Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March...

22
John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*, Andrew Chilton, Taiwo Olatunde, Stephen Apple, Samantha Parry Michael Aitken, Brandon Bickerstaff, Giacomo Ciani, Guido Mueller University of Florida, [email protected]

Transcript of Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March...

Page 1: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 1

Gravitational reference sensor technology development for LISA

John W. Conklin*, Andrew Chilton, Taiwo Olatunde, Stephen Apple, Samantha Parry Michael Aitken, Brandon Bickerstaff, Giacomo Ciani, Guido Mueller University of Florida, [email protected]

Page 2: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 2

LISA Gravitational Reference Sensor

*F. Antonucci et al (2011)

Page 3: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 3

UF Torsion Pendulum

Simplified inertial sensor

Hollow PM

1 m, 50 µm diam. W fiber

Positioning stages

Eddy current damper

Vacuum system (2×10–6 mbar)

Electrostatic shields

• Follows 4TM Trento pendulum • Fiber supports cross bar with

4 hollow TMs (rotation → translation) • Light weight (0.46 kg) Al structure

reduces needed fiber diameter • Measures surface forces

Page 4: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 4

UF Torsion Pendulum

Simplified inertial sensor

Hollow PM

1 m, 50 µm diam. W fiber

Positioning stages

Eddy current damper

Vacuum system (2×10–6 mbar)

Electrostatic shields

• Follows 4TM Trento pendulum • Fiber supports cross bar with

4 hollow TMs (rotation → translation) • Light weight (0.46 kg) Al structure

reduces needed fiber diameter • Measures surface forces

Page 5: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 5

UF Torsion Pendulum

Simplified inertial sensor

Hollow PM

1 m, 50 µm diam. W fiber

Positioning stages

Eddy current damper

Vacuum system (2×10–6 mbar)

Electrostatic shields

• Follows 4TM Trento pendulum • Fiber supports cross bar with

4 hollow TMs (rotation → translation) • Light weight (0.46 kg) Al structure

reduces needed fiber diameter • Measures surface forces

Page 6: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 6

Inside the Chamber

Simplified Electrode Housing

𝜑 = 𝑥1 − 𝑥222.2 cm

𝑋 = 𝑥1 + 𝑥2

2

Page 7: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 7

AC Capacitive Readout & DC Actuation

PC

DAC

ADC Demod/ processing

Preamp Diff. amp

TM

100 kHz injection

DC Amp (10/250 V)

DC actuation

NCO: 100 kHz

φ

φ+π/2

To DAC From ADC

CIC Q

I

FPGA-side Host-side

Output

θ

Q’ R(θ ) I’

CIC

Preamp

• Typical Sensitivity: 30 nm/Hz1/2

Page 8: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 8

Interferometer Readout • Polarization multiplexed Mach-Zehnder interferometer

measures differential displacement of two test masses • Light delivered by fiber feedthrough • Recombined beam sensed outside chamber (free-space) • Typical sensitivity:

0.5 nm/Hz1/2

External bench

Page 9: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 9

Pendulum Angle Time-series

Page 10: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 10

X Spectrum

Page 11: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 11

ϕ Spectrum

Page 12: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 12

Torque Impulses in ϕ

Page 13: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 13

Torque Impulses

Page 14: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 14

Acceleration Noise vs. Limits

Page 15: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 15

Pendulum Performance vs. LISA

Page 16: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 16

LISA Pathfinder-like GRS • Internal geometry equivalent to Pathfinder • 3 UV light injection ports • Prototype: Aluminum + PEEK • Integrated into pendulum

in summer

UV injector (Ti ferrule + UV fiber + SMA connector)

Electrode housing metrology frame

Sensing/Actuation electrodes

Injection electrodes

Page 17: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 17

UV LED-based Charge Control

240 nm LED

250 nm LED

Au WF Hg line

Fiber-coupled UV LEDs (SETi)

• TM charges due to release after launch & cosmic rays (~50 e/s)

• Charge increases electrostatic stiffness & interacts with E fields

• TM Charge control via UV photoemission demoed by GP-B

• UV LEDs are attractive alternate to Hg lamps

• 240 ± 10 nm UV LED < Au work function 243 nm

• ~10x reduction in SWaP (~150 mW in → 25 µW out)

• Enables AC charge control

Page 18: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 18

UV LED-based Charge Management System • Electronics driver

• DC, AC, PWM current source with external reference

• Thermo-electric cooler (TEC) driver

• Fiber coupler houses

• UV LED (240 nm)

• Mode-matching optics

• TEC

• 0.6 mm diam UV fiber

• UV light injector

Copper TEC-LED thermal interface

LED-lens-fiber ferrule mount

UV LED driver & fiber coupler, v1.0

Page 19: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 19

DC Charge Control on Pendulum • Applied AC field drives pendulum with amplitude q • Illuminating the housing drives electrons to the TM • Illuminating the TM drives electrons to the housing • Bi-polar charge

control demoed, but not well balanced (–2 V < q < 1 V)

Page 20: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 20

• # liberated electrons / # incident photons (typ. ~10–5 for Au) • Drives charge control performance (want R < QE1/QE2 < R –1) • Measurement technique:

• Fiber-coupled UV LEDs illuminate coated sample • Samples (-9 V), sphere (+9 V) • Picoammeter measures current flow from sample to sphere • Vacuum: < 10–5 Torr

QE Measurements

UV-LED

Au sample inside integrating sphere

UV fiber

picoammeter

Page 21: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 21

Improved Consistency with Bake-out Thanks to discussions with ICL

Page 22: Gravitational reference sensor technology …...2017/03/06  · John W. Conklin, Pendulum, March 2017 1 Gravitational reference sensor technology development for LISA John W. Conklin*,

John W. Conklin, Pendulum, March 2017 22

Plans

• April-May: Test AC charge control with v2.0 electronics

• May-August: Integrate LPF-like GRS

• May-August: v3.0 driver electronics

• Fall 2017: Test AC charge control with LPF-like GRS

• Down the road: Continuous charge control tests