Green initiatives and energy efficiency

58
ENERGY CONSERVATION AND GREEN INTIATIVES KANNAN S (1120100299) G VAMSI KRISHNA (1120100316) R NIVEDITA (1120100327) S SRAVYA PALLAVI (1120100328)

Transcript of Green initiatives and energy efficiency

Page 1: Green initiatives and energy efficiency

ENERGY CONSERVATION

AND GREEN INTIATIVES

KANNAN S (1120100299)G VAMSI KRISHNA (1120100316)

R NIVEDITA (1120100327)S SRAVYA PALLAVI (1120100328)

Page 2: Green initiatives and energy efficiency

NEED FOR ENERGY CONSERVATION

• Ensuring uninterrupted supply of energy to support economic and commercial activities is essential for sustainable economic growth.

• In true sense, sustainable development should be widely spread in all three dimensions - social, economic, and environmental.

• For all these areas, energy is perhaps the most important aspect. The production and the consumption patterns at the local and the global scale.

• The scenario of power generation, consumption and forecasts power requirements up to 13th five year plan.

• While it also stressing on energy and its close linkages with environment, poverty and sustainability.

• This also describes the strategies to meet the necessary demand of power and steps taken to achieve sustainability.

Page 3: Green initiatives and energy efficiency

ENERGY DEMAND

CUMMULATIVE ENERGY DEMAND (CED)

Cumulative energy demand (CED) is the entire primary energy demand over the whole life cycle of a product or a service. It is a good indicator to access the ecological balance of a building because it is the sum of energy used both in producing materials and components, as well as in their operation over their lifespan.

PARAMETERS CONSIDERED Amount of material used. Energy used in processing of the materials. Service life of the material. Energy required in life cycle of the material. Emissions during production, use and disposal.

CED = CEDP + CEDU + CEDD.

LIFE CYCLE ASSESMENT (LCA)

Life-cycle assessment (LCA) is a technique to assess environmental impacts associated with all the stages of a product's life from raw material extraction through materials processing, manufacture, distribution, use, repair and maintenance, and disposal or recycling.

Page 4: Green initiatives and energy efficiency

GREEN BUILDINGBuildings have major environmental impact over their entire life time.

A green building depletes the natural resources to the minimum during its construction and operation.

It maximizes the use of efficient building materials and construction practices.

The aim of a green building design is to minimize the demand on non-renewable resources, maximize the utilization efficiency of these resources, when in use, and maximize the reuse, recycling, and utilization of renewable resources.

Aspects integrated in green building

Vernacular principles. Building system design ((HVAC) heating ventilation and air conditioning, lighting, electrical, and water heating)

Integration of renewable energy sources to generate energy onsite. Water and waste management. Selection of ecologically sustainable materials (with high recycled content, rapidly renewable resources with low

emission potential, etc.). Indoor environmental quality (maintain indoor thermal and visual comfort, and air quality).

Page 5: Green initiatives and energy efficiency

GREEN BUILDING

Page 6: Green initiatives and energy efficiency

MISCONCEPTION OF GREEN BUILDINGGREEN BUILDINGS ARE EXPENSIVE

They use less materials and are built better, some may be built at higher cost but save energy consumption to huge extent

TO BE GREEN, BUILDINGS NEED SOLAR ENERGY

Approach of design – passive and active designPassive simply makes building energy efficient, active adding electrical and mechanical devices.

GREEN ARCHITECTURE are only about landscaping

GOING GREEN IS SUPERFICIAL

GREEN BUILDING - unattractive

GREEN ARCHITECTURE – essentially about green materials

GREEN BUILDING –green buildings products are hard to find.

GREEN BUILDING –uses traditional tool and techniques.

Page 7: Green initiatives and energy efficiency

GREEN INITIATIVES

VARIOUS GREEN BUILDING RATING SYSTEMS

Page 8: Green initiatives and energy efficiency

GRIHA(GREEN RATING FOR INTEGRATED HOUSING ASSESSMENT)

GRIHA is a Sanskrit word, literally meaning ‘A house as containing several rooms’.

Encourages optimization of building design to reduce conventional energy demand and further optimize energy performance of the building within specified comfort limits.

Emphasizing national environmental concerns, regional climatic conditions, and indigenous solutions.

To address and assess non-air conditioned or partially air conditioned buildings.

Acts as a tool to facilitate implementation of the relevant building codes and standards

Helps to design green buildings and, in turn, helps evaluate the ‘greenness’ of buildings.

OBJECTIVES

Endorsed by the Ministry of New and Renewable Energy, Government of India and developed by as of November 1, 2007

Page 9: Green initiatives and energy efficiency

• Reduced energy consumption without sacrificing the comfort levels.• Reduced destruction of natural areas, habitats, and biodiversity, and reduced soil loss from erosion, etc.• Reduced air and water pollution (with direct health benefits).• Reduced water consumption.• Limited waste generation due to recycling and reuse.• Reduced pollution loads.• Increased user productivity.• Enhanced image and marketability.

Some of the benefits of a green design to a building owner, user, and the society as a WHOLE

GRIHA

The basic features

Pre-construction stage (intra- and inter-site issues)

Building planning and construction stages (issues of resource conservation and reduction in resource demand, resource utilization efficiency, resource recovery and reuse, and provisions for occupant health and well being)

Building operation and maintenance stage (issues of operation and maintenance of building systems and processes, monitoring and recording of consumption, and occupant health and well being, and also issues that affect the global and local environment).

Page 10: Green initiatives and energy efficiency

GRIHA - CRITERIA

Criterion 1 Site Selection

Criterion 2 Preserve and protect the landscape during construction/compensatorydepository forestation.

Criterion 4 Design to include existing site features.

Criterion 3 Soil conservation (till post-construction).

Criterion 5 Reduce hard paving on-site and /or provide shaded hard- paved surfaces.

Criterion 6 Enhance outdoor lighting system efficiency.

Criterion 7 Plan utilities efficiently and optimize on-site circulation efficiency.

Criterion 8 Provide at least, the minimum level of sanitation/safety facilities.

Criterion 9 Reduce air pollution during construction.

.

Site planning

HARD PAVING

SHADED PAVINGPERMEABLE PAVING

Page 11: Green initiatives and energy efficiency

GRIHABuilding planning and construction stageConservation and efficient utilization of resources

Criterion 10 Reduce landscape water requirement.

Criterion 11 Reduce building water use.

Criterion 12 Efficient water use during construction.

Criterion 13 Optimize building design to reduce the conventional energy demand.

Criterion 14 Optimize the energy performance of the building within specifiedcomfort limits.

Criterion 15 Utilization of fly ash in the building structure.

Criterion 16 Reduce volume, weight, and time of construction byadopting an efficient technology (e.g. pre-cast systems, ready-mix concrete, etc.).

Criterion 17 Use low-energy material in the interiors.Criterion 18 Renewable energy utilization.

Criterion 19 Renewable energy - based hot- water system.

Fluorescent lamps

Page 12: Green initiatives and energy efficiency

GRIHAWaste managementRecycle, recharge, and reuse of water

Criterion 20 Waste- water treatment

Criterion 21 Water recycle and reuse (including rainwater).

Criterion 22 To minimize waste generation, streamline waste segregation.Criterion 23 Reduction in waste during construction.

Criterion 24 Efficient waste segregation.

Criterion 25 Storage and disposal of waste.

Criterion 26 Resource recovery from waste.

Health and well-being

RAIN WATER HARVESTING

Criterion 27 Minimize ozone depleting substances.

Criterion 28 Ensure water quality.

Criterion 29 Acceptable outdoor and indoor noise levels.

Criterion 30 Tobacco and smoke control.

Criterion 31 Universal accessibility.(universal design).

Page 13: Green initiatives and energy efficiency

GRIHAWaste managementRecycle, recharge, and reuse of water

Criterion 20 Waste- water treatment

Criterion 21 Water recycle and reuse (including rainwater).

Criterion 22 To minimize waste generation, streamline waste segregation.Criterion 23 Reduction in waste during construction.

Criterion 24 Efficient waste segregation.

Criterion 25 Storage and disposal of waste.

Criterion 26 Resource recovery from waste.

Health and well-being

RAIN WATER HARVESTING

Criterion 27 Minimize ozone depleting substances.

Criterion 28 Ensure water quality.

Criterion 29 Acceptable outdoor and indoor noise levels.

Criterion 30 Tobacco and smoke control.

Criterion 31 Universal accessibility.(universal design).

Page 14: Green initiatives and energy efficiency

CONTEXTNELLORE TROPICAL MARITIME CLIMATE

• HOT HUMID SUMMERS.(LONG)

• MILD WINTERS.(SHORT)

COASTAL CLIMATE SEE BREEZES

RENDERS CLIMATE IN BOTH SUMMERS AD WINTERS.

RAIN FALL

MOSTLY NORTH EAST MANSOON

WINTER – JANUARY AND FEBRUARY

SUMMER – MARCH TO MAY

SOUTH WEST MANSOONS – JUNE TO SEPTEMBER

NORTH EAST MANSOONS – OCTOBER TO DECEMBER

MAJOR CONSTRAINTS

HEAT

HUMIDITY

CHARACTERISTICS OF CLIMATE ARCHITECTURE

HEAVY STONE BUILDINGSStable indoor climatesSHADED OR SMALL WINDOWSLOGGIASPOTICOSPATIOS AND BALCONIES as buffer

Page 15: Green initiatives and energy efficiency

ARCHITECTURAL POTENTIAL OF CLIMATE

VERNACULAR

CONCEPTS MECHANISMS

DESIGN

LEARNING FROM TRADITIONAL ARCHITECTURE

Traditional architecture is based on and adapted to local conditions.

Climatic adaption is practically synonymous with energy conservation.

Contemporary architecture

Climate architecture

focused on sustainability in terms of minimizing energy consumption.

Optimum utilization and adaption of external climate.

Climate – earths interactive systems

HeatHumidityAir and light

HUMAN COMFORT PRICIPLES DERIVEDRESOURCES AND TECHNOLOGY

VERNACULAR ARCHITECTURE

Page 16: Green initiatives and energy efficiency

VERNACULAR APPROACHDESIGN STARTEGIES

ZONE DIVISION USAGE OF HEAVY AND LIGHT MATERIALS IN THE ZONE OF REQUIRED QUALITY OF SPACE.

HEAVY MATERIALS CONDUCT MORE THAN LIGHTER.

HUGE THERMAL MASS – LATE CONDUCTION

ZONE 1 ZONE 2

ZONE 3LIGHT MATERIAL REFLECTING LIGHT

SEMI OPEN MODERATE - LIVING

BED ROOM

HEAVY THERMAL MASS

OPERABLE PARTITION

HUMIDITY – LARGE, LIGHT, SPACIOUS ROOMS More air changes per hour.

HYGROSCOPIC/POROUS MATERIALIndoor – outdoor quality through absorption and evaporation.

Page 17: Green initiatives and energy efficiency

VERNACULAR APPROACH - FEASIBILITY

DECIDOUS TREES – WINTER AND SUMMER

Revival of regional architecture – post modern metaphysical materialism

Traditional methods – modern technology

General principles

Economic viability and efficient use of space

Page 18: Green initiatives and energy efficiency

CASE STUDY - MONAMA

LOCATION : Hyderabad, India CLIMATE : Inland compositeconstruction area 234.00 m2

Page 19: Green initiatives and energy efficiency

CASE STUDIESFeatures

• Use of cavity walls

• high thermal mass

• Wall orientation and form

• windows oriented to 195°such that pressure differences, in combination with the prevailing wind direction, may be utilized for continuous ventilation

• ventilation shaft

• exhausts hot air, located in the central part of the house

• Buried pipes and evaporative cooling

• The system provides cooling by consuming just the amount of electricity necessary for the operation of the fans

• photovoltaic system

• Solar hot water collector

Ventilation paths through the house

Evaporative cooling system

Page 20: Green initiatives and energy efficiency

CASE STUDIESREDEVELOPED PROPERTYLOCATION : Civil lines, New Delhi, India. CLIMATE : Composite

Features• Wind driven evaporative cooling

• A vertical screen tower is built on the west wall. This tower houses Khus evaporative pads on its outer surface, fed by a water pump

• Courtyard roof• Comprising of quilts and bamboo• Shading from outside / insulation from inside• Roof evaporative cooling • Direct radiation

• Insulation materials• broken marble mosaic• polyurethane board insulation above the

concrete slab

Façade of Courtyard House

West wall "Khus" cooling tower

Page 21: Green initiatives and energy efficiency

CONTEMPERORY SUSTAINABILITY MEASURES

Opportunities to conserve energy

Reducing demand Increasing the efficiency of devices Recovering otherwise lost heat

Reducing transmission losses

Improving the building’s insulation Using active insulation (transparent

insulation materials or TIM) Interrupting the thermal bridges

across the construction. Making the building form more

compact

Reducing energy needed to heat water Heat production from

renewable source (heat pump, biomass or solar)

Use of heat recovery system.

Page 22: Green initiatives and energy efficiency

WATER AND WASTE MANAGMENT

Reclaimed water It is waste water effluent or sewage that has

been treated according to high standards. Its treatment takes place offsite and is

delivered to a facility. Reclaimed are mostly used for landscaping.

Grey water Grey water is product of domestic water use

such as shower, washing machine and sink. Grey water collected from a building is

reused in same building.

Page 23: Green initiatives and energy efficiency

WATER AND WASTE MANAGMENT

Water reduction Use a high efficiency micro irrigation system. Replace portable water with captured rainwater, recycled

water or treated water. Use water treated and conveyed by a public agency. Apply xeriscaping principles.

Innovative wastewater technology Ultra high efficiency toilet and efficient retrofits. Efficient showerheads and retrofits. Water free and high efficient urinals. Other ultra-low water consumption products.

Page 24: Green initiatives and energy efficiency

LANDSCAPINGXeriscaping• Xeriscaping is landscaping reduces or

eliminates the need for supplemental water from irrigation.

• It is promoted in regions that do not have easily accessible, plentiful, or reliable supplies of fresh water, and is gaining acceptance in other areas as well.

• Xeriscaping may be an alternative to various types of traditional gardening.

• The specific plants used in xeriscaping depend upon the climate.

• The emphasis in xeriscaping is on selection of plants for water conservation, not necessarily selecting native plants.

Page 25: Green initiatives and energy efficiency

LANDSCAPINGXeriscaping

Advantages

• Lowered consumption of water.• Makes more water available for other domestic and

community uses and the environment.• Reduce Maintenance.• Xeriscape plants in appropriate planting design, and soil

grading and mulching.• Less cost to maintain.• Reduced waste and pollution.

Disadvantages• It may not meet modern aesthetics.• Reduced areas for sports.• Certain plants such as cacti and agave contain

thorns.• Initial Cost.

Page 26: Green initiatives and energy efficiency

LANDSCAPINGXeriscaping

Evergreen Trees

1. Acacia spp.2. Agonis flexuosa3. Callistemon viminalis4. Calocedrus decurrens5. Cupressus spp.6. Eucalyptus spp7. Juniperus spp.8. Olea europea 9. Pinus spp.10. Schinus molle

Deciduous Trees

1. Brachychiton populenus

2. Cercidium spp.3. Cercis occidentalis4. Chilopsis linearis cvs5. Lagerstroemia indica6. Prosopis chilensis7. Puncia granatum cvs8. Quercus spp.9. Robinia ambigua 'Idahoensis'10. Vitex agnus-castus

Native Shrubs

1. Arctostaphylos spp.2. Artemisia arborescens3. Ceanothus spp.4. Encelia californica5. Fremontadendron californicum6. Heteromeles arbutifolia7. Lavatera assurgentiflora8. Leucophyllum frutescens9. Mahonia aquifolium10. Tecoma stans

Page 27: Green initiatives and energy efficiency

NATURAL RESOURCES - SOLAR

Photovoltaic:Photovoltaic (PV) is a method of converting solar energy into direct current electricity using semiconducting materials that exhibit the photovoltaic effect.

How much energy does one panel produces?The unit of electrical energy consumed is generally measured in kilowatt-hours (kWh). If an array of solar panels rated at 1000 Wh produce electricity for 1 hour under good sunshine, they have produced 1 kWh or 1 unit of electricity.

•Choose building orientation to maximize or minimize exposure to solar radiation•Through site analysis ensure that there is no overshadowing•Provide reflective surfaces in front of the building to increase solar gain

Page 28: Green initiatives and energy efficiency

•Under clear skies and good sunshine each square meter is receiving about 1000 watts of solar energy. At typical 15% panel efficiency, a 1 sq m area will generate 150 watts of power. For 1 kW power output about 7 sq m area will be required.

How much space is required to install 1 kW solar panels?

•In India, ideal orientation for solar panels is slight tilt towards true south; in South India placing panels flat (horizontal) will also do.

A photovoltaic system employs solar panels composed of a number of solar cells to supply usable solar power.

NATURAL RESOURCES - SOLAR

Page 29: Green initiatives and energy efficiency

POWER CONSUMPTION IN RESIDENCE:NATURAL RESOURCES - SOLAR

Page 30: Green initiatives and energy efficiency

http://223.31.33.76/public/spin-grid/public/Grid/financial_tool/1 SPIN:

Page 31: Green initiatives and energy efficiency

NATURAL RESOURCES - SOLAR

Page 32: Green initiatives and energy efficiency

NATURAL RESOURCES - SOLAR

Page 33: Green initiatives and energy efficiency

CASE STUDIESCASE STUDIESRabi Rashmi Abasan (solar ray-based dwelling)

India’s first completely solar-powered housing complex using building-integrated photovoltaic (BIPV)

Location:1.76-acre plot in New Town, Kolkata

25 bungalows and a community centre Power generation: 58 KW (2KW from each

house) Designed, engineered and built by West

Bengal Renewable Energy Development Agency (WBREDA) and Bengal DCL

Page 34: Green initiatives and energy efficiency

CASE STUDIESFeatures

• passive solar architecture

• cool during summer

• natural light

• solar chimney for air circulation

• Insulated walls and windows on south, west, and east-side walls

• active solar energy features

• solar water heating system

• sustainable features

• garbage management system

• battery operated pick-up vans

• solar street lights

• swimming pool with solar water heating

Page 35: Green initiatives and energy efficiency

CASE STUDIESPV grid system

• Supplies energy to loads at the point of generation

• Exports power when there is excess energy

• Allows the import of energy if there is a shortfall

Capacity 2 kW

Capital cost Rs. 1.7 lakh/kW for PV and Rs. 40,000 for battery & inverter

Useful life 25 years

Net cost of roof top PV

Rs. 8.15/kWh

Savings due to BIPV Rs. 5/kWh (assuming total monthly consumption of household of 1000 kWh, energy saving of 25% on monthly consumption and residential electricity tariff of Rs. 5/kWh)

Net cost of BIPV Rs. 3.15/kW

Economy of BIPV

Page 36: Green initiatives and energy efficiency

COMPONENETSGREEN WALLS:• Living walls or green walls are self sufficient vertical gardens

that are attached to the exterior or interior of a building. • They differ from green façades (e.g. ivy walls) in that the

plants root in a structural support which is fastened to the wall itself.

• The plants receive water and nutrients from within the vertical support instead of from the ground.

Page 37: Green initiatives and energy efficiency

•System consists of a frame, waterproof panels, an automatic irrigation system, special materials, lights when needed and of course plants.

•The frame is built in front of a pre existing wall and attached at various points; there is no damage done to the building.

•Waterproof panels are mounted to the frame; these are rigid and provide structural support.

•There is a layer of air between the building and the panels which enables the building to ‘breath’.

•This adds beneficial insulating properties and acts like rain-screening to protect the building envelop.

COMPONENETS

Page 38: Green initiatives and energy efficiency

Pro WallSystem Green Walls have the ability to cut electricity bills up to

20% and also shield the building from sun, rain and thermal fluctuations.

Versa WallSystem

Basic WallSystem

Research in Singapore has demonstrated that green roofs on commercial buildings can reduce annual energy consumption by up to 14.5%.Studies in Rio de Janeiro have demonstrated that the underside of green roof systems are significantly cooler (up to 12degree C) than plain concrete roofs

The Cost of Vertical Gardens varies between Rs.650 per sq ft to Rs.1600 per Sq ft depending upon a number of Factors such as the System you choose , Structure , Design ,Plants , Irrigation System ,Location  etc.

http://www.sanjaynursery.com/#!vertical-garden/c1tr2

http://riorenewables.com/efficient-design/green-roofs-walls

Page 39: Green initiatives and energy efficiency

THE ADVANTAGES:

A Work of Art – gardens that hang vertically are fun and interesting to look at. They can double as artwork or home decor on a bare wall.

More Options for Those with Limited Space –homeowners can display plants where they might otherwise not have the space. In this case, vertical gardening provides an of option if they want to grow food.

Reduce Clutter – Vertical gardens are conveniently out of the way, which also results in a cleaner, more organized look. Some minimalists prefer vertical gardens for this reason.

Cleaner Air – Indoor plants have a tendency to collect and show dust, but when vertically grown, they collect and show less dust – but they are also easier to clean.

Page 40: Green initiatives and energy efficiency

THE DRAWBACKS:

Limited Growing Space – Vertical planters generally don’t provide a whole lot of space for roots to grow. Unless the planter is a heavy-duty structure, larger plants will not be able to be supported..

Dries Out Quickly – Some planters that receive a lot of sun can dry out easily, weakening or killing plants.

If you want to make a gutter garden to grow herbs and lettuces in a sunny space, use a white plastic gutter that will help reflect light and heat – instead of a dark grey metal gutter that will heat up faster.

Page 41: Green initiatives and energy efficiency

ROOFINGChoosing roofing material Ability to resist heat flow into interiors. Capacity to reflect sunlight and reemit surface heat. Ability to reduce ambient roof air temperatures. Capacity of being reusable. Fire resistant that meet fire code requirement. Should be free of halogens.

Choice for roofing material Clay or cement tile Recycled rubber or plastic Composition shingle Metal Built up roof Green roof

Page 42: Green initiatives and energy efficiency

ROOFING

GREEN ROOF

STRUCTURAL SUPPORT

ROOFING MEMBRANE

MEMBRANE PROTECTECTIO

N

ROOT BARRIER

DRAINAGE MEDIUM

AERATION

Page 43: Green initiatives and energy efficiency

ROOFINGBenefits

• Overall building energy costs can be reduced due to the green roofs’ natural thermal insulation properties.

• Acoustic insulation properties also exist with green roofs, and results in noise reduction.

• When green roofs are applied, previously wasted rooftop space is turned into usable space.

• Most of the green roofing companies utilize at least some recycled materials in their various product components.

• A new market for green roofs and services could create jobs for many people.

Page 44: Green initiatives and energy efficiency

ROOFING

Key factors influencing green roof capital costs• Size and complexity of the installation • Building height • Use of special features for enhancing aesthetics and safety of accessible green roofs • Local availability of materials• Availability of labor-reducing technologies • Abundance of experienced local labor • Market competition • Availability of ready-made modular or complete systems• Need for structural modifications to increase load-bearing capacity on the roof

Page 45: Green initiatives and energy efficiency

ROOFINGBuilding Structural Modification

• Green roof weights ranging from 40 to 250 Kg/sq. m , with several systems weighing less than 150 Kg/sq. m.

• The larger spans between columns mean that supporting additional weight on the roof is a greater challenge unless the structural roof framing is strong and rigid.

• Accommodating a green roof on these buildings would normally require structural support.

• Less expensive strategies to avoid or minimize building structural modifications are mainly targeted towards transferring weight or designing for heavy garden elements over load bearing members.

Page 46: Green initiatives and energy efficiency

HIGH PERFORMANCE WINDOW

• High-performance windows can greatly reduce energy consumption and, thus, heating and cooling costs.

• The most energy efficient window models can save homeowners up to 16% on their heating costs and up to 23% on their cooling costs.

• Additional benefits of this evolving technology include better air quality in homes, reduced condensation, and the ability to filter 98% of ultraviolet rays.

High-Performance Window Value Chain

MATERIAL COMPONENTS

FINISHED PRODUCTS END USE

Page 47: Green initiatives and energy efficiency

HIGH PERFORMANCE WINDOW

GAS FILLING

INSULATING

SPACER

LOW E

FLAT GLASS PANES

FRAME

• FIBER GLASS• VINYL

• LUMBER• ALUMINIUM

• POLYSTYRENE FOAM• STEEL

• SILICA

• NICKEL• TITANIUM DIOXIDE• CHROMIUM NITRATE

• KRYPTON

Page 48: Green initiatives and energy efficiency

HIGH PERFORMANCE WINDOW

Low E- coating helps to keep heat in during winter and heat out during summer

Aluminum spacers have been a weak thermal link in window unit.Dense foam can improve the energy performance of E- coating.

Page 49: Green initiatives and energy efficiency

HIGH PERFORMANCE WINDOW

Potential risks associated with highly glazed façade Increased sun penetration and excessive brightness. Adequate tools may not always be available. Greater cooling loads and cooling energy.

Increased cost of automated shading systems and purchasing lighting controls.

Technical difficulty and the high cost of reliability. Uncertainty of occupant behavior.

Page 50: Green initiatives and energy efficiency

SUSTAINABILITY MEASURESReducing ventilation losses

Ensure no spaces are excessively ventilated. Reduce the fan power needed to supply required air

volume. Duct lengths and layout should be optimized to reduce

hydraulic pressure drops. Use of more efficient ventilation system. An air tight building is essential in high performance

houses. Ventilation improvement

Buildings should be well ventilated preferably be narrow. Use of mechanical cooling is recommended in hot and

humid climate. Occupants should be able to operate window openings. Use of fan assisted cooling strategies. Decide whether open or closed building approach. Maximize wind induced ventilation. Provide ventilation to attic spaces.

Page 51: Green initiatives and energy efficiency

HIGH PERFORMANCE WINDOW

Shades and shade control

Exterior shading devices have been found to reduce heat gain and diffuse natural lighting.

Shade control device is based on preference of natural light to electric light.

Goal of shading device is to maximise natural lighting within a glare free environment, avoiding solar radiation and sunlight penetration.

GLARE CONTROL

Curtains

Curtains are effective in reducing glare and daylight level.

Short curtains on the upper part of window impede daylight from projecting into house.

Side curtain tracks should extend beyond the window.

Page 52: Green initiatives and energy efficiency

Low emitting materials Avoid materials and products that generate substantial amount of

pollution during manufacturing Specify salvaged building material. Avoid material made from toxin or hazardous constituents Specify material with low embodied energy. Help regional economy and environment by adopting locally available

material. Use wood and wood based materials that meet MOEF principles and

GRIHA guidelines. Fly ash

Aerocon panels

Ferro cement

Concrete hollow blocks

Pre fabricated structures

EFFICIENT HOUSING MATERIALS

Page 53: Green initiatives and energy efficiency

GREEN MATERIALSNatural materials – locally available

Earthen building materials - compressed mud blocks, bricks

Abundance of raw material- earth Durable and require low maintenance. Eco friendly with minimum environmental friendly. High thermal insulation. High sound insulation. No waste generated during construction. Biodegradable or reusable. Construction is inexpensive and simple. Highly resistant to fire. Not susceptible to insects or rodents.

Cuddapah stone

Tandur stone

Cuddapah stone

Tandur stoneDifferent colors

Page 54: Green initiatives and energy efficiency

LOW COST HOUSING MATERIALSInnovative use of secondary productsMaterial Source ApplicationRice husk Rice mills Fibrous building panels, acid

proof cementCoconut husk Coir fiber industry Building boards, roofing sheets,

panels, coir reinforced composite boards

Groundnut shell Mills Chip boards, roofing sheets

Jute fiber Jute industry Door shutters, chip boards, roofing sheets

Saw mill waste Saw mills Insulation boards, cement bonded wooden chips.

Page 55: Green initiatives and energy efficiency

INDIRA PARYAVARAN BHAVANIndia’s first net zero energy building• solar passive design• Energy efficient building materials• GRIHA 5-star rating

Features• 75 per cent of natural daylight • Total energy savings of about 40 per cent achieved through the adoption of

chilled beam system of air-conditioning • Use of convection currents rather than airflow through air handling units

• Use of green materials • fly ash bricks • high reflectance terrace tiles• rock wool insulation• Calcium Silicate ceiling tiles with high recyclable content • grass paver blocks on pavements and road• UPVC windows with sealed double glass• Renewable bamboo jute composite material for doorframes and

shutters• Reduction in water consumption

• rainwater harvesting • low-discharge water fixtures• recycling of waste water through sewage treatment plant• use of plants with low water demand in landscaping

• Geothermal cooling for HVAC system that transfers heat to or from the ground

Page 56: Green initiatives and energy efficiency

Green materialsResources available Construction techniques

Green materialsImported

Intervening technologies

Initial cost – labor cost FEASIBILITYEfficient systems

AFFORDABLE HOUSING SCENARIOPUBLIC PRIVATE PARTNERSHIP 50 – 50 PERCENT

SUSTAINBILITY – ECONIMIC RESOURCE ENERGY SOCIAL

FEASIBLE PROCESS INVOLVED IN ACHIEVING TOTAL SUSTAINABILTY – GREEN HOUSING

Page 57: Green initiatives and energy efficiency

RISK ASSOCIATED WITH GREEN BUILDINGS

• Higher Than Anticipated Operating Expenses—Excessive Energy Use, Water Use, and Maintenance.

• Establishing Conflicting Standards—Creating Unachievable Project Requirements.

• Construction Schedule and Cost Impacts Associated with Delivering a Sustainable Building.

• Failure to Meet Green Code or Green Certification Requirements—During the Original Design Phase, Due to End User Design Changes, or During Construction.

• Employing Materials and Equipment with Reduced Life Cycles or Immediate Aesthetic or Performance Failures.

• Damage to Environmental and Professional Reputation.

Page 58: Green initiatives and energy efficiency

REFERENCES

• GREEN BUILDING DESIGN AND CONSTRUCTION-Sam Kubba

• SUSTAINABLE SOLAR HOUSING-Robert hasting and Maria Wall 

• GREEN BUILDING DESIGN AND CONSTRUCTION-Dr. Peter Gevorkian

• DOMESTIC VENTILATION-Roger Edward

• ENVIRONMENT AND URBANIZATION ASIAVol. 5 Vol.1 march 2014

• EMARALD ARCHITECTURE-Migrea Hill Publication.

• ECOHOUSE-Sue Roaf

• CLIMATE AND ARCHITECTURE-Torben Dahl