Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk...

47
Gravitational Wave Parameter Estimation Neil J. Cornish

Transcript of Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk...

Page 1: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

40 Scientific American, October 2013 Photograph by Tktk Tktk

sad1013Ande3p.indd 40 8/21/13 1:12 PM

Gravitational Wave Parameter Estimation

Neil J. Cornish

Page 2: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Outline• Signal analysis 101

• Bayesian Inference

• Bayesian Hierachical Modeling

• Noise modeling

• Tools of the trade

• Examples from LIGO/Virgo

Page 3: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Signals in additive noise

data = signal + noise

d = h+ n

(randomly selected aLIGO data from 14 September 2015)

Page 4: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

data - signal = noise

d� h = n

p(d|h) = p(d� h) = p(n)

Its all about the residuals

Page 5: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Noise models matter

p(d|h) = p(d� h) = p(n)

The likelihood is our statistical model for the noise

An incorrect noise model will bias the analysis. e.g. assuming that noise is stationary and Gaussian when it is not.

Page 6: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Noise Models

p(d|h) = p(d� h) = p(n)

Example: Stationary, colored, Gaussian noise

p(n, Sn(f)) =Y

f

1

2⇡Sn(f)e�nf n⇤

f

Sn(f)

Note: This is a parametrized model, depends on the unknown spectrum Sn(f)

Page 7: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Bayesian Inference

Noise model Signal model

Normalization - model evidence

Posterior probability forwaveform h

p(h|d) = p(d|h)p(h)p(d)

Page 8: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Reconstructing GW150914 with wavelets

Page 9: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Gravitational wave signal typesWell modeled - e.g. binary inspiral and merger

Poorly modeled - e.g. core collapse supernovae Stochastic- e.g. phase transition in early universe

p(h)

Page 10: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Gravitational wave signal models

Template based

Burst signals

Stochastic signals

p(h) = �(h� h(~�)), p(~�)

p(h) = �(h�X

), p( )

p(h) =1p

det(2⇡Sh)e�

12 (h

†S�1h h), p(Sh)

Page 11: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Bayesian Hierachical Modeling

p(h|d,Hi,✓) =p(d|h,Hi,✓)p(h|Hi,✓)

p(d|Hi,✓)Level 1 Inference

We have some model for the signal and the noise described by the parameters Hi ✓

The result of the analysis is a posterior distribution for the waveform, in addition to posterior distributions for the sky location, polarization and the noise properties

BayesWave performs Level 1 Inference

Page 12: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Bayesian Hierachical Modeling

Level 2 Inference

But what if we are not really interested in the waveform samples ?h

p(d|Hi,✓) =

Zp(d|h,Hi,✓)p(h|Hi,✓)dhMarginalize over h

The marginal likelihood from Level 1 becomes the likelihood for Level 2

p(✓|d,Hi) =p(d|Hi,✓)p(✓|Hi)

p(d|Hi)

LALinference performs Level 2 Inference (Can recover Level 1 in post-processing)

Page 13: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Bayesian Hierachical Modeling

Level 3 Inference

But what if we are not all that interested in the model parameters ?

Marginalize over

The marginal likelihood from Level 2 is the model evidence. It can be used for model selection

✓ p(d|Hi) =

Zp(d|Hi,✓)p(✓|Hi)d✓

Oij =p(Hi|d)p(Hj |d) =

p(Hi)

p(Hj)

p(d|Hi)

p(d|Hj)

Prior Odds Bayes Factor

Page 14: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Level 2 Inference: Template based analysis

These have the strongest priors and hence yield the most sensitive searches

Techniques such as MCMC and Nested Sampling can be used to map out the full posterior distribution, allowing us to compute mean, median and mode and credible intervals.

Integrating out the individual signal samples yields the marginal likelihood in terms of the model parameters

Likelihood

Evidence

Prior

p(h) = �(h� h(~�)), p(~�)

The marginal likelihood and the (hyper) prior on the model parameters then defines the posterior on the model parameters

p(d|~�) =Z

p(d|h)�(h� h(~�)) dh

p(~�|d) = p(d|~�)p(~�)p(d)

Page 15: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Template based analysis - Parameter Posteriors

p(~�|d)

Page 16: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Level 2 Inference: Stochastic Signals

Gaussian random waveform

Gaussian likelihood. The noise correlation matrix block diagonal between detectors

p(h) =1p

det(2⇡Sh)e�

12 (h

†S�1h h), p(Sh)

p(d|h) = 1pdet(2⇡C)

e�12 (d�h)†C�1(d�h)

Marginal likelihood

C(Ik)(Jl) = �IJ(Sn)kl

G(Ik)(Jl) = �IJ(Sn)kl + (Ik)(Jl)(Sh)

p(d|Sh) =

Zp(d|h)p(h) dh =

1pdet(2⇡G)

e�12 (d

†G�1d)

Overlap reduction function, Hellings-Downs curve[Cornish & Romano, PRD 87 122003 (2013)]

Page 17: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Level 3 Inference: Rate of Black Hole Mergers

Likelihood for duty cycle

[Smith & Thrane, PRX kk (2018); Cornish, Physics (2018)]

Marginal Likelihood (Evidence) for Signal Model in data chunk j

Marginal Likelihood (Evidence) for Noise Model in data chunk j

Number of binary mergers

p(d|⇠) =MY

j=1

[⇠ p(dj |Signal) + (1� ⇠) p(dj |Noise)]

N = M⇠⇠Fraction of chunks with mergers

p(d|R) = MX

N

Zd⇠p (d|⇠)p(N)

e�RRN

N !Likelihood for merger rate

Page 18: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Noise Models

Spectra computed using 8 second segments, spaced 2 seconds apart, covering 256 surrounding the BNS merger (de-glitched data)

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, PRL 119 161101 (2017)

Page 19: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Contending with non-stationary, non-Gaussian noise: Traditional approach

Non-stationary:

Adiabatic drifts in the PSD - work with short data segments

Non-Gaussian:

Glitches - vetoes and time-slides

Page 20: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

• Bayesian model selection • Three part model (signal, glitches, Gaussian noise) • Trans-dimensional Markov Chain Monte Carlo

• Wavelet decomposition • Glitches modeled by wavelets • Number, amplitude, duration and location of wavelets varies

Contending with non-stationary, non-Gaussian noise: Bayesian approach

(Currently the model does not account for adiabatic drifts in the PSD) [ Cornish & Littenberg, Class. Quant. Grav. 32 135012 (2015)]

BayesWave

Page 21: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Spectral Modeling

10-48

10-46

10-44

10-42

10-40

10-38

10-36

50 100 150 200 250 300 350 400 450

Pow

er s

pect

ral d

ensi

ty (H

z-1)

frequency (Hz)

|h(f)|2

Cubic spline fit

Lorentzian fit

Data

Cubic spline fit

Lorentzian fit

Model it

Page 22: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Time-Frequency Scalograms of LIGO data

Glitches

Model these too

X

Page 23: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Trans-dimensional Markov Chain Monte Carlo

Page 24: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Example from LIGO S5 science run

Page 25: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Removing a glitch was preferable to vetoing GW170817

Page 26: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Likelihood for non-stationary Gaussian Noise

p(d|h) = 1pdet(2⇡C)

e�12 (d�h)†C�1(d�h)

Cost of computing the likelihood is far less in a representation where the noise correlation matrix C is diagonal

e.g. Colored stationary noise has a diagonal noise correlation matrix in the Fourier domain

Pulsar Timing has to deal with colored, non-stationary data and un-even sampling - analysis performed directly in the time domain. Clever tricks have been developed to speed up the costly matrix inversions and sums

Adiabatic drifts in the PSD - Locally Stationary Noise

Page 27: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Likelihood for Non-stationary Gaussian Noise

[2. “Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum”, Nason, von Sachs, & Kroisandt, J. R. Statist. Soc. Series B62, 271 (2000)]

[1. “Fitting time series models to nonstationary processes”. Dahlhaus, Ann. Statist., 25, 1 (1997)]

p(d|h) = 1pdet(2⇡C)

e�12 (d�h)†C�1(d�h)

Cost of computing the likelihood is far less in a representation where the noise correlation matrix C is diagonal

For a large class of discrete wavelet transformations and locally stationary noise

C(i,j)(k,l) = �ij�kl Cik

[1]

Time

[2]

Frequency

This is the likelihood used by the LIGO coherent WaveBurst algorithm

Page 28: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Likelihood for Non-stationary Gaussian Noise

p(d|h) = 1pdet(2⇡C)

e�12 (d�h)†C�1(d�h)

C(i,j)(k,l) = �ij�kl CikCan we use a discrete wavelet based likelihood?

Model the wavelet spectrum as a smooth function in frequency and time. E.g. Trans-dimensional Bicubic spline

Cik

Page 29: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Likelihood for Non-stationary Gaussian Noise

p(d|h) = 1pdet(2⇡C)

e�12 (d�h)†C�1(d�h)

Need fast wavelet transforms of the signals for computational efficiency

Use SPA to derive analytic wavelet domain waveforms?

Only compute wavelets along predicted t-f track?

Reduce order modeling?

C(i,j)(k,l) = �ij�kl CikCan we use a discrete wavelet based likelihood?

Page 30: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Bayesian Inference: Tools of the Trade

Prior Likelihood

Posterior Evidence

MCMC

p(h|M)

p(h|d,M) p(d|M)

p(d|h)

Page 31: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Markov Chain Monte Carlo

⇥x

⇥y

H

Transition Probability(Metropolis-Hastings)

Prior Proposal

Likelihood

Always go up,Sometime come down

H = min�

1,p(�y)p(d|�y)q(�x|�y)p(�x)p(d|�x)q(�y|�x)

Yields PDF p(�x|d) for parameters�x given data d

Page 32: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

MCMC Recipe

Ingredients:

Local posterior approximation

Differential evolution proposals

Parallel tempering

Global likelihood maps

Directions:Mix all the proposals together. Check consistency by recovering the prior and producing diagonal PP plots. Results are ready when distributions are stationary.

Page 33: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Proposal Distributions

Propose jumps along eigendirections of K, scaled by eigenvalues

Quadratic approximation to the posterior using the augmented Fisher Information Matrix

Use a Non-Markovian Pilot search (hill climbers, simulated annealing, genetic algorithms etc) to crudely map the posterior/likelihood and use this as a proposal distribution for a Markovian follow-up [Littenberg & Cornish, PRD 80, 063007, (2009)]

Local posterior approximation

Global likelihood maps

q(~y|~x) = 1pdet(2⇡K�1)

e

� 12Kij(x

i�y

i)(xj�y

j)

Time-frequency maps, Maximized likelihood maps

Page 34: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

BayesWave Global Map Proposal

Page 35: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Proposal Distributions

[Braak (2005)]Differential evolution

Page 36: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Parallel Tempering

Primary Mode

Secondary Mode

[Swendsen & Wang, 1986]

Ordinary MCMC techniques side-step the need to compute the evidence. PT uses multiple, coupled chains to improve mixing, and also allows the evidence to be computed.

⇡(~�|d)T = p(d|~�)1/T p(~�)

Explore tempered posterior

log p(d) =

Z 1

0E[log p(d|~�)]� d�

Compute model evidence

(Here )� = 1T

Page 37: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

MCMC

Page 38: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Parallel Tempering

Page 39: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

Posterior Predictive Checks

P-P plots, BW Sky localization Gaussianity of BW residuals (noise model)

Page 40: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

GW170104

Parameter estimation: Examples from LIGO/Virgo

mostly measuring M

mostly measuring M

Page 41: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

follows line of constant M

BNS GW170817 - Parameter estimation

Page 42: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

h(f) = A�(f)ei��(f)

Dominant Harmonic

�2(f) = 2�ftc � �c ��

4+

3128 u5

k=0

(�k(��) + �lk(��) ln u)uk

A2(f) =M2

DL u7/2

k=0

(�k(��) + �lk(��) ln u)uk

u = (�Mf)1/3 � v

Why measuring BH spin is hard I: Information from the Phase

Page 43: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

0PN

1PN

1.5PN

2PN

�371532256

+ �55384

���2/5u�3

3128

u�5 Measure chirp mass

Measure individual masses

Measure spin combination

Measure individual spins

��

3�

8� 1

32

�113(1 ±

�1� 4�)� 76�

�L · ��1,2

���3/5 u�2

�1529336521676032

+2714521504

� +30853072

�2 + �(L · ��1,2, ��1 · ��2, �21,2)

���4/5 u�1

Post-Newtonian Expansion u = (�Mf)1/3 � v

Page 44: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

�e↵ = m1 �1 cos ✓LS1 +m2 �2 cos ✓LS2

Out-of-plane spin combination

�p =1

2(�2? + ↵�1? + |�2? � ↵�1?|)

↵ =

✓m1

m2

◆(4M �m2)

(4M �m1)

In-plane spin combination

[component (anti)aligned with angular momentum]

Why measuring BH spin is hard II: Information from precision

Page 45: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

���

���

���

���

���

���

���

� ��� � ��� � ��� �

��������������������

�����������

Face-on Face-offEdge-on

We are more likely to detect Face-on/off systems than Edge-on systems

We are also more likely to detect more massive systems 70 Mpc for 1.4+1.4 Msun 300 Mpc for 10+10 Msun 700 Mpc for 30+30 Msun

Selection Effects

More massive, less cycles in-band, Harder to measure precession

Harder to measure precession

Page 46: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

�e↵

�p

Spin posteriors for GW170104

Page 47: Gravitational Wave Parameter Estimation · 40 Scientific American, October 2013 Photograph by Tktk Tktk sad1013Ande3p.indd 40 8/21/13 1:12 PM Gravitational Wave Parameter Estimation

|�e↵ | < 0.35

All four events consistent with low spin, no precession

90% confidence, all 4

�p ⇠ 0

Evidence for spin precession remains elusive

�e↵