

    3. Use of less hazardousand toxic chemicals

    4. Safer products by design

    5. Innocuous solvents andauxiliaries

    6. Energy efficiency by design

    7. Preferred use of renewableraw materials

    8. Shorter syntheses (avoidderivatization)

    9. Catalytic rather thanstoichiometric reagents

    10.Design products to undergodegradation in theenvironment

    11.Analytical methodologiesfor pollution prevention

    12.Inherently safer processes

  • 6

    ATOM ECONOMY

    SUSTANAIBLEMETHODS

    EFFICIENTPROCESSES

    RECYCLABLE CATALYSTS

    BENIGNSOLVENTS

    BENIGN REAGENTS

    ENERGY EFFICIENCY

    MINIMUM CHEMICAL

    WASTE

    GREEN CHEMISTRY

  • 7

    Green Chemistrymetrics

    Environmental factor

    Atom economy

    The environmental quotient

    The EcoScale

  • 8

    E factor =Mass of wastes

    Mass of the desired product

    E factor =Mass of raw materials mass of product

    Mass of the desired product

    Limitation: E factor does not account for any type of toxicity of the wastes

    Environmental factor

    %Atom economy = 100Formula weight of all atoms utilised

    Sum of formula weight of all reactants used

    Limitation: Qualitative. The yield has not been taken into account.

    Atom economy

    (Sheldon 1992)

    (Trost 1991)

  • 9

    The chlorohydrin process

    Not utilisedUtilisedReactants

    1456H,2O,Ca,2Cl442C,4H,O189Total2C,8H,3O,Ca,2Cl

    72Ca,4H,2O0_____72Ca(OH)2

    22H16O18H2O

    712Cl0_____71Cl2

    0_____282C,4H28C2H4

    FormulaWeight

    Not utilised atoms

    FormulaWeight

    Utilisedatoms

    Formulaweight

    Formula

    E factor = (145/44) = 3.29 (poor)

    % Atom economy = (44/189) X 100 = 23 %

  • 10

    Catalytic synthesis of ethylene oxide

    Not utilisedUtilisedReactants

    0_____442C,4H,O44Total

    2C,4H,1O

    0_____16O161/2 O2

    0_____282C,4H28C2H4

    FormulaWeight

    Not utilised atoms

    FormulaWeight

    Utilisedatoms

    FormulaweightFormula

    E factor = 0 (excellent)

    % Atom economy = (44/44) X 100 = 100 %

    catalyst

  • 11

    E factor =Mass of wastes

    Mass of the desired product

    Limitation: E factor does not take into account the nature and environmental impact of the generated waste.

    The environmental quotient (EQ )

    The environmental hazardous quotient (Q):

    Q = 1 (NaCl)Q between 100-1000 (heavy metals on the basis of their toxicity)

    In order to arrive at a more meaningful prediction, the E-factor is multiplied by Q. (EQ)

    (Sheldon, 1994)

  • 12

    The EcoScale

    An ideal reaction (EcoScale = 100):

    Compound A (substrate) undergoes a reaction with (or in the presence of) inexpensive compound(s) B to give the desired compound C in 100% yield at room temperature with a minimal risk for the operator and a minimal impact for the environment .

    Van Aken et al, Beilstein Journal of Organic Chemistry 2006, 2:3

  • 13

    Calculation of the EcoScale

    An ideal reaction has the EcoScale value of 100. The EcoScale score for a particular preparation of the product in a high purity state (> 98%) is calculated by lowering the maximum value of 100 by any applicable penalty points.

    EcoScale = 100 - sum of individual penalties.

    Ranking of reaction conditions:Scores: > 75 , excellent; > 50 , acceptable; and < 50 , inadequate

  • 14

    035

    2.- Price (subjective)(price of reaction components to obtain 10 mmol of desired product)

    Inexpensive (< $10)Expensive ($10 - $50)Very expensive (> $50)

    1.- Yield2

    (%)yield100-

    Parameter Penalty points

  • 15

    555

    101010

    3.- Safety (basedon hazard warning

    symbols)

    N (noxious)T (toxic)F (flammable)E (explosive)F+T+

    012345

    4.Temperature/timeRoom temperature/ < 1hRoom temperature/ < 24hHeating / < 1hHeating / < 24 hCooling to 0CCooling below 0

  • 16

    01

    2

    3

    113

    5.- Technical setupCommon setupInstruments for controlled addition of chemicals(dropping funnel, syringe pump, gas pressure regulator )Unconventional activation technique(Microwave irradiation, ultrasound or photochemical activation )Pressure equipment (> 1 atm)(sc-CO2, high pressure equipment )Any additional special glassware(Inert) gas atmosphereGlove box

  • 00000122333

    10

    6.- Workup and purificationNoneCooling to room temperatureAdding solvent Simple filtrationRemoval of solvent with bp < 150 C Crystallization and filtrationRemoval of solvent with bp > 150 CSolid phase extractionDistillationSublimationLiquid-liquid extraction (if applicable, the process includes drying of solvent with desiccant and filtration of desiccant)Classical cromatography

  • 18

    Example 1: reduction of nitrobenzene to aniline.

    36Penalty points total

    00030

    6.- Filtration of the catalystRemoval of MeOHAddition of CHCl3Washing with NaCl(aq)Removal of CHCl3

    05.- Room temperature, 1 h.

    04.- Common glassware, stirring

    10105

    3.- Nitrobenzene (T,N)CH3OH (T,F)5% Pt/C (F)

    32.- 5% Pt/C, 0,3 g

    51.- Yield: 90 %NO2

    CH3OH5% Pt/CHCOONH4rt, 1h

    NH2

    Synth Commun 2000, 30, 3639

  • Example 2: Oxidation of benzyl chloride to benzoic acid.

    14.-Dropwise addition of H2O2

    22Penalty points total

    33001

    6.- Extraction with AcOEt (3x10 mL)Washing with Na2S2O4(aq)Drying over MgSO4Removal of H2O2Crystallization from hexanes

    35.- 90C, 10 h.

    53.- Benzyl chloride (T)

    0000

    2.- H2O2(30 %, 36 mmol).Na2WO42H2O (66 mg, 0.2 mmol)[(octyl)3NMe]HSO4 (93 mg,0.2 mmol)Molecular sieves 4(100 mg)

    61.- Yield: 87 %CH2Cl

    30 % H2O2Na2WO4H2O[(CH3(CH2)7)3NCH3]HSO4MS 4A90C, 10 h.

    COOH

    J.Org.Chem 2001, 66, 3235

  • 20

    Considering specific reactions, thedevelopment of green methods isfocused on two main aspects:

    Choice of solvent.

    The development of catalyzedreactions.

  • 21

    Environmental friendly solvents

    Water Supercritical CO2 (sc-CO2) Room-temperature ionic liquids (IL)

    Choice of solvent

    GREEN SOLVENTS

  • 22

    Organic cationic component

    Inorganic or organic anion

    RNN

    R

    RN

    R

    RR

    RP

    R

    R

    RN

    R

    F

    B

    FF

    F (F3C)O2S

    N

    SO2(CF3)O O

    CF3

    P

    F

    F

    FF

    F F

    Cl- Br-

    IONIC LIQUIDS

  • IONIC LIQUIDSa) Thermal stabilityb) Low vapor pressurec) Electric conductivityd) Interesting solvent propertiese) Non flammabilityf) High electroelasticityg) High heat capacityh) Liquid crystalline structuresi) Biphasic systems possibleSEPARATION

    a) Gas separationsb) Extractive

    distillationc) Extractiond) Membranes

    SOLVENTSa) Organic reactions

    and catalystb) Nanoparticle synthesisc) Polymerizationd) biocatalyst

    LIQUID CRYSTALSdisplays

    HEAT STORAGEThermal fluids

    ELECTROELASTICMATERIALSa) Roboticsb) Artificial muscles

    ELECTROLYTESa) Fuel cellsb) Batteriesc) Sensorsd) Coatinge) Metal finishing

    LUBRICANTS ANDFUEL ADDITIVES

    ANALYTICSa) GC-head-space

    solventsb) MALDITOF

    matricesc) Protein

    crystallization

    APPLICATIONS

  • 24

    APPLICATIONS

    GREEN SOLVENTS Alternative to VOCsnear-zero vapor pressure

    TSILs (task-specific ionic liquids)Also reagent or catalyst in some reaction processes

  • 25

    TSILs (task-specific ionic liquids)

    Acidic ionic liquids

    Basic ionic liquids

    Ionic liquid containing metals

    Chiral ionic liquids

    NN

    H3CCOOH BF4

    -

    RNN

    R

    OH-

    NN

    H3C

    PF6-

    NH2

    RNN

    R

    Co(CO)4

    N

    CH2

    H

    NN R

    X-

  • 26

    PREPARATION (imidazolium ILs)

    NNMe RX R

    NNMe

    X-KPF6

    RNN

    Me

    PF6-

    R= CH3CH2CH2CH2 [Bmim]PF6 or [C4mim]PF6 CH3(CH2)4CH2 [Hmim]PF6 or [C6mim]PF6 CH3(CH2)6CH2 [Omim]PF6 or [C8mim]PF6

    X = Cl, Br

    Tm = -75 Cd = 1,4 kg L -1

    (25 C) = 300 mPasTd = 416 C

    NN

    PF6Some properties of [C 8mim]PF 6

  • 27

    Influence of the alkyl chain in the melting point of 1-alkyl-3-methylimidazolium [PF 6]- ILs

    Length of alkyl chain, R

    Tem

    pera

    ture

    (C

    )

    NNR

    PF6-

  • 28

    RNN

    Me

    Cl-NaOH

    RNN

    Me

    OH-

    NNMe BrCH2CH2NH2 NN

    H3C

    Br-NH2

    BrCH2CH2OMe

    NN

    H3C

    Br-OMe

    TSILs (task-specific ionic liquids)

  • 29

    (CH2)3CH3NN

    Me

    Cl-Na[Co(CO)4]

    [C4mim]Cl

    [C4mim][Co(CO)4]

    [C4mim][Mn(CO)5], [C4mim][HFe(CO)4] are prepared.Also

    Examples of organometallic ILs

    Dyson et al. Chem.Commun., 2001, 1862

    Br

    O O

    [C4mim][Co(CO)4]

    5 M NaOH

  • 30

    RNN

    R

    OH-HOOC NH2

    R

    RNN

    R

    -OOC NH2

    R

    Chiral ILs

    Aminoacid as anion

  • 31

    NH

    COOH

    a) LiAlH4b) Boc2O

    N

    CH2OH

    Boc

    a) TsClb) NaIm

    N

    CH2

    Boc

    NN

    N

    CH2

    H

    NN R

    X-

    a) HCl, NaHCO3b) NaX

    N

    CH2

    Boc

    NN R

    Br-

    RBr

    Aminoacid as substituent

    Chiral ionic liquids with aminoacidsHu et Al. Tetrahedron: Asymmetry 19 (2008) 1

  • 32

    Silica supported IL

    NN

    H3C

    Cl Si(OC2H5)3

    NN

    H3C

    Si(OC2H5)3Cl-

    NN

    H3C

    Si(OC2H5)3PF6

    -

    SiO2OHOH

    SiO2OO

    Si

    N

    N

    H3C

    OC2H5

    PF6-

    +

    KPF6

  • 33

    CHARACTERIZATION

    [C4mim][(CF3SO2)2N]Me

    NN

    Bu

  • 34

    Burrell et al. Green Chem., 2007, 9, 449

  • 35

  • 36

    Are ionic liquids green solvents?

    Do they satisfy the principles of green chemistry?

    Robin Rogers, director of the Centre for Green Manufacturing at the University of Alabama in Tuscaloosa.

  • 37

    Deetlefs and Seddon. Green Chem., 2010, 12, 17

  • 38Deetlefs and Seddon. Green Chem., 2010, 12, 17

  • 39

    Deetlefs and Seddon. Green Chem., 2010, 12, 17

  • 40

    1. Waste prevention instead ofremediation

    2. Atom economy or efficiency

    3. Use of less hazardous andtoxic chemicals

    4. Safer products by design

    5. Innocuous solvents andauxiliaries

    6. Energy efficiency by design

    7. Preferred use of renewable rawmaterials

    8. Shorter syntheses (avoidderivatization)

    9. Catalytic rather thanstoichiometric reagents

    10.Design products to undergodegradation in the environment

    11.Analytical methodologies forpollution prevention

    12.Inherently safer processes

    Irrelevant principles to the laboratory-scale ionic liquid prep aration.Principles 8, 11 and 12 apply to all the ionic liquids synth esis exceptin the case of some TSILs.

  • 41

    Principlesupheld

    Atomeconomy

    E-factorRoute

    1,2,5,6,8,11,12HighPoor1(d)

    5,6,8,11,12Low-highPoor1(c)

    1,2,5,6,8,11,12HighExcellent1(b)

    8, 11, 12HighGood1(a)

  • 42

    5,6,8,11,12Low-mediumVery poor2(c)

    5,6,8,11,12Low-mediumPoor2(b)

    1,2,5,6,8,11,12Low-mediumPoor-good2(a)

    Principlesupheld

    Atomeconomy

    E-factorRoute

  • 43

    8,11,12Low-mediumPoor3

    Principlesupheld

    Atomeconomy

    E-factorRoute

  • 44

    Conclusions:

    Laboratory-scale synthesis and purification of ILs can be considered as green if MW synthesis is employed.

    Purification of hydrophobic ILs is greener than hydrophilic ILs.

    It is necessary to develop improved purification process for hydrophilic ILs.

    SYNTHESIS AND PURIFICATION OF ILs:

    GREEN, BUT NOT GREEN ENOUGH

    Deetlefs and Seddon. Green Chem., 2010, 12, 17

  • 45

    !!" #$ %!& ()* "

    ()* + ,

    , -

    -

  • 46

    ./"0#$ %!1,2()* " ()* + 3

    -.,

    .

    3,289Methanol

    3,600Acetonitrile

    2.90-6.93Ammonia

    0.12-0.15Chlorine

    356-620Benzene

    29CHCl3

    10-17Phenol

    8.03-19.91Imidazolium ILs

    LC50(mg/L)Compound

    Bernot R.J. et al. Environmental Toxicology and Chemistry , 2005, 24, 87

  • 47

    APPLICATIONS IN CATALYTIC OXIDATION and EPOXIDATION

    BENIGN OXIDANTSH2O2, O2

    MODEL REACTIONS Oxidation of sulfides Oxidation of alcohols Epoxidation of alkenes

  • 48

    Oxidation of sulfidesTarget : removal of sulfur containing compounds in fuels.

    More attractive solution:

    Oxidative desulfurization (ODS).

    BTs and DBTs can be oxidized to their corresponding sulfoxides and sulfoneseasily.

    Classical in industry: Hydrodesulfurization

    Problem: the HDS is limited in treating benzothiophenes (BTs) anddibenzothiophenes (DBTs).

    RSR + H2cat.

    R-R + H2S

  • 49

    Oxidative desulfurization

    S

    [O], cat

    SO O

    Extraction with water orwater-soluble polar solvents (DMSO, DMF)

    Problem : Use of flammable solvents, VOCs or wastewater emissions.

    DBT

  • 50

    Use of ILs

    S

    S

    H2O2, cat.

    SO O

    Oil phase

    IL phase

    ILs are used as reaction media and as extractants

  • 51

    Desulfurization of DBT using IL + Na 2MoO4 +

    H2O2

    78[C8mim]PF6

    70[C4mim]PF6

    68[C8mim]BF4

    99[C4mim]BF4

    Yield (%)Type of IL

    T = 70C, t = 3 h, 5mol% catalyst

    Khn et al. Coordination Chemistry Reviews, 255 (2011) 1518.

    Desulfurization of DBT using

    [C4mim]BF 4 + H2O2

    99Na3PMo12O40

    98(NH4)3PMo12O40

    93H3PMo12O40

    98(NH4)6Mo7O24

    94H2MoO4

    99Na2MoO4

    Yield (%)Catalyst

    T = 70C, t = 3 h, 5mol% catalyst

  • 52

    Oxidative desulfurization of diesel fuel using ionic liquids.

    Published in: Guangren Yu; Jingjing Zhao; Dandan Song; Charles Asumana; Xiaoyue Zhang; Xiaochun Chen; Ind. Eng. Chem. Res. 2011, 50, 11690-11697.DOI: 10.1021/ie200735pCopyright ' 2011 American Chemical Society

    Chen et al. Ind. Eng. Chem. Res. 2011,50, 11690

  • 53

    Lewis and Brnsted acidic ionic liquids used in thi s work.

    Published in: Guangren Yu; Jingjing Zhao; Dandan Song; Charles Asumana; Xiaoyue Zhang; Xiaochun Chen; Ind. Eng. Chem. Res. 2011, 50, 11690-11697.DOI: 10.1021/ie200735pCopyright ' 2011 American Chemical Society

  • 54

    S-removal efficiency = X 100 (%)S0 - Sf

    S0

    S0 : the initial S-content.

    Sf : the final S-content after oxidative removal.

  • 55

    S-removal efficiency vs time for different ILs(model diesel fuel, 12 g; IL, 6 g; the initial S-content, 503 ppm; molar ratio of O/S, 16; temperature, 303 K), refer to previous slide for ILs numbering.

    Published in: Guangren Yu; Jingjing Zhao; Dandan Song; Charles Asumana; Xiaoyue Zhang; Xiaochun Chen; Ind. Eng. Chem. Res. 2011, 50, 11690-11697.DOI: 10.1021/ie200735pCopyright ' 2011 American Chemical Society

    1

    2

    6

  • 56

    Comparison between oxidative desulfurization (the data are extracted from the previous slide) and extractive desulfurization(model diesel fuel, 12 g; IL, 6 g; the initial S-content, 503 ppm; temperature, 303 K; time, 60 min).

    Published in: Guangren Yu; Jingjing Zhao; Dandan Song; Charles Asumana; Xiaoyue Zhang; Xiaochun Chen; Ind. Eng. Chem. Res. 2011, 50, 11690-11697.DOI: 10.1021/ie200735pCopyright ' 2011 American Chemical Society

  • 57

    S-removal efficiency vs time at different temperatures for [C4mim]Cl/2 ZnCl2 (model diesel fuel, 12 g; IL, 6 g; the initial S-content, 503 ppm; molar ratio of O/S, 16).

    Published in: Guangren Yu; Jingjing Zhao; Dandan Song; Charles Asumana; Xiaoyue Zhang; Xiaochun Chen; Ind. Eng. Chem. Res. 2011, 50, 11690-11697.DOI: 10.1021/ie200735pCopyright ' 2011 American Chemical Society

  • 58

    S-removal efficiency vs recycling time for [C4mim]Cl/2ZnCl2and [SO3HC 4mim]HSO4 (mass ratio of IL/oil, 1:2; molar ratio of O/S, 8:1; the initial S-content, 503 ppm; temperature/time, 363 K/1 h for [C4mim]Cl/2ZnCl2, 333 K/6 h for [SO3HC 4mim]HSO4).

    Published in: Guangren Yu; Jingjing Zhao; Dandan Song; Charles Asumana; Xiaoyue Zhang; Xiaochun Chen; Ind. Eng. Chem. Res. 2011, 50, 11690-11697.DOI: 10.1021/ie200735pCopyright ' 2011 American Chemical Society

  • 59

    S-removal efficiency vs recycling time for [C4mim]Cl/2ZnCl2in the desulfurization of commercial diesel fuel (diesel fuel, 6 g; initial S-content, 64 ppm; IL, 3 g; 30 wt % H2O2, 0.136 g; temperature, 363 K; time, 1 h).

    Published in: Guangren Yu; Jingjing Zhao; Dandan Song; Charles Asumana; Xiaoyue Zhang; Xiaochun Chen; Ind. Eng. Chem. Res. 2011, 50, 11690-11697.DOI: 10.1021/ie200735pCopyright ' 2011 American Chemical Society

  • 60

    Oxidation of alcohols

    For classical and recent literature examples :http://www.organic-chemistry.org/synthesis/C2O/aldehydes/oxidationsalcohols.shtm

    http://www.organic-chemistry.org/synthesis/C2O/ketones/oxidationsalcohols.shtm

    http://www.organic-chemistry.org/synthesis/C2O/carboxylicacids/oxidationsalcohols.shtm

  • 61

    Oxidation of 1-Napthol to 1,4-Naphthoquinone Using a Hydrogen Peroxide/Methyltrioxorhenium System in [C 4mim][BF 4]

    Published in: Vasile I. Prvulescu; Christopher Har dacre; Chem. Rev. 2007, 107, 2615-2665.DOI: 10.1021/cr050948hCopyright ' 2007 American Chemical Society

    CH3

    ReO O

    O

  • 62

    IL catalyst for alcohol oxidation

    OH

    catalyst

    30% aq H2O2 (dropwise addition)

    [C4mim][BF 4] 90C, 1.5 h

    O

    96 %100 %1,5[C4mim] 4[W10O23]

    31 %34 %2Na2MoO4

    35 %40 %2Na2WO4

    YieldConversiont (h)Catalyst

    Oxidation of diphenyl carbinol

  • 63

    Oxidation of benzylic alcohols

    [C4mim] 4[W10O23] (cat)

    30% aq H2O2 (dropwise addition)

    [C4mim][BF 4] 90C, 1.5 h

    OH

    OH

    OH

    O

    92 %

    Diol oxidation

    CH2OHR1

    R2

    R3

    [C4mim] 4[W10O23] (cat)

    30% aq H2O2 (dropwise addition)

    [C4mim][BF 4] 90C, 1.5 h

    CHOR1

    R2

    R3R1-R2 = OCH2O; R3 = H; 95 %R1=R3 = H; R2 = NO2; 92 %R1= H; R2 = R3 = OMe; 96 %

  • 64

    3 [C4mim][Br] + 4 H2WO4 + H3PO4 + 8 H2O2

    H2OCH2Cl2

    [C4mim] 3[PO4(W(O)(O2)2)4] + 3 HBr + 12 H2O

    n

    OH

    [C4mim]3[PO4(W(O)(O2)2)4] (0,05 eq.)

    30% aq H2O2 (dropwise addition)

    [C4mim][BF 4] 90Cn

    O

    n = 1, 4 h: 98 %; n= 3, 3 h: 96 %.

    IL catalyst containing peroxide ligand

  • 65

    Olefin epoxidation

    O

    HOOCl

    MCPBA

    Classical:

    http://www.organic-chemistry.org/synthesis/C1O/epoxides2.shtmFor classical examples :

  • 66

    UHP : urea-hydrogen peroxide adduct

    Epoxidation in ILs

    Abu-Omar et al. Chem.Commun., 2000, 1165

    R = H, Me, Ph. Conversion and yield > 95 %

    Ph MeReO3 (0.02 eq)H2O2 (30 %) (2 eq)

    [C2mim][BF4], 8h, rt.

    R

    OConversion > 95 %Yield < 5 %

    R MeReO3 (0.02 eq)UHP (2 eq)

    [C2mim][BF4], 8h, rt.

    R

    O

  • 67Polyhedron2009, 28, 3929.

    With molybdenum compound as catalyst.

  • 68

    MoO(O2)2(4-MepyO) 2

    [MoO(O2)2(H2O)n] MoO(O2)2(4-MepyO)2

    MoO3 + H2O2 (excess)

    4-MepyO

    NO CH3

  • 69Chem. Commun.2010, 46, 5933.

  • 70

    Reaction profile of the oxobisperoxomolybdenumcatalysed epoxidation of cis-cyclooctene

    J. Mol. Catal. A2011, 338, 111.

  • 71

    RecyclabilityAdvantages of RTILs:

    Epoxide+

    [Mo]+IL

    Extraction [Mo]+IL

    Epoxide

  • 72

    Epoxide yield for ten catalytic cycles after 4 h reaction time in C8mim-PF6 as solvent in the presence of [Mo(O)(O2)2(H2O)n]/dmpz (dmpz = 3,5-dimethylpyrazole) with added dmpz after each cycle (red) or without (yellow).

    1 2 3 4 5 67

    89

    10

    0

    20

    40

    60

    80

    100

    Yie

    ld (

    %)

    Catalytic Cycle

    dmpz added

    Dalton Trans.2011, 40, 5210 .

    NH

    N

    CH3

    H3C

  • 73

    Wacker Oxidation of Styrene to Acetophenone

    Published in: Vasile I. Prvulescu; Christopher Har dacre; Chem. Rev. 2007, 107, 2615-2665.DOI: 10.1021/cr050948hCopyright ' 2007 American Chemical Society

    Other oxidations

  • 74

    Direct Catalytic Oxidation of Cyclohexene to Adipic Acid

    Published in: Vasile I. Prvulescu; Christopher Har dacre; Chem. Rev. 2007, 107, 2615-2665.DOI: 10.1021/cr050948hCopyright ' 2007 American Chemical Society

  • 75

    For a review of catalyst in ILs:

    V. I. Prvulescu, C. Hardacre, Chem. Rev. ,2007,107,2631

    For a review of the use of ILs as solvents for catalyzedoxidations in organic synthesis:J.Muzart Adv.Synth. Catal. 2006, 348, 275

    For a recent review of applications of ILs in catalytic oxid ationreactions:Qu et al. Adv.Mat.Res., 2011, 233, 499Khn et al. Cordination Chemistry Reviews, 2011, 255, 1518

    For a review of selective chemical reactions in supercritic alcarbon dioxide, water and ionic liquids:

    R Skouta, Green Chemistry Letters and Reviews, 2009, 2:3, 121